Unverified Commit 9608beee authored by arai713's avatar arai713 Committed by GitHub
Browse files

Merge branch 'develop' into gridwise_2d

parents d179a12a 8a4253ba
......@@ -11,7 +11,7 @@
namespace ck {
// Y = LayerNorm(X, Beta, Gamma)
// Y = Normalization(X, Beta, Gamma)
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
......@@ -33,7 +33,7 @@ template <typename XDataType,
index_t YDstVectorDim,
index_t YDstVectorSize,
bool SweepOnce>
struct GridwiseLayernormWelfordVariance_mk_to_mk
struct GridwiseNormalizationWelfordVariance_mk_to_mk
{
static_assert((XSrcVectorDim == 0 && MThreadSliceSize % XSrcVectorSize == 0) ||
(XSrcVectorDim == 1 && KThreadSliceSize % XSrcVectorSize == 0),
......
......@@ -60,6 +60,12 @@ struct ReferenceSoftmax : public device::BaseOperator
{
scalar_lengths.push_back(arg.in_.mDesc.GetLengths()[dim]);
}
// max and sum reduction with final reduced values of dim=0 is a scalar so give it
// appropriate lengths of {1}
if(arg.sm_scalar_dims_.size() == 0)
{
scalar_lengths.push_back(1);
}
Tensor<AccDataType> reduce_max(scalar_lengths);
reduce_max.GenerateTensorValue(
......@@ -67,6 +73,9 @@ struct ReferenceSoftmax : public device::BaseOperator
Tensor<AccDataType> reduce_sum(scalar_lengths);
reduce_sum.GenerateTensorValue(GeneratorTensor_1<AccDataType>{0});
// when final reduced values is of dim=0, the index will be transformed into empty
// std::vector which is actually a valid input for Tensor::operator(std::vector) and
// internally accesses 0'th element
auto to_sm_scalar_idx = [&](auto idx) {
std::vector<size_t> sm_scalar_idx;
for(index_t dim : arg.sm_scalar_dims_)
......
......@@ -3,10 +3,10 @@
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
namespace ck {
namespace tensor_operation {
......@@ -28,6 +28,8 @@ using F16_F16_Tuple = ck::Tuple<F16, F16>;
using F32_Tuple = ck::Tuple<F32>;
using I32_Tuple = ck::Tuple<I32>;
// GEMM layout
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
......@@ -75,12 +77,24 @@ using NWGK = ck::tensor_layout::convolution::NWGK;
using NHWGK = ck::tensor_layout::convolution::NHWGK;
using NDHWGK = ck::tensor_layout::convolution::NDHWGK;
//
using GK = ck::tensor_layout::convolution::G_K;
using GK_TUPLE = ck::Tuple<GK>;
// pointwise functor
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Relu = ck::tensor_operation::element_wise::Relu;
using Scale = ck::tensor_operation::element_wise::Scale;
using Bilinear = ck::tensor_operation::element_wise::Bilinear;
using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu;
template <typename Activation>
using Activation_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Activation>;
template <typename Activation>
using Add_Activation_Mul_Clamp =
ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<Activation>;
template <typename DeviceOp>
struct DeviceOperationInstanceFactory;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise_normalization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// FP16
void add_device_elementwise_normalization_rank_2_1_f16_instances(
std::vector<std::unique_ptr<DeviceElementwiseNormalization<ck::Tuple<F16, F16>,
F16,
F16,
F32,
F16,
element_wise::Add,
PassThrough,
2,
1>>>&);
template <typename InDataTypeTuple,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
index_t Rank,
index_t NumReduceDim>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceElementwiseNormalization<
InDataTypeTuple,
GammaDataType,
BetaDataType,
F32,
YDataType,
ck::tensor_operation::element_wise::Add,
ck::tensor_operation::element_wise::PassThrough,
Rank,
NumReduceDim>>
{
using DeviceOp = DeviceElementwiseNormalization<InDataTypeTuple,
GammaDataType,
BetaDataType,
F32,
YDataType,
ck::tensor_operation::element_wise::Add,
ck::tensor_operation::element_wise::PassThrough,
Rank,
NumReduceDim>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<GammaDataType, F16> && is_same_v<BetaDataType, F16> &&
is_same_v<YDataType, F16>)
{
if constexpr(Rank == 2 && NumReduceDim == 1)
{
add_device_elementwise_normalization_rank_2_1_f16_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment