Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
97e851e5
Unverified
Commit
97e851e5
authored
Apr 17, 2023
by
rocking5566
Committed by
GitHub
Apr 17, 2023
Browse files
Merge branch 'develop' into normalization/splitK
parents
9c42a83a
fc26d42a
Changes
212
Hide whitespace changes
Inline
Side-by-side
Showing
12 changed files
with
670 additions
and
23 deletions
+670
-23
library/src/tensor_operation_instance/gpu/quantization/gemm/device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instance.cpp
...quantization_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instance.cpp
+49
-0
library/src/tensor_operation_instance/gpu/quantization/gemm/device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instance.cpp
...quantization_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instance.cpp
+49
-0
library/src/tensor_operation_instance/gpu/quantization/gemm/device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instance.cpp
...quantization_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instance.cpp
+49
-0
library/src/tensor_operation_instance/gpu/quantization/gemm/gemm_quantization_common.hpp
...stance/gpu/quantization/gemm/gemm_quantization_common.hpp
+41
-0
profiler/include/profiler/profile_grouped_gemm_fastgelu_impl.hpp
...r/include/profiler/profile_grouped_gemm_fastgelu_impl.hpp
+280
-0
profiler/include/profiler/profile_grouped_gemm_impl.hpp
profiler/include/profiler/profile_grouped_gemm_impl.hpp
+1
-6
profiler/include/profiler/profile_groupnorm_impl.hpp
profiler/include/profiler/profile_groupnorm_impl.hpp
+3
-3
profiler/src/CMakeLists.txt
profiler/src/CMakeLists.txt
+2
-0
profiler/src/profile_grouped_gemm.cpp
profiler/src/profile_grouped_gemm.cpp
+7
-3
profiler/src/profile_grouped_gemm_fastgelu.cpp
profiler/src/profile_grouped_gemm_fastgelu.cpp
+177
-0
script/cmake-ck-dev.sh
script/cmake-ck-dev.sh
+2
-1
test/grouped_convnd_bwd_weight/grouped_convnd_bwd_weight.cpp
test/grouped_convnd_bwd_weight/grouped_convnd_bwd_weight.cpp
+10
-10
No files found.
library/src/tensor_operation_instance/gpu/quantization/gemm/device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instance.cpp
0 → 100644
View file @
97e851e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Layout(A, B, C) = [Col, Col, Row]
void
add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Col
,
Col
,
Empty_Tuple
,
Row
,
int8_t
,
int8_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instances
<
Mul_Clamp
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
{});
#if CK_EXPERIMENTAL_INTER_WAVE_INSTANCES
add_device_operation_instances
(
instances
,
device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instances
<
Mul_Clamp
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
{});
#endif
#if CK_EXPERIMENTAL_PIPELINE_V2_INSTANCES
add_device_operation_instances
(
instances
,
device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instances
<
Mul_Clamp
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
{});
#endif
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/quantization/gemm/device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instance.cpp
0 → 100644
View file @
97e851e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Layout(A, B, C) = [Row, Row, Row]
void
add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Empty_Tuple
,
Row
,
int8_t
,
int8_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instances
<
Mul_Clamp
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
{});
#if CK_EXPERIMENTAL_INTER_WAVE_INSTANCES
add_device_operation_instances
(
instances
,
device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instances
<
Mul_Clamp
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
{});
#endif
#if CK_EXPERIMENTAL_PIPELINE_V2_INSTANCES
add_device_operation_instances
(
instances
,
device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instances
<
Mul_Clamp
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
{});
#endif
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/quantization/gemm/device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instance.cpp
0 → 100644
View file @
97e851e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Layout(A, B, C) = [Row, Col, Row]
void
add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Col
,
Empty_Tuple
,
Row
,
int8_t
,
int8_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances
<
Mul_Clamp
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
{});
#if CK_EXPERIMENTAL_INTER_WAVE_INSTANCES
add_device_operation_instances
(
instances
,
device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances
<
Mul_Clamp
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
{});
#endif
#if CK_EXPERIMENTAL_PIPELINE_V2_INSTANCES
add_device_operation_instances
(
instances
,
device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances
<
Mul_Clamp
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
{});
#endif
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/quantization/gemm/gemm_quantization_common.hpp
0 → 100644
View file @
97e851e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
Empty_Tuple
=
ck
::
Tuple
<>
;
using
Row_Row_Tuple
=
ck
::
Tuple
<
Row
,
Row
>
;
using
Col_Col_Tuple
=
ck
::
Tuple
<
Col
,
Col
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Relu
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
Mul_Clamp
=
ck
::
tensor_operation
::
element_wise
::
Activation_Mul_Clamp
<
PassThrough
>
;
using
Relu_Mul_Clamp
=
ck
::
tensor_operation
::
element_wise
::
Activation_Mul_Clamp
<
Relu
>
;
using
Add_Mul_Clamp
=
ck
::
tensor_operation
::
element_wise
::
Add_Activation_Mul_Clamp
<
PassThrough
>
;
using
Add_Relu_Mul_Clamp
=
ck
::
tensor_operation
::
element_wise
::
Add_Activation_Mul_Clamp
<
Relu
>
;
static
constexpr
auto
MNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
profiler/include/profiler/profile_grouped_gemm_fastgelu_impl.hpp
0 → 100644
View file @
97e851e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_fastgelu.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AccDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
>
bool
profile_grouped_gemm_fastgelu_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
const
std
::
vector
<
int
>&
Ms
,
const
std
::
vector
<
int
>&
Ns
,
const
std
::
vector
<
int
>&
Ks
,
const
std
::
vector
<
int
>&
StrideAs
,
const
std
::
vector
<
int
>&
StrideBs
,
const
std
::
vector
<
int
>&
StrideCs
)
{
bool
pass
=
true
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
std
::
size_t
group_count
=
Ms
.
size
();
if
(
!
(
group_count
==
Ns
.
size
()
&&
group_count
==
Ks
.
size
()
&&
group_count
==
StrideAs
.
size
()
&&
group_count
==
StrideBs
.
size
()
&&
group_count
==
StrideCs
.
size
()))
{
throw
std
::
runtime_error
(
"wrong! inconsistent M/N/Ks, StrideA/B/Cs size
\n
"
);
}
std
::
vector
<
Tensor
<
ADataType
>>
a_m_k
;
std
::
vector
<
Tensor
<
BDataType
>>
b_k_n
;
std
::
vector
<
Tensor
<
CDataType
>>
c_m_n_device_results
;
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
{
a_m_k
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
Ms
[
i
],
Ks
[
i
],
StrideAs
[
i
],
ALayout
{})));
b_k_n
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
Ks
[
i
],
Ns
[
i
],
StrideBs
[
i
],
BLayout
{})));
c_m_n_device_results
.
push_back
(
Tensor
<
CDataType
>
(
f_host_tensor_descriptor
(
Ms
[
i
],
Ns
[
i
],
StrideCs
[
i
],
CLayout
{})));
std
::
cout
<<
"group: "
<<
i
<<
" a_m_k["
<<
i
<<
"]:"
<<
a_m_k
[
i
].
mDesc
<<
", b_k_n["
<<
i
<<
"]:"
<<
b_k_n
[
i
].
mDesc
<<
", c_m_n_device_results["
<<
i
<<
"]:"
<<
c_m_n_device_results
[
i
].
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{}(
a_m_k
[
i
]);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{}(
b_k_n
[
i
]);
break
;
default:
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
0.0
,
1.0
}(
a_m_k
[
i
]);
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
0.5
,
0.5
}(
b_k_n
[
i
]);
}
ck
::
utils
::
FillConstant
<
CDataType
>
{}(
c_m_n_device_results
[
i
]);
}
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
FastGelu
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_device_buf
,
b_device_buf
,
c_device_buf
;
a_device_buf
.
reserve
(
group_count
);
b_device_buf
.
reserve
(
group_count
);
c_device_buf
.
reserve
(
group_count
);
std
::
vector
<
const
void
*>
p_a
,
p_b
;
std
::
vector
<
void
*>
p_c
;
p_a
.
reserve
(
group_count
);
p_b
.
reserve
(
group_count
);
p_c
.
reserve
(
group_count
);
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
gemm_descs
.
reserve
(
group_count
);
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
{
a_device_buf
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
a_m_k
[
i
].
mDesc
.
GetElementSpaceSize
()));
b_device_buf
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
b_k_n
[
i
].
mDesc
.
GetElementSpaceSize
()));
c_device_buf
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
CDataType
)
*
c_m_n_device_results
[
i
].
mDesc
.
GetElementSpaceSize
()));
a_device_buf
[
i
]
->
ToDevice
(
a_m_k
[
i
].
mData
.
data
());
b_device_buf
[
i
]
->
ToDevice
(
b_k_n
[
i
].
mData
.
data
());
c_device_buf
[
i
]
->
SetZero
();
gemm_descs
.
push_back
({
Ms
[
i
],
Ns
[
i
],
Ks
[
i
],
StrideAs
[
i
],
StrideBs
[
i
],
StrideCs
[
i
],
{}});
p_a
.
push_back
(
a_device_buf
[
i
]
->
GetDeviceBuffer
());
p_b
.
push_back
(
b_device_buf
[
i
]
->
GetDeviceBuffer
());
p_c
.
push_back
(
c_device_buf
[
i
]
->
GetDeviceBuffer
());
}
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemm
<
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
CLayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<>
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
if
(
op_ptrs
.
size
()
<=
0
)
{
throw
std
::
runtime_error
(
"wrong! no device GEMM instance found"
);
}
std
::
string
best_gemm_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
auto
p_ds
=
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
{};
// profile device GEMM instances
for
(
auto
&
gemm_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
gemm_ptr
->
MakeArgumentPointer
(
p_a
,
p_b
,
p_ds
,
p_c
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
);
auto
invoker_ptr
=
gemm_ptr
->
MakeInvokerPointer
();
DeviceMem
gemm_desc_workspace
(
gemm_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
()));
gemm_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
gemm_desc_workspace
.
GetDeviceBuffer
());
if
(
gemm_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
string
gemm_name
=
gemm_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
flop
+=
std
::
size_t
(
2
)
*
Ms
[
i
]
*
Ns
[
i
]
*
Ks
[
i
];
num_btype
+=
sizeof
(
ADataType
)
*
Ms
[
i
]
*
Ks
[
i
]
+
sizeof
(
BDataType
)
*
Ks
[
i
]
*
Ns
[
i
]
+
sizeof
(
CDataType
)
*
Ms
[
i
]
*
Ns
[
i
];
}
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_gemm_name
=
gemm_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
c_device_buf
[
i
]
->
FromDevice
(
c_m_n_device_results
[
i
].
mData
.
data
());
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
Ms
[
i
],
Ns
[
i
],
StrideCs
[
i
],
CLayout
{}));
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
[
i
],
b_k_n
[
i
],
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
bool
group_pass
=
ck
::
utils
::
check_err
(
c_m_n_device_results
[
i
],
c_m_n_host_result
);
pass
=
pass
&&
group_pass
;
std
::
cout
<<
"group: "
<<
i
<<
" verification result: "
<<
std
::
boolalpha
<<
group_pass
<<
std
::
endl
;
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
[
i
].
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
[
i
].
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_results
[
i
].
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
c_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
}
else
{
std
::
cout
<<
"does not support this GEMM problem"
<<
std
::
endl
;
}
}
if
(
do_verification
)
{
std
::
cout
<<
"Verification: "
<<
(
pass
?
"SUCCESS"
:
"FAILURE"
)
<<
std
::
endl
;
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_gemm_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profiler/profile_grouped_gemm_impl.hpp
View file @
97e851e5
...
...
@@ -108,11 +108,6 @@ bool profile_grouped_gemm_impl(int do_verification,
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
// if(do_verification)
// {
// }
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_device_buf
,
b_device_buf
,
c_device_buf
;
...
...
@@ -285,7 +280,7 @@ bool profile_grouped_gemm_impl(int do_verification,
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_gemm_name
<<
std
::
endl
;
return
pass
;
}
// namespace profiler
}
}
// namespace profiler
}
// namespace ck
profiler/include/profiler/profile_groupnorm_impl.hpp
View file @
97e851e5
...
...
@@ -190,9 +190,9 @@ bool profile_groupnorm_impl(int do_verification,
if
(
time_kernel
)
{
LogRange
(
std
::
cout
<<
"length = "
,
length
,
","
)
<<
", "
;
std
::
cout
<<
"
num_kernel = "
<<
num_kernel
<<
",
best perf = "
<<
best_avg_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_instance_name
<<
std
::
endl
;
LogRange
(
std
::
cout
<<
"length = "
,
length
,
","
)
<<
std
::
endl
;
std
::
cout
<<
"best perf = "
<<
best_avg_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_instance_name
<<
std
::
endl
;
}
if
(
num_kernel
==
0
)
...
...
profiler/src/CMakeLists.txt
View file @
97e851e5
...
...
@@ -29,6 +29,7 @@ set(PROFILER_SOURCES
profile_batchnorm_fwd.cpp
profile_batchnorm_bwd.cpp
profile_batchnorm_infer.cpp
profile_grouped_gemm_fastgelu.cpp
)
set
(
PROFILER_EXECUTABLE ckProfiler
)
...
...
@@ -68,4 +69,5 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_instan
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_softmax_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batchnorm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_gemm_fastgelu_instance
)
rocm_install
(
TARGETS
${
PROFILER_EXECUTABLE
}
COMPONENT profiler
)
profiler/src/profile_grouped_gemm.cpp
View file @
97e851e5
...
...
@@ -29,6 +29,11 @@ enum struct GemmDataType
INT8_INT8_INT8
,
// 3
};
#define OP_NAME "grouped_gemm"
#define OP_DESC "Grouped GEMM"
namespace
{
std
::
vector
<
int
>
argToIntArray
(
char
*
input
)
{
std
::
vector
<
int
>
out
;
...
...
@@ -45,9 +50,6 @@ std::vector<int> argToIntArray(char* input)
return
out
;
}
#define OP_NAME "grouped_gemm"
#define OP_DESC "Grouped GEMM"
int
profile_grouped_gemm
(
int
argc
,
char
*
argv
[])
{
if
(
!
(
argc
==
14
))
...
...
@@ -166,4 +168,6 @@ int profile_grouped_gemm(int argc, char* argv[])
return
0
;
}
}
// anonymous namespace
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_grouped_gemm
);
profiler/src/profile_grouped_gemm_fastgelu.cpp
0 → 100644
View file @
97e851e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_grouped_gemm_fastgelu_impl.hpp"
#include "profiler_operation_registry.hpp"
enum
struct
GemmMatrixLayout
{
MK_KN_MN
,
// 0
MK_NK_MN
,
// 1
KM_KN_MN
,
// 2
KM_NK_MN
,
// 3
MK_KN_NM
,
// 4
MK_NK_NM
,
// 5
KM_KN_NM
,
// 6
KM_NK_NM
,
// 7
};
enum
struct
GemmDataType
{
F32_F32_F32
,
// 0
F16_F16_F16
,
// 1
BF16_BF16_BF16
,
// 2
INT8_INT8_INT8
,
// 3
};
#define OP_NAME "grouped_gemm_fastgelu"
#define OP_DESC "Grouped GEMM+FastGelu"
namespace
{
std
::
vector
<
int
>
argToIntArray
(
char
*
input
)
{
std
::
vector
<
int
>
out
;
std
::
istringstream
in
(
input
);
std
::
string
item
;
while
(
std
::
getline
(
in
,
item
,
','
))
{
out
.
push_back
(
std
::
stoi
(
item
));
}
return
out
;
}
int
profile_grouped_gemm_fastgelu
(
int
argc
,
char
*
argv
[])
{
if
(
!
(
argc
==
14
))
{
printf
(
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
);
printf
(
" 2: A[k, m] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 3: A[k, m] * B[n, k] = C[m, n])
\n
"
);
printf
(
"arg4: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg6: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg8 to 13: Ms, Ns, Ks, StrideAs, StrideBs, StrideCs (e.g., 256,256 128,128 64,64 "
"64,64 64,64 128,128)
\n
"
);
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
GemmDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
GemmMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
auto
Ms
=
argToIntArray
(
argv
[
8
]);
const
auto
Ns
=
argToIntArray
(
argv
[
9
]);
const
auto
Ks
=
argToIntArray
(
argv
[
10
]);
const
auto
StrideAs
=
argToIntArray
(
argv
[
11
]);
const
auto
StrideBs
=
argToIntArray
(
argv
[
12
]);
const
auto
StrideCs
=
argToIntArray
(
argv
[
13
]);
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
ck
::
profiler
::
profile_grouped_gemm_fastgelu_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
);
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
ck
::
profiler
::
profile_grouped_gemm_fastgelu_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
);
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_KN_MN
)
{
ck
::
profiler
::
profile_grouped_gemm_fastgelu_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
);
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_NK_MN
)
{
ck
::
profiler
::
profile_grouped_gemm_fastgelu_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
);
}
else
{
throw
std
::
runtime_error
(
"wrong! this GEMM data_type & layout is not implemented"
);
}
return
0
;
}
}
// anonymous namespace
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_grouped_gemm_fastgelu
);
script/cmake-ck-dev.sh
View file @
97e851e5
...
...
@@ -8,7 +8,8 @@ MY_PROJECT_SOURCE=$1
cmake
\
-D
CMAKE_PREFIX_PATH
=
/opt/rocm
\
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_CXX_FLAGS
=
"-O3 -ftemplate-backtrace-limit=0 -gline-tables-only -save-temps=
$PWD
"
\
-D
CMAKE_CXX_FLAGS
=
"-std=c++17 -O3 -ftemplate-backtrace-limit=0 -fPIE -Wno-gnu-line-marker
\
-save-temps=
$PWD
"
\
-D
CMAKE_BUILD_TYPE
=
Release
\
-D
BUILD_DEV
=
ON
\
-D
GPU_TARGETS
=
"gfx908;gfx90a"
\
...
...
test/grouped_convnd_bwd_weight/grouped_convnd_bwd_weight.cpp
View file @
97e851e5
...
...
@@ -43,7 +43,7 @@ class TestGroupedConvndBwdWeight : public ::testing::Test
DataType
,
DataType
,
DataType
>
(
true
,
// do_verification
1
,
// init_method integer value
1
,
// init_method
:
integer value
false
,
// do_log
false
,
// time_kernel
param
,
...
...
@@ -60,9 +60,9 @@ TYPED_TEST_SUITE(TestGroupedConvndBwdWeight, KernelTypes);
TYPED_TEST
(
TestGroupedConvndBwdWeight
,
Test1D
)
{
this
->
conv_params
.
clear
();
this
->
conv_params
.
push_back
({
1
,
4
,
128
,
128
,
256
,
{
1
},
{
14
},
{
2
},
{
1
},
{
0
},
{
0
}});
this
->
conv_params
.
push_back
({
1
,
4
,
64
,
128
,
256
,
{
3
},
{
28
},
{
1
},
{
1
},
{
1
},
{
1
}});
this
->
conv_params
.
push_back
({
1
,
4
,
128
,
128
,
256
,
{
1
},
{
3
},
{
1
},
{
1
},
{
0
},
{
0
}});
this
->
conv_params
.
push_back
({
1
,
2
,
128
,
128
,
256
,
{
1
},
{
14
},
{
2
},
{
1
},
{
0
},
{
0
}});
this
->
conv_params
.
push_back
({
1
,
2
,
32
,
128
,
256
,
{
3
},
{
28
},
{
1
},
{
1
},
{
1
},
{
1
}});
this
->
conv_params
.
push_back
({
1
,
2
,
128
,
128
,
256
,
{
1
},
{
3
},
{
1
},
{
1
},
{
0
},
{
0
}});
this
->
template
Run
<
1
>();
}
...
...
@@ -70,11 +70,11 @@ TYPED_TEST(TestGroupedConvndBwdWeight, Test2D)
{
this
->
conv_params
.
clear
();
this
->
conv_params
.
push_back
(
{
2
,
4
,
128
,
128
,
256
,
{
1
,
1
},
{
7
,
7
},
{
2
,
2
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}});
{
2
,
2
,
64
,
128
,
256
,
{
1
,
1
},
{
7
,
7
},
{
2
,
2
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}});
this
->
conv_params
.
push_back
(
{
2
,
4
,
8
,
128
,
256
,
{
3
,
3
},
{
14
,
14
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}});
{
2
,
2
,
4
,
128
,
256
,
{
3
,
3
},
{
14
,
14
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}});
this
->
conv_params
.
push_back
(
{
2
,
4
,
128
,
128
,
256
,
{
1
,
1
},
{
3
,
3
},
{
1
,
1
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}});
{
2
,
2
,
128
,
128
,
256
,
{
1
,
1
},
{
3
,
3
},
{
1
,
1
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}});
this
->
template
Run
<
2
>();
}
...
...
@@ -82,10 +82,10 @@ TYPED_TEST(TestGroupedConvndBwdWeight, Test3D)
{
this
->
conv_params
.
clear
();
this
->
conv_params
.
push_back
(
{
3
,
4
,
1
28
,
128
,
256
,
{
1
,
1
,
1
},
{
7
,
7
,
7
},
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
0
,
0
,
0
},
{
0
,
0
,
0
}});
{
3
,
2
,
1
6
,
128
,
256
,
{
1
,
1
,
1
},
{
7
,
7
,
7
},
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
0
,
0
,
0
},
{
0
,
0
,
0
}});
this
->
conv_params
.
push_back
(
{
3
,
4
,
8
,
128
,
256
,
{
3
,
3
,
3
},
{
14
,
14
,
3
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}});
{
3
,
2
,
2
,
128
,
256
,
{
3
,
3
,
3
},
{
14
,
14
,
3
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}});
this
->
conv_params
.
push_back
(
{
3
,
4
,
128
,
128
,
256
,
{
1
,
1
,
1
},
{
3
,
3
,
3
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
},
{
0
,
0
,
0
}});
{
3
,
2
,
32
,
128
,
256
,
{
1
,
1
,
1
},
{
3
,
3
,
3
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
},
{
0
,
0
,
0
}});
this
->
template
Run
<
3
>();
}
Prev
1
…
7
8
9
10
11
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment