Unverified Commit 97e851e5 authored by rocking5566's avatar rocking5566 Committed by GitHub
Browse files

Merge branch 'develop' into normalization/splitK

parents 9c42a83a fc26d42a
# To get started with Dependabot version updates, you'll need to specify which
# package ecosystems to update and where the package manifests are located.
# Please see the documentation for all configuration options:
# https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
version: 2
updates:
- package-ecosystem: "pip" # See documentation for possible values
directory: "/" # Location of package manifests
open-pull-requests-limit: 10
schedule:
interval: "daily"
......@@ -48,6 +48,11 @@ build*
.gdb_history
install.dir*
# directories containing generated documentation
docs/source/_build/
docs/docBin/
# documentation artifacts
build/
_build/
_images/
_static/
_templates/
_toc.yml
docBin/
# Read the Docs configuration file
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
version: 2
build:
os: ubuntu-22.04
tools:
python: "3.8"
sphinx:
configuration: docs/conf.py
formats: [htmlzip]
python:
install:
- requirements: docs/.sphinx/requirements.txt
......@@ -2,7 +2,7 @@
Full documentation for Composable Kernel is not yet available.
## CK 0.1.1 for ROCm 5.5.0
## CK 0.2.0 for ROCm 5.5.0
### Fixed
- Fixed a bug in 6-dimensional kernels (#555).
......@@ -12,6 +12,7 @@ Full documentation for Composable Kernel is not yet available.
- Improve proformance of normalization kernel
### Added
- Added support on NAVI3x.
- Added user tutorial (#563).
- Added more instances for irregular GEMM sizes (#560).
- Added inter-wave consumer-producer programming model for GEMM kernels (#310).
......
......@@ -22,6 +22,7 @@ include(TargetFlags)
list(APPEND CMAKE_PREFIX_PATH ${CMAKE_INSTALL_PREFIX} ${CMAKE_INSTALL_PREFIX}/llvm ${CMAKE_INSTALL_PREFIX}/hip /opt/rocm /opt/rocm/llvm /opt/rocm/hip)
option(USE_BITINT_EXTENSION_INT4, "Whether to enable clang's BitInt extension to provide int4 data type." OFF)
option(USE_OPT_NAVI3X, "Whether to enable LDS cumode and Wavefront32 mode for NAVI3X silicons." OFF)
if(USE_BITINT_EXTENSION_INT4)
add_compile_definitions(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
......@@ -29,6 +30,12 @@ if(USE_BITINT_EXTENSION_INT4)
message("CK compiled with USE_BITINT_EXTENSION_INT4 set to ${USE_BITINT_EXTENSION_INT4}")
endif()
if(USE_OPT_NAVI3X)
add_compile_options(-mcumode)
add_compile_options(-mno-wavefrontsize64)
message("CK compiled with USE_OPT_NAVI3X set to ${USE_OPT_NAVI3X}")
endif()
## Threads
set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED)
......
......@@ -684,8 +684,8 @@ pipeline {
}
agent{ label rocmnode("navi21") }
environment{
setup_args = """ -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx1030" """
execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx1030" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
setup_args = """ -DCMAKE_INSTALL_PREFIX=../install """
execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx1030;gfx1100;gfx1101;gfx1102" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
}
steps{
......
......@@ -7,7 +7,7 @@ CK utilizes two concepts to achieve performance portability and code maintainabi
* A tile-based programming model
* Algorithm complexity reduction for complex ML operators, using innovative technique we call "Tensor Coordinate Transformation".
![ALT](/doc/image/ck_component.png "CK Components")
![ALT](/docs/data/ck_component.png "CK Components")
## Code Structure
Current CK library are structured into 4 layers:
......@@ -16,7 +16,17 @@ Current CK library are structured into 4 layers:
* "Instantiated Kernel and Invoker" layer
* "Client API" layer
![ALT](/doc/image/ck_layer.png "CK Layers")
![ALT](/docs/data/ck_layer.png "CK Layers")
## Documentation
Run the steps below to build documentation locally.
```
cd docs
pip3 install -r .sphinx/requirements.txt
python3 -m sphinx -T -E -b html -d _build/doctrees -D language=en . _build/html
```
## Contributors
The list of developers and contributors is here: [Contributors](/CONTRIBUTORS.md)
......
add_executable(client_contraction_scale contraction_scale.cpp)
target_link_libraries(client_contraction_scale PRIVATE composable_kernel::device_operations)
add_executable(client_contraction_scale_fp32 contraction_scale_fp32.cpp)
target_link_libraries(client_contraction_scale_fp32 PRIVATE composable_kernel::device_operations)
add_executable(client_contraction_bilinear contraction_bilinear.cpp)
target_link_libraries(client_contraction_bilinear PRIVATE composable_kernel::device_operations)
add_executable(client_contraction_bilinear_fp32 contraction_bilinear_fp32.cpp)
target_link_libraries(client_contraction_bilinear_fp32 PRIVATE composable_kernel::device_operations)
add_executable(client_contraction_scale_fp64 contraction_scale_fp64.cpp)
target_link_libraries(client_contraction_scale_fp64 PRIVATE composable_kernel::device_operations)
add_executable(client_contraction_bilinear_fp64 contraction_bilinear_fp64.cpp)
target_link_libraries(client_contraction_bilinear_fp64 PRIVATE composable_kernel::device_operations)
add_executable(contraction_g1m2n3k1_add_xdl_fp16 contraction_g1m2n3k1_add_xdl_fp16.cpp)
target_link_libraries(contraction_g1m2n3k1_add_xdl_fp16 PRIVATE composable_kernel::device_operations)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <numeric>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction_bilinear.hpp"
#include "ck/library/utility/numeric.hpp"
using F64 = double;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Bilinear = ck::tensor_operation::element_wise::Bilinear;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = Bilinear;
using ADataType = F64;
using BDataType = F64;
using AccDataType = F64;
using CShuffleDataType = F64;
using DDataType = F64;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F64;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
// kknn
#if 1
// A[M0, M1, K0, K1]
std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a_ms_ks_strides{524288, 4096, 128, 1};
// B[N0, N1, K0, K1]
std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
std::vector<ck::index_t> b_ns_ks_strides{524288, 4096, 128, 1};
// D[M0, M1, N0, N1]
std::vector<ck::index_t> d_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> d_ms_ns_strides{524288, 4096, 128, 1};
// E[M0, M1, N0, N1]
std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};
// knnn
#elif 0
// A[M0, M1, K0, K1]
std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a_ms_ks_strides{524288, 4096, 128, 1};
// B[N0, N1, K0, K1]
std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
std::vector<ck::index_t> b_ns_ks_strides{64, 1, 131072, 2048};
// D[M0, M1, N0, N1]
std::vector<ck::index_t> d_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> d_ms_ns_strides{524288, 4096, 128, 1};
// E[M0, M1, N0, N1]
std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};
// mknn
#elif 0
// A[M0, M1, K0, K1]
std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a_ms_ks_strides{128, 1, 245760, 3840};
// B[N0, N1, K0, K1]
std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
std::vector<ck::index_t> b_ns_ks_strides{524288, 4096, 128, 1};
// D[M0, M1, N0, N1]
std::vector<ck::index_t> d_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> d_ms_ns_strides{524288, 4096, 128, 1};
// E[M0, M1, N0, N1]
std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};
// mnnn
#elif 0
// A[M0, M1, K0, K1]
std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a_ms_ks_strides{128, 1, 245760, 3840};
// B[N0, N1, K0, K1]
std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
std::vector<ck::index_t> b_ns_ks_strides{64, 1, 131072, 2048};
// D[M0, M1, N0, N1]
std::vector<ck::index_t> d_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> d_ms_ns_strides{524288, 4096, 128, 1};
// E[M0, M1, N0, N1]
std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};
#endif
float alpha = 1.f;
float beta = 1.f;
if(argc == 1)
{
// use default case
}
else if(argc == 25)
{
const ck::index_t M0 = std::stoi(argv[1]);
const ck::index_t M1 = std::stoi(argv[2]);
const ck::index_t N0 = std::stoi(argv[3]);
const ck::index_t N1 = std::stoi(argv[4]);
const ck::index_t K0 = std::stoi(argv[5]);
const ck::index_t K1 = std::stoi(argv[6]);
a_ms_ks_lengths = {M0, M1, K0, K1};
a_ms_ks_strides = {
std::stoi(argv[7]), std::stoi(argv[8]), std::stoi(argv[9]), std::stoi(argv[10])};
b_ns_ks_lengths = {N0, N1, K0, K1};
b_ns_ks_strides = {
std::stoi(argv[11]), std::stoi(argv[12]), std::stoi(argv[13]), std::stoi(argv[14])};
d_ms_ns_lengths = {M0, M1, N0, N1};
d_ms_ns_strides = {
std::stoi(argv[15]), std::stoi(argv[16]), std::stoi(argv[17]), std::stoi(argv[18])};
e_ms_ns_lengths = {M0, M1, N0, N1};
e_ms_ns_strides = {
std::stoi(argv[19]), std::stoi(argv[20]), std::stoi(argv[21]), std::stoi(argv[22])};
alpha = std::stof(argv[23]);
beta = std::stof(argv[24]);
}
else
{
printf("arg1 to 6: M0, M1, N0, N1, K0, K1\n");
printf("arg7 to 10: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1\n");
printf("arg11 to 14: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1\n");
printf("arg15 to 18: Stride_D_M0, Stride_D_M1, Stride_D_N0, Stride_D_N1\n");
printf("arg19 to 22: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1\n");
printf("arg23 to 24: alpha, beta\n");
exit(0);
}
auto f_tensor_space_size = [](auto lengths, auto strides) {
std::size_t space_size = 1;
for(std::size_t i = 0; i < lengths.size(); ++i)
{
space_size += (lengths[i] - 1) * strides[i];
}
return space_size;
};
SimpleDeviceMem a_device_buf(sizeof(ADataType) *
f_tensor_space_size(a_ms_ks_lengths, a_ms_ks_strides));
SimpleDeviceMem b_device_buf(sizeof(BDataType) *
f_tensor_space_size(b_ns_ks_lengths, b_ns_ks_strides));
SimpleDeviceMem d_device_buf(sizeof(DDataType) *
f_tensor_space_size(d_ms_ns_lengths, d_ms_ns_strides));
SimpleDeviceMem e_device_buf(sizeof(EDataType) *
f_tensor_space_size(e_ms_ns_lengths, e_ms_ns_strides));
using DeviceOp = ck::tensor_operation::device::DeviceContractionMultipleD<
NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
ck::Tuple<DDataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::Bilinear>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{alpha, beta};
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr =
op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{d_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
a_ms_ks_lengths,
a_ms_ks_strides,
b_ns_ks_lengths,
b_ns_ks_strides,
std::array<std::vector<ck::index_t>, 1>{d_ms_ns_lengths},
std::array<std::vector<ck::index_t>, 1>{d_ms_ns_strides},
e_ms_ns_lengths,
e_ms_ns_strides,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
ck::index_t M = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t N = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t K = ck::accumulate_n<ck::index_t>(
a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(DDataType) * M * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <numeric>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction_scale.hpp"
#include "ck/library/utility/numeric.hpp"
using F64 = double;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Scale = ck::tensor_operation::element_wise::Scale;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = Scale;
using ADataType = F64;
using BDataType = F64;
using AccDataType = F64;
using CShuffleDataType = F64;
using DsDataType = ck::Tuple<>;
using EDataType = F64;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
// kkn
#if 1
// A[M0, M1, K0, K1]
std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a_ms_ks_strides{524288, 4096, 128, 1};
// B[N0, N1, K0, K1]
std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
std::vector<ck::index_t> b_ns_ks_strides{524288, 4096, 128, 1};
// D[M0, M1, N0, N1]
std::vector<ck::index_t> d_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> d_ms_ns_strides{524288, 4096, 128, 1};
// E[M0, M1, N0, N1]
std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};
// knn
#elif 0
// A[M0, M1, K0, K1]
std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a_ms_ks_strides{524288, 4096, 128, 1};
// B[N0, N1, K0, K1]
std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
std::vector<ck::index_t> b_ns_ks_strides{64, 1, 131072, 2048};
// D[M0, M1, N0, N1]
std::vector<ck::index_t> d_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> d_ms_ns_strides{524288, 4096, 128, 1};
// E[M0, M1, N0, N1]
std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};
// mkn
#elif 0
// A[M0, M1, K0, K1]
std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a_ms_ks_strides{128, 1, 245760, 3840};
// B[N0, N1, K0, K1]
std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
std::vector<ck::index_t> b_ns_ks_strides{524288, 4096, 128, 1};
// D[M0, M1, N0, N1]
std::vector<ck::index_t> d_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> d_ms_ns_strides{524288, 4096, 128, 1};
// E[M0, M1, N0, N1]
std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};
// mnn
#elif 0
// A[M0, M1, K0, K1]
std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a_ms_ks_strides{128, 1, 245760, 3840};
// B[N0, N1, K0, K1]
std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
std::vector<ck::index_t> b_ns_ks_strides{64, 1, 131072, 2048};
// D[M0, M1, N0, N1]
std::vector<ck::index_t> d_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> d_ms_ns_strides{524288, 4096, 128, 1};
// E[M0, M1, N0, N1]
std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};
#endif
float scale = 1.f;
if(argc == 1)
{
// use default case
}
else if(argc == 20)
{
const ck::index_t M0 = std::stoi(argv[1]);
const ck::index_t M1 = std::stoi(argv[2]);
const ck::index_t N0 = std::stoi(argv[3]);
const ck::index_t N1 = std::stoi(argv[4]);
const ck::index_t K0 = std::stoi(argv[5]);
const ck::index_t K1 = std::stoi(argv[6]);
a_ms_ks_lengths = {M0, M1, K0, K1};
a_ms_ks_strides = {
std::stoi(argv[7]), std::stoi(argv[8]), std::stoi(argv[9]), std::stoi(argv[10])};
b_ns_ks_lengths = {N0, N1, K0, K1};
b_ns_ks_strides = {
std::stoi(argv[11]), std::stoi(argv[12]), std::stoi(argv[13]), std::stoi(argv[14])};
e_ms_ns_lengths = {M0, M1, N0, N1};
e_ms_ns_strides = {
std::stoi(argv[15]), std::stoi(argv[16]), std::stoi(argv[17]), std::stoi(argv[18])};
scale = std::stof(argv[19]);
}
else
{
printf("arg1 to 6: M0, M1, N0, N1, K0, K1\n");
printf("arg7 to 10: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1\n");
printf("arg11 to 14: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1\n");
printf("arg15 to 18: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1\n");
printf("arg19: scale\n");
exit(0);
}
auto f_tensor_space_size = [](auto lengths, auto strides) {
std::size_t space_size = 1;
for(std::size_t i = 0; i < lengths.size(); ++i)
{
space_size += (lengths[i] - 1) * strides[i];
}
return space_size;
};
SimpleDeviceMem a_device_buf(sizeof(ADataType) *
f_tensor_space_size(a_ms_ks_lengths, a_ms_ks_strides));
SimpleDeviceMem b_device_buf(sizeof(BDataType) *
f_tensor_space_size(b_ns_ks_lengths, b_ns_ks_strides));
SimpleDeviceMem e_device_buf(sizeof(EDataType) *
f_tensor_space_size(e_ms_ns_lengths, e_ms_ns_strides));
using DeviceOp = ck::tensor_operation::device::DeviceContractionMultipleD<
NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
ck::Tuple<>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::Scale>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{scale};
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 0>{},
e_device_buf.GetDeviceBuffer(),
a_ms_ks_lengths,
a_ms_ks_strides,
b_ns_ks_lengths,
b_ns_ks_strides,
std::array<std::vector<ck::index_t>, 0>{},
std::array<std::vector<ck::index_t>, 0>{},
e_ms_ns_lengths,
e_ms_ns_strides,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
ck::index_t M = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t N = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t K = ck::accumulate_n<ck::index_t>(
a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return 0;
}
add_executable(client_conv2d_fwd_bias_tanh_perchannel_quantization conv2d_fwd_bias_tanh_perchannel_quantization.cpp)
target_link_libraries(client_conv2d_fwd_bias_tanh_perchannel_quantization PRIVATE composable_kernel::device_operations)
add_executable(client_conv2d_fwd_bias_relu_perchannel_quantization conv2d_fwd_bias_relu_perchannel_quantization.cpp)
target_link_libraries(client_conv2d_fwd_bias_relu_perchannel_quantization PRIVATE composable_kernel::device_operations)
add_executable(client_conv2d_fwd_bias_tanh_perlayer_quantization conv2d_fwd_bias_tanh_perlayer_quantization.cpp)
target_link_libraries(client_conv2d_fwd_bias_tanh_perlayer_quantization PRIVATE composable_kernel::device_operations)
add_executable(client_conv2d_fwd_bias_relu_perlayer_quantization conv2d_fwd_bias_relu_perlayer_quantization.cpp)
target_link_libraries(client_conv2d_fwd_bias_relu_perlayer_quantization PRIVATE composable_kernel::device_operations)
......@@ -9,3 +15,6 @@ target_link_libraries(client_conv2d_fwd_perchannel_quantization PRIVATE composab
add_executable(client_conv2d_fwd_perlayer_quantization conv2d_fwd_perlayer_quantization.cpp)
target_link_libraries(client_conv2d_fwd_perlayer_quantization PRIVATE composable_kernel::device_operations)
add_executable(client_gemm_quantization gemm_quantization.cpp)
target_link_libraries(client_gemm_quantization PRIVATE composable_kernel::device_operations)
......@@ -28,16 +28,15 @@ using OutElementOp = ck::tensor_operation::element_wise::Add_Activation_Mul2_Cla
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t N = 4;
static constexpr ck::index_t K = 64;
static constexpr ck::index_t C = 32;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Hi = 71;
static constexpr ck::index_t Wi = 71;
static constexpr ck::index_t Ho = 36;
static constexpr ck::index_t Wo = 36;
static constexpr ck::index_t N = 4; // batch size
static constexpr ck::index_t K = 64; // output channel
static constexpr ck::index_t C = 192; // input channel
static constexpr ck::index_t Y = 3; // filter H
static constexpr ck::index_t X = 3; // filter W
static constexpr ck::index_t Hi = 71; // input H
static constexpr ck::index_t Wi = 71; // input W
static constexpr ck::index_t Ho = 36; // output H
static constexpr ck::index_t Wo = 36; // output W
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
......@@ -64,8 +63,8 @@ int main(int argc, char* argv[])
std::array<ck::index_t, 5> bias_strides{K, 0, 1, 0, 0};
std::array<ck::index_t, 5> requant_scale_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> requant_scale_strides{K, 0, 1, 0, 0};
std::array<ck::index_t, 5> out_lengths{G, N, C, Ho, Wo};
std::array<ck::index_t, 5> out_strides{N * Ho * Wo * C, Ho * Wo * C, 1, Wo * C, C};
std::array<ck::index_t, 5> out_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> out_strides{N * Ho * Wo * K, Ho * Wo * K, 1, Wo * K, K};
std::array<ck::index_t, 2> in_left_pad{1, 1};
std::array<ck::index_t, 2> in_right_pad{1, 1};
std::array<ck::index_t, 2> conv_strides{2, 2};
......@@ -74,7 +73,7 @@ int main(int argc, char* argv[])
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * K * Y * X * C);
SimpleDeviceMem bias(sizeof(BiasDataType) * K * Y * X * C);
SimpleDeviceMem requant_scale(sizeof(RequantScaleDataType) * K * Y * X * C);
SimpleDeviceMem requant_scale(sizeof(RequantScaleDataType) * K);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * K);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<
......@@ -136,10 +135,11 @@ int main(int argc, char* argv[])
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = G * 2 * N * K * C * Ho * Wo * Y * X;
std::size_t num_bytes = G * sizeof(InDataType) * N * Hi * Wi * C +
G * sizeof(WeiDataType) * K * Y * X * C +
G * sizeof(OutDataType) * N * Ho * Wo * K;
std::size_t flop = G * 2 * N * K * C * Ho * Wo * Y * X;
std::size_t num_bytes =
G * sizeof(InDataType) * N * Hi * Wi * C + G * sizeof(WeiDataType) * K * Y * X * C +
G * sizeof(BiasDataType) * K + G * sizeof(RequantScaleDataType) * K +
G * sizeof(OutDataType) * N * Ho * Wo * K;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
......@@ -162,11 +162,12 @@ int main(int argc, char* argv[])
}
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
if(best_op_id != -1)
{
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
......@@ -202,4 +203,4 @@ int main(int argc, char* argv[])
}
return 0;
}
\ No newline at end of file
}
......@@ -26,15 +26,16 @@ using OutElementOp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clam
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t N = 4;
static constexpr ck::index_t K = 64;
static constexpr ck::index_t C = 32;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Hi = 71;
static constexpr ck::index_t Wi = 71;
static constexpr ck::index_t Ho = 36;
static constexpr ck::index_t Wo = 36;
static constexpr ck::index_t N = 4; // batch size
static constexpr ck::index_t K = 64; // output channel
static constexpr ck::index_t C = 192; // input channel
static constexpr ck::index_t Y = 3; // filter H
static constexpr ck::index_t X = 3; // filter W
static constexpr ck::index_t Hi = 71; // input H
static constexpr ck::index_t Wi = 71; // input W
static constexpr ck::index_t Ho = 36; // output H
static constexpr ck::index_t Wo = 36; // output W
static constexpr float requant_scale = 0.5f; // requantize qAcc to qz
struct SimpleDeviceMem
{
......@@ -60,8 +61,8 @@ int main(int argc, char* argv[])
std::array<ck::index_t, 5> weight_strides{K * Y * X * C, Y * X * C, 1, X * C, C};
std::array<ck::index_t, 5> bias_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> bias_strides{K, 0, 1, 0, 0};
std::array<ck::index_t, 5> out_lengths{G, N, C, Ho, Wo};
std::array<ck::index_t, 5> out_strides{N * Ho * Wo * C, Ho * Wo * C, 1, Wo * C, C};
std::array<ck::index_t, 5> out_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> out_strides{N * Ho * Wo * K, Ho * Wo * K, 1, Wo * K, K};
std::array<ck::index_t, 2> in_left_pad{1, 1};
std::array<ck::index_t, 2> in_right_pad{1, 1};
std::array<ck::index_t, 2> conv_strides{2, 2};
......@@ -102,26 +103,27 @@ int main(int argc, char* argv[])
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{bias.GetDeviceBuffer()},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
weight_lengths,
weight_strides,
{bias_lengths},
{bias_strides},
out_lengths,
out_strides,
conv_strides,
conv_dilations,
in_left_pad,
in_right_pad,
PassThrough{},
PassThrough{},
OutElementOp{0.5f, ActivationOp{}});
auto& op_ptr = op_ptrs[i];
auto argument_ptr =
op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{bias.GetDeviceBuffer()},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
weight_lengths,
weight_strides,
{bias_lengths},
{bias_strides},
out_lengths,
out_strides,
conv_strides,
conv_dilations,
in_left_pad,
in_right_pad,
PassThrough{},
PassThrough{},
OutElementOp{requant_scale, ActivationOp{}});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
......@@ -130,10 +132,10 @@ int main(int argc, char* argv[])
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = G * 2 * N * K * C * Ho * Wo * Y * X;
std::size_t num_bytes = G * sizeof(InDataType) * N * Hi * Wi * C +
G * sizeof(WeiDataType) * K * Y * X * C +
G * sizeof(OutDataType) * N * Ho * Wo * K;
std::size_t flop = G * 2 * N * K * C * Ho * Wo * Y * X;
std::size_t num_bytes =
G * sizeof(InDataType) * N * Hi * Wi * C + G * sizeof(WeiDataType) * K * Y * X * C +
G * sizeof(BiasDataType) * K + G * sizeof(OutDataType) * N * Ho * Wo * K;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
......@@ -156,33 +158,35 @@ int main(int argc, char* argv[])
}
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
if(best_op_id != -1)
{
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{bias.GetDeviceBuffer()},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
weight_lengths,
weight_strides,
{bias_lengths},
{bias_strides},
out_lengths,
out_strides,
conv_strides,
conv_dilations,
in_left_pad,
in_right_pad,
PassThrough{},
PassThrough{},
OutElementOp{0.5f, ActivationOp{}});
auto argument_ptr =
op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{bias.GetDeviceBuffer()},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
weight_lengths,
weight_strides,
{bias_lengths},
{bias_strides},
out_lengths,
out_strides,
conv_strides,
conv_dilations,
in_left_pad,
in_right_pad,
PassThrough{},
PassThrough{},
OutElementOp{requant_scale, ActivationOp{}});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/quantization/grouped_convolution_bias_forward_perchannel_quantization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using InDataType = int8_t;
using WeiDataType = int8_t;
using BiasDataType = int32_t;
using RequantScaleDataType = float;
using OutDataType = int8_t;
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using BiasLayout = ck::tensor_layout::convolution::G_K;
using RequantScaleLayout = ck::tensor_layout::convolution::G_K;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ActivationOp = ck::tensor_operation::element_wise::TanH;
using OutElementOp =
ck::tensor_operation::element_wise::Add_Mul2_Activation_Mul_Clamp<ActivationOp>;
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t N = 4; // batch size
static constexpr ck::index_t K = 64; // output channel
static constexpr ck::index_t C = 192; // input channel
static constexpr ck::index_t Y = 3; // filter H
static constexpr ck::index_t X = 3; // filter W
static constexpr ck::index_t Hi = 71; // input H
static constexpr ck::index_t Wi = 71; // input W
static constexpr ck::index_t Ho = 36; // output H
static constexpr ck::index_t Wo = 36; // output W
static constexpr float sz_inv = 0.5f; // inverse of scale_z
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
std::array<ck::index_t, 5> in_lengths{G, N, C, Hi, Wi};
std::array<ck::index_t, 5> in_strides{N * Hi * Wi * C, Hi * Wi * C, 1, Wi * C, C};
std::array<ck::index_t, 5> weight_lengths{G, K, C, Y, X};
std::array<ck::index_t, 5> weight_strides{K * Y * X * C, Y * X * C, 1, X * C, C};
std::array<ck::index_t, 5> bias_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> bias_strides{K, 0, 1, 0, 0};
std::array<ck::index_t, 5> requant_scale_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> requant_scale_strides{K, 0, 1, 0, 0};
std::array<ck::index_t, 5> out_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> out_strides{N * Ho * Wo * K, Ho * Wo * K, 1, Wo * K, K};
std::array<ck::index_t, 2> in_left_pad{1, 1};
std::array<ck::index_t, 2> in_right_pad{1, 1};
std::array<ck::index_t, 2> conv_strides{2, 2};
std::array<ck::index_t, 2> conv_dilations{1, 1};
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * K * Y * X * C);
SimpleDeviceMem bias(sizeof(BiasDataType) * K * Y * X * C);
SimpleDeviceMem requant_scale(sizeof(RequantScaleDataType) * K);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * K);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<
NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<BiasLayout, RequantScaleLayout>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<BiasDataType, RequantScaleDataType>,
OutDataType,
PassThrough,
PassThrough,
OutElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr =
op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{bias.GetDeviceBuffer(), requant_scale.GetDeviceBuffer()},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
weight_lengths,
weight_strides,
{bias_lengths, requant_scale_lengths},
{bias_strides, requant_scale_strides},
out_lengths,
out_strides,
conv_strides,
conv_dilations,
in_left_pad,
in_right_pad,
PassThrough{},
PassThrough{},
OutElementOp{sz_inv, ActivationOp{}});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = G * 2 * N * K * C * Ho * Wo * Y * X;
std::size_t num_bytes =
G * sizeof(InDataType) * N * Hi * Wi * C + G * sizeof(WeiDataType) * K * Y * X * C +
G * sizeof(BiasDataType) * K + G * sizeof(RequantScaleDataType) * K +
G * sizeof(OutDataType) * N * Ho * Wo * K;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
// run the best intance
if(best_op_id != -1)
{
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr =
op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{bias.GetDeviceBuffer(), requant_scale.GetDeviceBuffer()},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
weight_lengths,
weight_strides,
{bias_lengths, requant_scale_lengths},
{bias_strides, requant_scale_strides},
out_lengths,
out_strides,
conv_strides,
conv_dilations,
in_left_pad,
in_right_pad,
PassThrough{},
PassThrough{},
OutElementOp{sz_inv, ActivationOp{}});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/quantization/grouped_convolution_bias_forward_perlayer_quantization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using InDataType = int8_t;
using WeiDataType = int8_t;
using BiasDataType = int32_t;
using OutDataType = int8_t;
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using BiasLayout = ck::tensor_layout::convolution::G_K;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ActivationOp = ck::tensor_operation::element_wise::TanH;
using OutElementOp = ck::tensor_operation::element_wise::Add_Mul_Activation_Mul_Clamp<ActivationOp>;
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t N = 4; // batch size
static constexpr ck::index_t K = 64; // output channel
static constexpr ck::index_t C = 192; // input channel
static constexpr ck::index_t Y = 3; // filter H
static constexpr ck::index_t X = 3; // filter W
static constexpr ck::index_t Hi = 71; // input H
static constexpr ck::index_t Wi = 71; // input W
static constexpr ck::index_t Ho = 36; // output H
static constexpr ck::index_t Wo = 36; // output W
static constexpr float sacc = 0.5f; // scale of acc
static constexpr float sz_inv = 0.5f; // inverse of scale_z
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
std::array<ck::index_t, 5> in_lengths{G, N, C, Hi, Wi};
std::array<ck::index_t, 5> in_strides{N * Hi * Wi * C, Hi * Wi * C, 1, Wi * C, C};
std::array<ck::index_t, 5> weight_lengths{G, K, C, Y, X};
std::array<ck::index_t, 5> weight_strides{K * Y * X * C, Y * X * C, 1, X * C, C};
std::array<ck::index_t, 5> bias_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> bias_strides{K, 0, 1, 0, 0};
std::array<ck::index_t, 5> out_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> out_strides{N * Ho * Wo * K, Ho * Wo * K, 1, Wo * K, K};
std::array<ck::index_t, 2> in_left_pad{1, 1};
std::array<ck::index_t, 2> in_right_pad{1, 1};
std::array<ck::index_t, 2> conv_strides{2, 2};
std::array<ck::index_t, 2> conv_dilations{1, 1};
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * K * Y * X * C);
SimpleDeviceMem bias(sizeof(BiasDataType) * K * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * K);
using DeviceOp =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<BiasLayout>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<BiasDataType>,
OutDataType,
PassThrough,
PassThrough,
OutElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{bias.GetDeviceBuffer()},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
weight_lengths,
weight_strides,
{bias_lengths},
{bias_strides},
out_lengths,
out_strides,
conv_strides,
conv_dilations,
in_left_pad,
in_right_pad,
PassThrough{},
PassThrough{},
OutElementOp{sacc, sz_inv, ActivationOp{}});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = G * 2 * N * K * C * Ho * Wo * Y * X;
std::size_t num_bytes =
G * sizeof(InDataType) * N * Hi * Wi * C + G * sizeof(WeiDataType) * K * Y * X * C +
G * sizeof(BiasDataType) * K + G * sizeof(OutDataType) * N * Ho * Wo * K;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
// run the best intance
if(best_op_id != -1)
{
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{bias.GetDeviceBuffer()},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
weight_lengths,
weight_strides,
{bias_lengths},
{bias_strides},
out_lengths,
out_strides,
conv_strides,
conv_dilations,
in_left_pad,
in_right_pad,
PassThrough{},
PassThrough{},
OutElementOp{sacc, sz_inv, ActivationOp{}});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
\ No newline at end of file
......@@ -26,15 +26,15 @@ using OutElementOp = ck::tensor_operation::element_wise::Activation_Mul2_C
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t N = 4;
static constexpr ck::index_t K = 64;
static constexpr ck::index_t C = 32;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Hi = 71;
static constexpr ck::index_t Wi = 71;
static constexpr ck::index_t Ho = 36;
static constexpr ck::index_t Wo = 36;
static constexpr ck::index_t N = 4; // batch size
static constexpr ck::index_t K = 64; // output channel
static constexpr ck::index_t C = 192; // input channel
static constexpr ck::index_t Y = 3; // filter H
static constexpr ck::index_t X = 3; // filter W
static constexpr ck::index_t Hi = 71; // input H
static constexpr ck::index_t Wi = 71; // input W
static constexpr ck::index_t Ho = 36; // output H
static constexpr ck::index_t Wo = 36; // output W
struct SimpleDeviceMem
{
......@@ -60,8 +60,8 @@ int main(int argc, char* argv[])
std::array<ck::index_t, 5> weight_strides{K * Y * X * C, Y * X * C, 1, X * C, C};
std::array<ck::index_t, 5> requant_scale_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> requant_scale_strides{K, 0, 1, 0, 0};
std::array<ck::index_t, 5> out_lengths{G, N, C, Ho, Wo};
std::array<ck::index_t, 5> out_strides{N * Ho * Wo * C, Ho * Wo * C, 1, Wo * C, C};
std::array<ck::index_t, 5> out_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> out_strides{N * Ho * Wo * K, Ho * Wo * K, 1, Wo * K, K};
std::array<ck::index_t, 2> in_left_pad{1, 1};
std::array<ck::index_t, 2> in_right_pad{1, 1};
std::array<ck::index_t, 2> conv_strides{2, 2};
......@@ -69,7 +69,7 @@ int main(int argc, char* argv[])
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * K * Y * X * C);
SimpleDeviceMem requant_scale(sizeof(RequantScaleDataType) * K * Y * X * C);
SimpleDeviceMem requant_scale(sizeof(RequantScaleDataType) * K);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * K);
using DeviceOp =
......@@ -130,10 +130,10 @@ int main(int argc, char* argv[])
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = G * 2 * N * K * C * Ho * Wo * Y * X;
std::size_t num_bytes = G * sizeof(InDataType) * N * Hi * Wi * C +
G * sizeof(WeiDataType) * K * Y * X * C +
G * sizeof(OutDataType) * N * Ho * Wo * K;
std::size_t flop = G * 2 * N * K * C * Ho * Wo * Y * X;
std::size_t num_bytes =
G * sizeof(InDataType) * N * Hi * Wi * C + G * sizeof(WeiDataType) * K * Y * X * C +
G * sizeof(RequantScaleDataType) * K + G * sizeof(OutDataType) * N * Ho * Wo * K;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
......@@ -156,11 +156,12 @@ int main(int argc, char* argv[])
}
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
if(best_op_id != -1)
{
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
......@@ -195,4 +196,4 @@ int main(int argc, char* argv[])
}
return 0;
}
\ No newline at end of file
}
......@@ -24,15 +24,16 @@ using OutElementOp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Ac
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t N = 4;
static constexpr ck::index_t K = 64;
static constexpr ck::index_t C = 32;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Hi = 71;
static constexpr ck::index_t Wi = 71;
static constexpr ck::index_t Ho = 36;
static constexpr ck::index_t Wo = 36;
static constexpr ck::index_t N = 4; // batch size
static constexpr ck::index_t K = 64; // output channel
static constexpr ck::index_t C = 192; // input channel
static constexpr ck::index_t Y = 3; // filter H
static constexpr ck::index_t X = 3; // filter W
static constexpr ck::index_t Hi = 71; // input H
static constexpr ck::index_t Wi = 71; // input W
static constexpr ck::index_t Ho = 36; // output H
static constexpr ck::index_t Wo = 36; // output W
static constexpr float requant_scale = 0.5f; // requantize qAcc to qY
struct SimpleDeviceMem
{
......@@ -56,8 +57,8 @@ int main(int argc, char* argv[])
std::array<ck::index_t, 5> in_strides{N * Hi * Wi * C, Hi * Wi * C, 1, Wi * C, C};
std::array<ck::index_t, 5> weight_lengths{G, K, C, Y, X};
std::array<ck::index_t, 5> weight_strides{K * Y * X * C, Y * X * C, 1, X * C, C};
std::array<ck::index_t, 5> out_lengths{G, N, C, Ho, Wo};
std::array<ck::index_t, 5> out_strides{N * Ho * Wo * C, Ho * Wo * C, 1, Wo * C, C};
std::array<ck::index_t, 5> out_lengths{G, N, K, Ho, Wo};
std::array<ck::index_t, 5> out_strides{N * Ho * Wo * K, Ho * Wo * K, 1, Wo * K, K};
std::array<ck::index_t, 2> in_left_pad{1, 1};
std::array<ck::index_t, 2> in_right_pad{1, 1};
std::array<ck::index_t, 2> conv_strides{2, 2};
......@@ -96,26 +97,27 @@ int main(int argc, char* argv[])
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
weight_lengths,
weight_strides,
{},
{},
out_lengths,
out_strides,
conv_strides,
conv_dilations,
in_left_pad,
in_right_pad,
PassThrough{},
PassThrough{},
OutElementOp{0.5f, ActivationOp{}});
auto& op_ptr = op_ptrs[i];
auto argument_ptr =
op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
weight_lengths,
weight_strides,
{},
{},
out_lengths,
out_strides,
conv_strides,
conv_dilations,
in_left_pad,
in_right_pad,
PassThrough{},
PassThrough{},
OutElementOp{requant_scale, ActivationOp{}});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
......@@ -150,33 +152,34 @@ int main(int argc, char* argv[])
}
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
if(best_op_id != -1)
{
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
weight_lengths,
weight_strides,
{},
{},
out_lengths,
out_strides,
conv_strides,
conv_dilations,
in_left_pad,
in_right_pad,
PassThrough{},
PassThrough{},
OutElementOp{0.5f, ActivationOp{}});
auto argument_ptr =
op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
weight_lengths,
weight_strides,
{},
{},
out_lengths,
out_strides,
conv_strides,
conv_dilations,
in_left_pad,
in_right_pad,
PassThrough{},
PassThrough{},
OutElementOp{requant_scale, ActivationOp{}});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/quantization/gemm_quantization.hpp"
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using ActivationOp = PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<ActivationOp>;
using ADataType = int8_t;
using BDataType = int8_t;
using EDataType = int8_t;
using ALayout = Row;
using BLayout = Col;
using ELayout = Row;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
ck::index_t M = 1024;
ck::index_t N = 1024;
ck::index_t K = 1024;
ck::index_t StrideA = 1024;
ck::index_t StrideB = 1024;
ck::index_t StrideE = 1024;
float requant_scale = 0.03;
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if constexpr(std::is_same<Layout, ck::tensor_layout::gemm::RowMajor>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
SimpleDeviceMem a_device_buf(sizeof(ADataType) * f_matrix_space_size(M, K, StrideA, ALayout{}));
SimpleDeviceMem b_device_buf(sizeof(BDataType) * f_matrix_space_size(K, N, StrideB, BLayout{}));
SimpleDeviceMem e_device_buf(sizeof(EDataType) * f_matrix_space_size(M, N, StrideE, ELayout{}));
using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleD<ALayout,
BLayout,
ck::Tuple<>,
ELayout,
ADataType,
BDataType,
ck::Tuple<>,
EDataType,
AElementOp,
BElementOp,
CDEElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{requant_scale, ActivationOp{}};
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
{},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
{},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_bytes =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
if(best_op_id != -1)
{
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
{},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
{},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment