Commit 97b93999 authored by Po-Yen, Chen's avatar Po-Yen, Chen
Browse files

Rename DeviceGemm_Xdl_CShuffle<> inst lib files

parent a86fc096
......@@ -20,11 +20,11 @@ if(DTYPES MATCHES "fp32" OR NOT DEFINED DTYPES)
list(APPEND GEMM_INSTANCES device_gemm_dl_f32_f32_f32_km_nk_mn_instance.cpp)
endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND GEMM_INSTANCES device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instance.cpp)
list(APPEND GEMM_INSTANCES device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instance.cpp)
list(APPEND GEMM_INSTANCES device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instance.cpp)
list(APPEND GEMM_INSTANCES device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instance.cpp)
list(APPEND GEMM_INSTANCES device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instance.cpp)
list(APPEND GEMM_INSTANCES device_gemm_xdl_c_shuffle_f16_f16_f16/km_kn_mn_add_instance.cpp)
list(APPEND GEMM_INSTANCES device_gemm_xdl_c_shuffle_f16_f16_f16/km_nk_mn_add_instance.cpp)
list(APPEND GEMM_INSTANCES device_gemm_xdl_c_shuffle_f16_f16_f16/mk_kn_mn_add_instance.cpp)
list(APPEND GEMM_INSTANCES device_gemm_xdl_c_shuffle_f16_f16_f16/mk_nk_mn_add_instance.cpp)
list(APPEND GEMM_INSTANCES device_gemm_xdl_c_shuffle_f16_f16_f16/mk_nk_mn_2_stage_add_instance.cpp)
list(APPEND GEMM_INSTANCES device_gemm_dl_f16_f16_f16_mk_kn_mn_instance.cpp)
list(APPEND GEMM_INSTANCES device_gemm_dl_f16_f16_f16_mk_kn_mn_irregular_instance.cpp)
list(APPEND GEMM_INSTANCES device_gemm_dl_f16_f16_f16_mk_nk_mn_instance.cpp)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/utility/data_type.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNPadding = ck::tensor_operation::device::GemmSpecialization::MNPadding;
using InstanceNT = DeviceGemm<Col, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>;
using InstanceNN = DeviceGemm<Col, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>;
using InstanceTT = DeviceGemm<Row, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>;
using InstanceTN = DeviceGemm<Row, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>;
template <typename Instance>
using OwnerList = std::vector<std::unique_ptr<Instance>>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// Compilation parameters for a[k, m] * b[k, n] = c[m, n]
using device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances = std::tuple<
// clang-format off
......@@ -96,10 +75,10 @@ using device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances = std::tuple<
// clang-format on
>;
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Col, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
using Instance = InstanceNT;
using Instances = OwnerList<InstanceNT>;
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(Instances& instances)
{
add_device_operation_instances(instances,
device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances{});
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// Compilation parameters for a[k, m] * b[n, k] = c[m, n]
using device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances = std::tuple<
// clang-format off
......@@ -96,10 +75,10 @@ using device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances = std::tuple<
// clang-format on
>;
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Col, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
using Instance = InstanceNN;
using Instances = OwnerList<Instance>;
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(Instances& instances)
{
add_device_operation_instances(instances,
device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances{});
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances = std::tuple<
// clang-format off
......@@ -96,10 +75,10 @@ using device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances = std::tuple<
// clang-format on
>;
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
using Instance = InstanceTT;
using Instances = OwnerList<Instance>;
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(Instances& instances)
{
add_device_operation_instances(instances,
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances{});
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// Compilation parameters for a[m, k] * b[n, k] = c[m, n]
using device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances = std::tuple<
// clang-format off
......@@ -87,10 +66,10 @@ using device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances = std::tuple<
// clang-format on
>;
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
using Instance = InstanceTN;
using Instances = OwnerList<Instance>;
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(Instances& instances)
{
add_device_operation_instances(instances,
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances{});
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment