Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
97e851e5
Unverified
Commit
97e851e5
authored
Apr 17, 2023
by
rocking5566
Committed by
GitHub
Apr 17, 2023
Browse files
Merge branch 'develop' into normalization/splitK
parents
9c42a83a
fc26d42a
Changes
212
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1395 additions
and
164 deletions
+1395
-164
.github/dependabot.yml
.github/dependabot.yml
+12
-0
.gitignore
.gitignore
+8
-3
.readthedocs.yaml
.readthedocs.yaml
+18
-0
CHANGELOG.md
CHANGELOG.md
+2
-1
CMakeLists.txt
CMakeLists.txt
+7
-0
Jenkinsfile
Jenkinsfile
+2
-2
README.md
README.md
+12
-2
client_example/04_contraction/CMakeLists.txt
client_example/04_contraction/CMakeLists.txt
+10
-4
client_example/04_contraction/contraction_bilinear_fp32.cpp
client_example/04_contraction/contraction_bilinear_fp32.cpp
+0
-0
client_example/04_contraction/contraction_bilinear_fp64.cpp
client_example/04_contraction/contraction_bilinear_fp64.cpp
+281
-0
client_example/04_contraction/contraction_scale_fp32.cpp
client_example/04_contraction/contraction_scale_fp32.cpp
+0
-0
client_example/04_contraction/contraction_scale_fp64.cpp
client_example/04_contraction/contraction_scale_fp64.cpp
+270
-0
client_example/09_quantization/CMakeLists.txt
client_example/09_quantization/CMakeLists.txt
+9
-0
client_example/09_quantization/conv2d_fwd_bias_relu_perchannel_quantization.cpp
...tization/conv2d_fwd_bias_relu_perchannel_quantization.cpp
+22
-21
client_example/09_quantization/conv2d_fwd_bias_relu_perlayer_quantization.cpp
...antization/conv2d_fwd_bias_relu_perlayer_quantization.cpp
+61
-57
client_example/09_quantization/conv2d_fwd_bias_tanh_perchannel_quantization.cpp
...tization/conv2d_fwd_bias_tanh_perchannel_quantization.cpp
+209
-0
client_example/09_quantization/conv2d_fwd_bias_tanh_perlayer_quantization.cpp
...antization/conv2d_fwd_bias_tanh_perlayer_quantization.cpp
+201
-0
client_example/09_quantization/conv2d_fwd_perchannel_quantization.cpp
...le/09_quantization/conv2d_fwd_perchannel_quantization.cpp
+21
-20
client_example/09_quantization/conv2d_fwd_perlayer_quantization.cpp
...mple/09_quantization/conv2d_fwd_perlayer_quantization.cpp
+57
-54
client_example/09_quantization/gemm_quantization.cpp
client_example/09_quantization/gemm_quantization.cpp
+193
-0
No files found.
.github/dependabot.yml
0 → 100644
View file @
97e851e5
# To get started with Dependabot version updates, you'll need to specify which
# package ecosystems to update and where the package manifests are located.
# Please see the documentation for all configuration options:
# https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
version
:
2
updates
:
-
package-ecosystem
:
"
pip"
# See documentation for possible values
directory
:
"
/"
# Location of package manifests
open-pull-requests-limit
:
10
schedule
:
interval
:
"
daily"
.gitignore
View file @
97e851e5
...
...
@@ -48,6 +48,11 @@ build*
.gdb_history
install.dir*
# directories containing generated documentation
docs/source/_build/
docs/docBin/
# documentation artifacts
build/
_build/
_images/
_static/
_templates/
_toc.yml
docBin/
.readthedocs.yaml
0 → 100644
View file @
97e851e5
# Read the Docs configuration file
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
version
:
2
build
:
os
:
ubuntu-22.04
tools
:
python
:
"
3.8"
sphinx
:
configuration
:
docs/conf.py
formats
:
[
htmlzip
]
python
:
install
:
-
requirements
:
docs/.sphinx/requirements.txt
CHANGELOG.md
View file @
97e851e5
...
...
@@ -2,7 +2,7 @@
Full documentation for Composable Kernel is not yet available.
## CK 0.
1.1
for ROCm 5.5.0
## CK 0.
2.0
for ROCm 5.5.0
### Fixed
-
Fixed a bug in 6-dimensional kernels (#555).
...
...
@@ -12,6 +12,7 @@ Full documentation for Composable Kernel is not yet available.
-
Improve proformance of normalization kernel
### Added
-
Added support on NAVI3x.
-
Added user tutorial (#563).
-
Added more instances for irregular GEMM sizes (#560).
-
Added inter-wave consumer-producer programming model for GEMM kernels (#310).
...
...
CMakeLists.txt
View file @
97e851e5
...
...
@@ -22,6 +22,7 @@ include(TargetFlags)
list
(
APPEND CMAKE_PREFIX_PATH
${
CMAKE_INSTALL_PREFIX
}
${
CMAKE_INSTALL_PREFIX
}
/llvm
${
CMAKE_INSTALL_PREFIX
}
/hip /opt/rocm /opt/rocm/llvm /opt/rocm/hip
)
option
(
USE_BITINT_EXTENSION_INT4,
"Whether to enable clang's BitInt extension to provide int4 data type."
OFF
)
option
(
USE_OPT_NAVI3X,
"Whether to enable LDS cumode and Wavefront32 mode for NAVI3X silicons."
OFF
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_compile_definitions
(
CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
)
...
...
@@ -29,6 +30,12 @@ if(USE_BITINT_EXTENSION_INT4)
message
(
"CK compiled with USE_BITINT_EXTENSION_INT4 set to
${
USE_BITINT_EXTENSION_INT4
}
"
)
endif
()
if
(
USE_OPT_NAVI3X
)
add_compile_options
(
-mcumode
)
add_compile_options
(
-mno-wavefrontsize64
)
message
(
"CK compiled with USE_OPT_NAVI3X set to
${
USE_OPT_NAVI3X
}
"
)
endif
()
## Threads
set
(
THREADS_PREFER_PTHREAD_FLAG ON
)
find_package
(
Threads REQUIRED
)
...
...
Jenkinsfile
View file @
97e851e5
...
...
@@ -684,8 +684,8 @@ pipeline {
}
agent
{
label
rocmnode
(
"navi21"
)
}
environment
{
setup_args
=
""" -DCMAKE_INSTALL_PREFIX=../install
-DGPU_TARGETS="gfx1030"
"""
execute_args
=
""" cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx1030" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
setup_args
=
""" -DCMAKE_INSTALL_PREFIX=../install """
execute_args
=
""" cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx1030
;gfx1100;gfx1101;gfx1102
" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
}
steps
{
...
...
README.md
View file @
97e851e5
...
...
@@ -7,7 +7,7 @@ CK utilizes two concepts to achieve performance portability and code maintainabi
*
A tile-based programming model
*
Algorithm complexity reduction for complex ML operators, using innovative technique we call "Tensor Coordinate Transformation".


## Code Structure
Current CK library are structured into 4 layers:
...
...
@@ -16,7 +16,17 @@ Current CK library are structured into 4 layers:
*
"Instantiated Kernel and Invoker" layer
*
"Client API" layer


## Documentation
Run the steps below to build documentation locally.
```
cd docs
pip3 install -r .sphinx/requirements.txt
python3 -m sphinx -T -E -b html -d _build/doctrees -D language=en . _build/html
```
## Contributors
The list of developers and contributors is here:
[
Contributors
](
/CONTRIBUTORS.md
)
...
...
client_example/04_contraction/CMakeLists.txt
View file @
97e851e5
add_executable
(
client_contraction_scale contraction_scale.cpp
)
target_link_libraries
(
client_contraction_scale PRIVATE composable_kernel::device_operations
)
add_executable
(
client_contraction_scale
_fp32
contraction_scale
_fp32
.cpp
)
target_link_libraries
(
client_contraction_scale
_fp32
PRIVATE composable_kernel::device_operations
)
add_executable
(
client_contraction_bilinear contraction_bilinear.cpp
)
target_link_libraries
(
client_contraction_bilinear PRIVATE composable_kernel::device_operations
)
add_executable
(
client_contraction_bilinear_fp32 contraction_bilinear_fp32.cpp
)
target_link_libraries
(
client_contraction_bilinear_fp32 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_contraction_scale_fp64 contraction_scale_fp64.cpp
)
target_link_libraries
(
client_contraction_scale_fp64 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_contraction_bilinear_fp64 contraction_bilinear_fp64.cpp
)
target_link_libraries
(
client_contraction_bilinear_fp64 PRIVATE composable_kernel::device_operations
)
add_executable
(
contraction_g1m2n3k1_add_xdl_fp16 contraction_g1m2n3k1_add_xdl_fp16.cpp
)
target_link_libraries
(
contraction_g1m2n3k1_add_xdl_fp16 PRIVATE composable_kernel::device_operations
)
...
...
client_example/04_contraction/contraction_bilinear.cpp
→
client_example/04_contraction/contraction_bilinear
_fp32
.cpp
View file @
97e851e5
File moved
client_example/04_contraction/contraction_bilinear_fp64.cpp
0 → 100644
View file @
97e851e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <numeric>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction_bilinear.hpp"
#include "ck/library/utility/numeric.hpp"
using
F64
=
double
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Bilinear
;
using
ADataType
=
F64
;
using
BDataType
=
F64
;
using
AccDataType
=
F64
;
using
CShuffleDataType
=
F64
;
using
DDataType
=
F64
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F64
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
2
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
// kknn
#if 1
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
524288
,
4096
,
128
,
1
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
524288
,
4096
,
128
,
1
};
// D[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// knnn
#elif 0
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
524288
,
4096
,
128
,
1
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
64
,
1
,
131072
,
2048
};
// D[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// mknn
#elif 0
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
128
,
1
,
245760
,
3840
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
524288
,
4096
,
128
,
1
};
// D[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// mnnn
#elif 0
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
128
,
1
,
245760
,
3840
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
64
,
1
,
131072
,
2048
};
// D[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
#endif
float
alpha
=
1.
f
;
float
beta
=
1.
f
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
25
)
{
const
ck
::
index_t
M0
=
std
::
stoi
(
argv
[
1
]);
const
ck
::
index_t
M1
=
std
::
stoi
(
argv
[
2
]);
const
ck
::
index_t
N0
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
N1
=
std
::
stoi
(
argv
[
4
]);
const
ck
::
index_t
K0
=
std
::
stoi
(
argv
[
5
]);
const
ck
::
index_t
K1
=
std
::
stoi
(
argv
[
6
]);
a_ms_ks_lengths
=
{
M0
,
M1
,
K0
,
K1
};
a_ms_ks_strides
=
{
std
::
stoi
(
argv
[
7
]),
std
::
stoi
(
argv
[
8
]),
std
::
stoi
(
argv
[
9
]),
std
::
stoi
(
argv
[
10
])};
b_ns_ks_lengths
=
{
N0
,
N1
,
K0
,
K1
};
b_ns_ks_strides
=
{
std
::
stoi
(
argv
[
11
]),
std
::
stoi
(
argv
[
12
]),
std
::
stoi
(
argv
[
13
]),
std
::
stoi
(
argv
[
14
])};
d_ms_ns_lengths
=
{
M0
,
M1
,
N0
,
N1
};
d_ms_ns_strides
=
{
std
::
stoi
(
argv
[
15
]),
std
::
stoi
(
argv
[
16
]),
std
::
stoi
(
argv
[
17
]),
std
::
stoi
(
argv
[
18
])};
e_ms_ns_lengths
=
{
M0
,
M1
,
N0
,
N1
};
e_ms_ns_strides
=
{
std
::
stoi
(
argv
[
19
]),
std
::
stoi
(
argv
[
20
]),
std
::
stoi
(
argv
[
21
]),
std
::
stoi
(
argv
[
22
])};
alpha
=
std
::
stof
(
argv
[
23
]);
beta
=
std
::
stof
(
argv
[
24
]);
}
else
{
printf
(
"arg1 to 6: M0, M1, N0, N1, K0, K1
\n
"
);
printf
(
"arg7 to 10: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1
\n
"
);
printf
(
"arg11 to 14: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1
\n
"
);
printf
(
"arg15 to 18: Stride_D_M0, Stride_D_M1, Stride_D_N0, Stride_D_N1
\n
"
);
printf
(
"arg19 to 22: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1
\n
"
);
printf
(
"arg23 to 24: alpha, beta
\n
"
);
exit
(
0
);
}
auto
f_tensor_space_size
=
[](
auto
lengths
,
auto
strides
)
{
std
::
size_t
space_size
=
1
;
for
(
std
::
size_t
i
=
0
;
i
<
lengths
.
size
();
++
i
)
{
space_size
+=
(
lengths
[
i
]
-
1
)
*
strides
[
i
];
}
return
space_size
;
};
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
f_tensor_space_size
(
a_ms_ks_lengths
,
a_ms_ks_strides
));
SimpleDeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
f_tensor_space_size
(
b_ns_ks_lengths
,
b_ns_ks_strides
));
SimpleDeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
f_tensor_space_size
(
d_ms_ns_lengths
,
d_ms_ns_strides
));
SimpleDeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
f_tensor_space_size
(
e_ms_ns_lengths
,
e_ms_ns_strides
));
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceContractionMultipleD
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
ck
::
Tuple
<
DDataType
>
,
EDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
Bilinear
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{
alpha
,
beta
};
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
a_ms_ks_lengths
,
a_ms_ks_strides
,
b_ns_ks_lengths
,
b_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_strides
},
e_ms_ns_lengths
,
e_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
ck
::
index_t
M
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
(),
NumDimM
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
N
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
K
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
DDataType
)
*
M
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
0
;
}
client_example/04_contraction/contraction_scale.cpp
→
client_example/04_contraction/contraction_scale
_fp32
.cpp
View file @
97e851e5
File moved
client_example/04_contraction/contraction_scale_fp64.cpp
0 → 100644
View file @
97e851e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <numeric>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction_scale.hpp"
#include "ck/library/utility/numeric.hpp"
using
F64
=
double
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Scale
;
using
ADataType
=
F64
;
using
BDataType
=
F64
;
using
AccDataType
=
F64
;
using
CShuffleDataType
=
F64
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F64
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
2
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
// kkn
#if 1
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
524288
,
4096
,
128
,
1
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
524288
,
4096
,
128
,
1
};
// D[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// knn
#elif 0
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
524288
,
4096
,
128
,
1
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
64
,
1
,
131072
,
2048
};
// D[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// mkn
#elif 0
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
128
,
1
,
245760
,
3840
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
524288
,
4096
,
128
,
1
};
// D[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// mnn
#elif 0
// A[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a_ms_ks_strides
{
128
,
1
,
245760
,
3840
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
64
,
1
,
131072
,
2048
};
// D[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
524288
,
4096
,
128
,
1
};
#endif
float
scale
=
1.
f
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
20
)
{
const
ck
::
index_t
M0
=
std
::
stoi
(
argv
[
1
]);
const
ck
::
index_t
M1
=
std
::
stoi
(
argv
[
2
]);
const
ck
::
index_t
N0
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
N1
=
std
::
stoi
(
argv
[
4
]);
const
ck
::
index_t
K0
=
std
::
stoi
(
argv
[
5
]);
const
ck
::
index_t
K1
=
std
::
stoi
(
argv
[
6
]);
a_ms_ks_lengths
=
{
M0
,
M1
,
K0
,
K1
};
a_ms_ks_strides
=
{
std
::
stoi
(
argv
[
7
]),
std
::
stoi
(
argv
[
8
]),
std
::
stoi
(
argv
[
9
]),
std
::
stoi
(
argv
[
10
])};
b_ns_ks_lengths
=
{
N0
,
N1
,
K0
,
K1
};
b_ns_ks_strides
=
{
std
::
stoi
(
argv
[
11
]),
std
::
stoi
(
argv
[
12
]),
std
::
stoi
(
argv
[
13
]),
std
::
stoi
(
argv
[
14
])};
e_ms_ns_lengths
=
{
M0
,
M1
,
N0
,
N1
};
e_ms_ns_strides
=
{
std
::
stoi
(
argv
[
15
]),
std
::
stoi
(
argv
[
16
]),
std
::
stoi
(
argv
[
17
]),
std
::
stoi
(
argv
[
18
])};
scale
=
std
::
stof
(
argv
[
19
]);
}
else
{
printf
(
"arg1 to 6: M0, M1, N0, N1, K0, K1
\n
"
);
printf
(
"arg7 to 10: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1
\n
"
);
printf
(
"arg11 to 14: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1
\n
"
);
printf
(
"arg15 to 18: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1
\n
"
);
printf
(
"arg19: scale
\n
"
);
exit
(
0
);
}
auto
f_tensor_space_size
=
[](
auto
lengths
,
auto
strides
)
{
std
::
size_t
space_size
=
1
;
for
(
std
::
size_t
i
=
0
;
i
<
lengths
.
size
();
++
i
)
{
space_size
+=
(
lengths
[
i
]
-
1
)
*
strides
[
i
];
}
return
space_size
;
};
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
f_tensor_space_size
(
a_ms_ks_lengths
,
a_ms_ks_strides
));
SimpleDeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
f_tensor_space_size
(
b_ns_ks_lengths
,
b_ns_ks_strides
));
SimpleDeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
f_tensor_space_size
(
e_ms_ns_lengths
,
e_ms_ns_strides
));
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceContractionMultipleD
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
ck
::
Tuple
<>
,
EDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
Scale
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{
scale
};
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
e_device_buf
.
GetDeviceBuffer
(),
a_ms_ks_lengths
,
a_ms_ks_strides
,
b_ns_ks_lengths
,
b_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
0
>
{},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
0
>
{},
e_ms_ns_lengths
,
e_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
ck
::
index_t
M
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
(),
NumDimM
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
N
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
K
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a_ms_ks_lengths
.
begin
()
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
0
;
}
client_example/09_quantization/CMakeLists.txt
View file @
97e851e5
add_executable
(
client_conv2d_fwd_bias_tanh_perchannel_quantization conv2d_fwd_bias_tanh_perchannel_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_bias_tanh_perchannel_quantization PRIVATE composable_kernel::device_operations
)
add_executable
(
client_conv2d_fwd_bias_relu_perchannel_quantization conv2d_fwd_bias_relu_perchannel_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_bias_relu_perchannel_quantization PRIVATE composable_kernel::device_operations
)
add_executable
(
client_conv2d_fwd_bias_tanh_perlayer_quantization conv2d_fwd_bias_tanh_perlayer_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_bias_tanh_perlayer_quantization PRIVATE composable_kernel::device_operations
)
add_executable
(
client_conv2d_fwd_bias_relu_perlayer_quantization conv2d_fwd_bias_relu_perlayer_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_bias_relu_perlayer_quantization PRIVATE composable_kernel::device_operations
)
...
...
@@ -9,3 +15,6 @@ target_link_libraries(client_conv2d_fwd_perchannel_quantization PRIVATE composab
add_executable
(
client_conv2d_fwd_perlayer_quantization conv2d_fwd_perlayer_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_perlayer_quantization PRIVATE composable_kernel::device_operations
)
add_executable
(
client_gemm_quantization gemm_quantization.cpp
)
target_link_libraries
(
client_gemm_quantization PRIVATE composable_kernel::device_operations
)
client_example/09_quantization/conv2d_fwd_bias_relu_perchannel_quantization.cpp
View file @
97e851e5
...
...
@@ -28,16 +28,15 @@ using OutElementOp = ck::tensor_operation::element_wise::Add_Activation_Mul2_Cla
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
4
;
static
constexpr
ck
::
index_t
K
=
64
;
static
constexpr
ck
::
index_t
C
=
32
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Hi
=
71
;
static
constexpr
ck
::
index_t
Wi
=
71
;
static
constexpr
ck
::
index_t
Ho
=
36
;
static
constexpr
ck
::
index_t
Wo
=
36
;
static
constexpr
ck
::
index_t
N
=
4
;
// batch size
static
constexpr
ck
::
index_t
K
=
64
;
// output channel
static
constexpr
ck
::
index_t
C
=
192
;
// input channel
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
static
constexpr
ck
::
index_t
X
=
3
;
// filter W
static
constexpr
ck
::
index_t
Hi
=
71
;
// input H
static
constexpr
ck
::
index_t
Wi
=
71
;
// input W
static
constexpr
ck
::
index_t
Ho
=
36
;
// output H
static
constexpr
ck
::
index_t
Wo
=
36
;
// output W
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
...
...
@@ -64,8 +63,8 @@ int main(int argc, char* argv[])
std
::
array
<
ck
::
index_t
,
5
>
bias_strides
{
K
,
0
,
1
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
5
>
requant_scale_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
requant_scale_strides
{
K
,
0
,
1
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
5
>
out_lengths
{
G
,
N
,
C
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
out_strides
{
N
*
Ho
*
Wo
*
C
,
Ho
*
Wo
*
C
,
1
,
Wo
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
out_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
out_strides
{
N
*
Ho
*
Wo
*
K
,
Ho
*
Wo
*
K
,
1
,
Wo
*
K
,
K
};
std
::
array
<
ck
::
index_t
,
2
>
in_left_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
in_right_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
conv_strides
{
2
,
2
};
...
...
@@ -74,7 +73,7 @@ int main(int argc, char* argv[])
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
bias
(
sizeof
(
BiasDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
...
...
@@ -136,10 +135,11 @@ int main(int argc, char* argv[])
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
G
*
2
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
G
*
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
+
G
*
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
+
G
*
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
;
std
::
size_t
flop
=
G
*
2
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
G
*
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
+
G
*
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
+
G
*
sizeof
(
BiasDataType
)
*
K
+
G
*
sizeof
(
RequantScaleDataType
)
*
K
+
G
*
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
...
...
@@ -162,11 +162,12 @@ int main(int argc, char* argv[])
}
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
if
(
best_op_id
!=
-
1
)
{
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
...
...
@@ -202,4 +203,4 @@ int main(int argc, char* argv[])
}
return
0
;
}
\ No newline at end of file
}
client_example/09_quantization/conv2d_fwd_bias_relu_perlayer_quantization.cpp
View file @
97e851e5
...
...
@@ -26,15 +26,16 @@ using OutElementOp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clam
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
4
;
static
constexpr
ck
::
index_t
K
=
64
;
static
constexpr
ck
::
index_t
C
=
32
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Hi
=
71
;
static
constexpr
ck
::
index_t
Wi
=
71
;
static
constexpr
ck
::
index_t
Ho
=
36
;
static
constexpr
ck
::
index_t
Wo
=
36
;
static
constexpr
ck
::
index_t
N
=
4
;
// batch size
static
constexpr
ck
::
index_t
K
=
64
;
// output channel
static
constexpr
ck
::
index_t
C
=
192
;
// input channel
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
static
constexpr
ck
::
index_t
X
=
3
;
// filter W
static
constexpr
ck
::
index_t
Hi
=
71
;
// input H
static
constexpr
ck
::
index_t
Wi
=
71
;
// input W
static
constexpr
ck
::
index_t
Ho
=
36
;
// output H
static
constexpr
ck
::
index_t
Wo
=
36
;
// output W
static
constexpr
float
requant_scale
=
0.5
f
;
// requantize qAcc to qz
struct
SimpleDeviceMem
{
...
...
@@ -60,8 +61,8 @@ int main(int argc, char* argv[])
std
::
array
<
ck
::
index_t
,
5
>
weight_strides
{
K
*
Y
*
X
*
C
,
Y
*
X
*
C
,
1
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
bias_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
bias_strides
{
K
,
0
,
1
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
5
>
out_lengths
{
G
,
N
,
C
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
out_strides
{
N
*
Ho
*
Wo
*
C
,
Ho
*
Wo
*
C
,
1
,
Wo
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
out_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
out_strides
{
N
*
Ho
*
Wo
*
K
,
Ho
*
Wo
*
K
,
1
,
Wo
*
K
,
K
};
std
::
array
<
ck
::
index_t
,
2
>
in_left_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
in_right_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
conv_strides
{
2
,
2
};
...
...
@@ -102,26 +103,27 @@ int main(int argc, char* argv[])
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
bias
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{
bias_lengths
},
{
bias_strides
},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
0.5
f
,
ActivationOp
{}});
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
bias
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{
bias_lengths
},
{
bias_strides
},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
requant_scale
,
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
...
...
@@ -130,10 +132,10 @@ int main(int argc, char* argv[])
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
G
*
2
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
G
*
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
+
G
*
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
+
G
*
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
;
std
::
size_t
flop
=
G
*
2
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
G
*
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
+
G
*
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
+
G
*
sizeof
(
BiasDataType
)
*
K
+
G
*
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
...
...
@@ -156,33 +158,35 @@ int main(int argc, char* argv[])
}
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
if
(
best_op_id
!=
-
1
)
{
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
bias
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{
bias_lengths
},
{
bias_strides
},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
0.5
f
,
ActivationOp
{}});
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
bias
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{
bias_lengths
},
{
bias_strides
},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
requant_scale
,
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
...
...
client_example/09_quantization/conv2d_fwd_bias_tanh_perchannel_quantization.cpp
0 → 100644
View file @
97e851e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/quantization/grouped_convolution_bias_forward_perchannel_quantization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
BiasDataType
=
int32_t
;
using
RequantScaleDataType
=
float
;
using
OutDataType
=
int8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
BiasLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
RequantScaleLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ActivationOp
=
ck
::
tensor_operation
::
element_wise
::
TanH
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add_Mul2_Activation_Mul_Clamp
<
ActivationOp
>
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
4
;
// batch size
static
constexpr
ck
::
index_t
K
=
64
;
// output channel
static
constexpr
ck
::
index_t
C
=
192
;
// input channel
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
static
constexpr
ck
::
index_t
X
=
3
;
// filter W
static
constexpr
ck
::
index_t
Hi
=
71
;
// input H
static
constexpr
ck
::
index_t
Wi
=
71
;
// input W
static
constexpr
ck
::
index_t
Ho
=
36
;
// output H
static
constexpr
ck
::
index_t
Wo
=
36
;
// output W
static
constexpr
float
sz_inv
=
0.5
f
;
// inverse of scale_z
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
std
::
array
<
ck
::
index_t
,
5
>
in_lengths
{
G
,
N
,
C
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
5
>
in_strides
{
N
*
Hi
*
Wi
*
C
,
Hi
*
Wi
*
C
,
1
,
Wi
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
weight_lengths
{
G
,
K
,
C
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
5
>
weight_strides
{
K
*
Y
*
X
*
C
,
Y
*
X
*
C
,
1
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
bias_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
bias_strides
{
K
,
0
,
1
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
5
>
requant_scale_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
requant_scale_strides
{
K
,
0
,
1
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
5
>
out_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
out_strides
{
N
*
Ho
*
Wo
*
K
,
Ho
*
Wo
*
K
,
1
,
Wo
*
K
,
K
};
std
::
array
<
ck
::
index_t
,
2
>
in_left_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
in_right_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
conv_strides
{
2
,
2
};
std
::
array
<
ck
::
index_t
,
2
>
conv_dilations
{
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
bias
(
sizeof
(
BiasDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
BiasLayout
,
RequantScaleLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<
BiasDataType
,
RequantScaleDataType
>
,
OutDataType
,
PassThrough
,
PassThrough
,
OutElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
bias
.
GetDeviceBuffer
(),
requant_scale
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{
bias_lengths
,
requant_scale_lengths
},
{
bias_strides
,
requant_scale_strides
},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
sz_inv
,
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
G
*
2
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
G
*
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
+
G
*
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
+
G
*
sizeof
(
BiasDataType
)
*
K
+
G
*
sizeof
(
RequantScaleDataType
)
*
K
+
G
*
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
// run the best intance
if
(
best_op_id
!=
-
1
)
{
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
bias
.
GetDeviceBuffer
(),
requant_scale
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{
bias_lengths
,
requant_scale_lengths
},
{
bias_strides
,
requant_scale_strides
},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
sz_inv
,
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/09_quantization/conv2d_fwd_bias_tanh_perlayer_quantization.cpp
0 → 100644
View file @
97e851e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/quantization/grouped_convolution_bias_forward_perlayer_quantization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
BiasDataType
=
int32_t
;
using
OutDataType
=
int8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
BiasLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ActivationOp
=
ck
::
tensor_operation
::
element_wise
::
TanH
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add_Mul_Activation_Mul_Clamp
<
ActivationOp
>
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
4
;
// batch size
static
constexpr
ck
::
index_t
K
=
64
;
// output channel
static
constexpr
ck
::
index_t
C
=
192
;
// input channel
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
static
constexpr
ck
::
index_t
X
=
3
;
// filter W
static
constexpr
ck
::
index_t
Hi
=
71
;
// input H
static
constexpr
ck
::
index_t
Wi
=
71
;
// input W
static
constexpr
ck
::
index_t
Ho
=
36
;
// output H
static
constexpr
ck
::
index_t
Wo
=
36
;
// output W
static
constexpr
float
sacc
=
0.5
f
;
// scale of acc
static
constexpr
float
sz_inv
=
0.5
f
;
// inverse of scale_z
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
std
::
array
<
ck
::
index_t
,
5
>
in_lengths
{
G
,
N
,
C
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
5
>
in_strides
{
N
*
Hi
*
Wi
*
C
,
Hi
*
Wi
*
C
,
1
,
Wi
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
weight_lengths
{
G
,
K
,
C
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
5
>
weight_strides
{
K
*
Y
*
X
*
C
,
Y
*
X
*
C
,
1
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
bias_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
bias_strides
{
K
,
0
,
1
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
5
>
out_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
out_strides
{
N
*
Ho
*
Wo
*
K
,
Ho
*
Wo
*
K
,
1
,
Wo
*
K
,
K
};
std
::
array
<
ck
::
index_t
,
2
>
in_left_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
in_right_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
conv_strides
{
2
,
2
};
std
::
array
<
ck
::
index_t
,
2
>
conv_dilations
{
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
bias
(
sizeof
(
BiasDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
BiasLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<
BiasDataType
>
,
OutDataType
,
PassThrough
,
PassThrough
,
OutElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
bias
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{
bias_lengths
},
{
bias_strides
},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
sacc
,
sz_inv
,
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
G
*
2
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
G
*
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
+
G
*
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
+
G
*
sizeof
(
BiasDataType
)
*
K
+
G
*
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
// run the best intance
if
(
best_op_id
!=
-
1
)
{
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
bias
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{
bias_lengths
},
{
bias_strides
},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
sacc
,
sz_inv
,
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
\ No newline at end of file
client_example/09_quantization/conv2d_fwd_perchannel_quantization.cpp
View file @
97e851e5
...
...
@@ -26,15 +26,15 @@ using OutElementOp = ck::tensor_operation::element_wise::Activation_Mul2_C
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
4
;
static
constexpr
ck
::
index_t
K
=
64
;
static
constexpr
ck
::
index_t
C
=
32
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Hi
=
71
;
static
constexpr
ck
::
index_t
Wi
=
71
;
static
constexpr
ck
::
index_t
Ho
=
36
;
static
constexpr
ck
::
index_t
Wo
=
36
;
static
constexpr
ck
::
index_t
N
=
4
;
// batch size
static
constexpr
ck
::
index_t
K
=
64
;
// output channel
static
constexpr
ck
::
index_t
C
=
192
;
// input channel
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
static
constexpr
ck
::
index_t
X
=
3
;
// filter W
static
constexpr
ck
::
index_t
Hi
=
71
;
// input H
static
constexpr
ck
::
index_t
Wi
=
71
;
// input W
static
constexpr
ck
::
index_t
Ho
=
36
;
// output H
static
constexpr
ck
::
index_t
Wo
=
36
;
// output W
struct
SimpleDeviceMem
{
...
...
@@ -60,8 +60,8 @@ int main(int argc, char* argv[])
std
::
array
<
ck
::
index_t
,
5
>
weight_strides
{
K
*
Y
*
X
*
C
,
Y
*
X
*
C
,
1
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
requant_scale_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
requant_scale_strides
{
K
,
0
,
1
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
5
>
out_lengths
{
G
,
N
,
C
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
out_strides
{
N
*
Ho
*
Wo
*
C
,
Ho
*
Wo
*
C
,
1
,
Wo
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
out_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
out_strides
{
N
*
Ho
*
Wo
*
K
,
Ho
*
Wo
*
K
,
1
,
Wo
*
K
,
K
};
std
::
array
<
ck
::
index_t
,
2
>
in_left_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
in_right_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
conv_strides
{
2
,
2
};
...
...
@@ -69,7 +69,7 @@ int main(int argc, char* argv[])
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
);
using
DeviceOp
=
...
...
@@ -130,10 +130,10 @@ int main(int argc, char* argv[])
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
G
*
2
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
G
*
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
+
G
*
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
+
G
*
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
;
std
::
size_t
flop
=
G
*
2
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
G
*
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
+
G
*
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
+
G
*
sizeof
(
RequantScaleDataType
)
*
K
+
G
*
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
...
...
@@ -156,11 +156,12 @@ int main(int argc, char* argv[])
}
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
if
(
best_op_id
!=
-
1
)
{
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
...
...
@@ -195,4 +196,4 @@ int main(int argc, char* argv[])
}
return
0
;
}
\ No newline at end of file
}
client_example/09_quantization/conv2d_fwd_perlayer_quantization.cpp
View file @
97e851e5
...
...
@@ -24,15 +24,16 @@ using OutElementOp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Ac
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
4
;
static
constexpr
ck
::
index_t
K
=
64
;
static
constexpr
ck
::
index_t
C
=
32
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Hi
=
71
;
static
constexpr
ck
::
index_t
Wi
=
71
;
static
constexpr
ck
::
index_t
Ho
=
36
;
static
constexpr
ck
::
index_t
Wo
=
36
;
static
constexpr
ck
::
index_t
N
=
4
;
// batch size
static
constexpr
ck
::
index_t
K
=
64
;
// output channel
static
constexpr
ck
::
index_t
C
=
192
;
// input channel
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
static
constexpr
ck
::
index_t
X
=
3
;
// filter W
static
constexpr
ck
::
index_t
Hi
=
71
;
// input H
static
constexpr
ck
::
index_t
Wi
=
71
;
// input W
static
constexpr
ck
::
index_t
Ho
=
36
;
// output H
static
constexpr
ck
::
index_t
Wo
=
36
;
// output W
static
constexpr
float
requant_scale
=
0.5
f
;
// requantize qAcc to qY
struct
SimpleDeviceMem
{
...
...
@@ -56,8 +57,8 @@ int main(int argc, char* argv[])
std
::
array
<
ck
::
index_t
,
5
>
in_strides
{
N
*
Hi
*
Wi
*
C
,
Hi
*
Wi
*
C
,
1
,
Wi
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
weight_lengths
{
G
,
K
,
C
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
5
>
weight_strides
{
K
*
Y
*
X
*
C
,
Y
*
X
*
C
,
1
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
out_lengths
{
G
,
N
,
C
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
out_strides
{
N
*
Ho
*
Wo
*
C
,
Ho
*
Wo
*
C
,
1
,
Wo
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
out_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
out_strides
{
N
*
Ho
*
Wo
*
K
,
Ho
*
Wo
*
K
,
1
,
Wo
*
K
,
K
};
std
::
array
<
ck
::
index_t
,
2
>
in_left_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
in_right_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
conv_strides
{
2
,
2
};
...
...
@@ -96,26 +97,27 @@ int main(int argc, char* argv[])
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{},
{},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
0.5
f
,
ActivationOp
{}});
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{},
{},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
requant_scale
,
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
...
...
@@ -150,33 +152,34 @@ int main(int argc, char* argv[])
}
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
if
(
best_op_id
!=
-
1
)
{
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{},
{},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
0.5
f
,
ActivationOp
{}});
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{},
{},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
requant_scale
,
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
...
...
client_example/09_quantization/gemm_quantization.cpp
0 → 100644
View file @
97e851e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/quantization/gemm_quantization.hpp"
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
ActivationOp
=
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Activation_Mul_Clamp
<
ActivationOp
>
;
using
ADataType
=
int8_t
;
using
BDataType
=
int8_t
;
using
EDataType
=
int8_t
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
StrideA
=
1024
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideE
=
1024
;
float
requant_scale
=
0.03
;
auto
f_matrix_space_size
=
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
else
{
return
(
nCol
-
1
)
*
stride
+
nRow
;
}
};
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
f_matrix_space_size
(
M
,
K
,
StrideA
,
ALayout
{}));
SimpleDeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
f_matrix_space_size
(
K
,
N
,
StrideB
,
BLayout
{}));
SimpleDeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideE
,
ELayout
{}));
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<>
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{
requant_scale
,
ActivationOp
{}};
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_bytes
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
!=
-
1
)
{
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
\ No newline at end of file
Prev
1
2
3
4
5
…
11
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment