Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
9608beee
Unverified
Commit
9608beee
authored
Nov 06, 2022
by
arai713
Committed by
GitHub
Nov 06, 2022
Browse files
Merge branch 'develop' into gridwise_2d
parents
d179a12a
8a4253ba
Changes
172
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1869 additions
and
122 deletions
+1869
-122
example/44_conv2d_fwd_quant/CMakeLists.txt
example/44_conv2d_fwd_quant/CMakeLists.txt
+2
-0
example/44_conv2d_fwd_quant/conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
...t/conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
+317
-0
example/44_conv2d_fwd_quant/conv2d_fwd_xdl_perlayer_quantization_int8.cpp
...d_fwd_quant/conv2d_fwd_xdl_perlayer_quantization_int8.cpp
+277
-0
example/45_elementwise_normalization/CMakeLists.txt
example/45_elementwise_normalization/CMakeLists.txt
+1
-0
example/45_elementwise_normalization/elementwise_layernorm_blockwise.cpp
...entwise_normalization/elementwise_layernorm_blockwise.cpp
+195
-0
include/ck/ck.hpp
include/ck/ck.hpp
+7
-17
include/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp
...e/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp
+2
-2
include/ck/tensor_operation/gpu/device/device_elementwise_normalization.hpp
...operation/gpu/device/device_elementwise_normalization.hpp
+68
-0
include/ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data.hpp
...sor_operation/gpu/device/device_grouped_conv_bwd_data.hpp
+49
-0
include/ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data_multiple_d.hpp
...on/gpu/device/device_grouped_conv_bwd_data_multiple_d.hpp
+95
-0
include/ck/tensor_operation/gpu/device/device_normalization.hpp
...e/ck/tensor_operation/gpu/device/device_normalization.hpp
+2
-0
include/ck/tensor_operation/gpu/device/device_softmax.hpp
include/ck/tensor_operation/gpu/device/device_softmax.hpp
+1
-0
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_xdl.hpp
...sor_operation/gpu/device/impl/device_batched_gemm_xdl.hpp
+21
-3
include/ck/tensor_operation/gpu/device/impl/device_elementwise_normalization_impl.hpp
...gpu/device/impl/device_elementwise_normalization_impl.hpp
+592
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp
...n/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp
+15
-3
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl.hpp
...e/ck/tensor_operation/gpu/device/impl/device_gemm_xdl.hpp
+19
-3
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp
...or_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp
+15
-3
include/ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp
...r_operation/gpu/device/impl/device_normalization_impl.hpp
+80
-72
include/ck/tensor_operation/gpu/device/impl/device_reduce_multiblock.hpp
...or_operation/gpu/device/impl/device_reduce_multiblock.hpp
+24
-0
include/ck/tensor_operation/gpu/device/impl/device_softmax_impl.hpp
.../tensor_operation/gpu/device/impl/device_softmax_impl.hpp
+87
-19
No files found.
example/44_conv2d_fwd_quant/CMakeLists.txt
0 → 100644
View file @
9608beee
add_example_executable
(
example_conv2d_fwd_xdl_perlayer_quantization_int8 conv2d_fwd_xdl_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8 conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
)
example/44_conv2d_fwd_quant/conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
0 → 100644
View file @
9608beee
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
BiasDataType
=
int32_t
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
int32_t
;
using
OutDataType
=
int8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
ActivationOp
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add_Activation_Mul_Clamp
<
ActivationOp
>
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
BiasLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
BiasLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
BiasDataType
>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
64
,
// KPerBlock
16
,
// AK1
16
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
16
,
// ABlockTransferSrcScalarPerVector
16
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
16
,
// BBlockTransferSrcScalarPerVector
16
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
8
>
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
DeviceConvNDFwdInstance
>
bool
run_grouped_conv_fwd
(
bool
do_verification
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
bias_g_k_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
{
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
BiasDataType
>
bias
(
bias_g_k_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias: "
<<
bias
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_host
.
mDesc
<<
std
::
endl
;
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
bias
.
GenerateTensorValue
(
GeneratorTensor_2
<
BiasDataType
>
{
-
5
,
5
});
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_device_buf
(
sizeof
(
BiasDataType
)
*
bias
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias
.
mData
.
data
());
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d0_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d0_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
auto
&
x
,
auto
&
y
)
{
std
::
copy
(
x
.
begin
(),
x
.
end
(),
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
bias_g_k_desc
.
GetLengths
(),
d0_g_n_k_wos_lengths
);
copy
(
bias_g_k_desc
.
GetStrides
(),
d0_g_n_k_wos_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
// do Conv
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
bias_device_buf
.
GetDeviceBuffer
()},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
1
>
{{
d0_g_n_k_wos_lengths
}},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
1
>
{{
d0_g_n_k_wos_strides
}},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_host
(
out_g_n_k_wos_desc
);
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
CShuffleDataType
,
InElementOp
,
WeiElementOp
,
PassThrough
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei
,
c_host
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
// TODO: implement elementwise operation for host
out_host
.
ForEach
(
[
&
](
auto
&
,
auto
idx
)
{
out_element_op
(
out_host
(
idx
),
c_host
(
idx
),
bias
(
idx
));
});
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
out_device
.
mData
,
out_host
.
mData
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
);
}
return
(
pass
?
0
:
1
);
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
const
ck
::
index_t
ndim_spatial
=
2
;
ck
::
utils
::
conv
::
ConvParam
conv_param
{
ndim_spatial
,
// n_dim
1
,
// group
4
,
// batch
64
,
// output channels
32
,
// input chanels
{
3
,
3
},
// weight HW
{
71
,
71
},
// x HW
{
2
,
2
},
// strides
{
1
,
1
},
// dilations
{
1
,
1
},
// left_pads
{
1
,
1
}
// right_pads
};
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{
0.5
f
,
ActivationOp
{}};
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
BiasLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
// TODO - make_bias_host_tensor_descriptor_g_n_k_wos_packed()
const
auto
bias_g_k_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// ho
0
// wo
});
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
std
::
cout
<<
out_g_n_k_wos_desc
<<
std
::
endl
;
return
run_grouped_conv_fwd
<
ndim_spatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceGroupedConvNDFwdInstance
<
ndim_spatial
,
InLayout
,
WeiLayout
,
BiasLayout
,
OutLayout
>>
(
do_verification
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
bias_g_k_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
example/44_conv2d_fwd_quant/conv2d_fwd_xdl_perlayer_quantization_int8.cpp
0 → 100644
View file @
9608beee
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
int32_t
;
using
OutDataType
=
int8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
ActivationOp
=
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
Activation_Mul_Clamp
<
ActivationOp
>
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
64
,
// KPerBlock
16
,
// AK1
16
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
16
,
// ABlockTransferSrcScalarPerVector
16
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
16
,
// BBlockTransferSrcScalarPerVector
16
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
>
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
DeviceConvNDFwdInstance
>
bool
run_grouped_conv_fwd
(
bool
do_verification
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
{
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_host
.
mDesc
<<
std
::
endl
;
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
auto
&
x
,
auto
&
y
)
{
std
::
copy
(
x
.
begin
(),
x
.
end
(),
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
// do Conv
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei
,
out_host
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
out_element_op
);
ref_invoker
.
Run
(
ref_argument
);
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
out_device
.
mData
,
out_host
.
mData
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
);
}
return
(
pass
?
0
:
1
);
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
const
ck
::
index_t
ndim_spatial
=
2
;
ck
::
utils
::
conv
::
ConvParam
conv_param
{
ndim_spatial
,
// n_dim
1
,
// group
4
,
// batch
64
,
// output channels
32
,
// input chanels
{
3
,
3
},
// weight HW
{
71
,
71
},
// x HW
{
2
,
2
},
// strides
{
1
,
1
},
// dilations
{
1
,
1
},
// left_pads
{
1
,
1
}
// right_pads
};
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{
0.5
f
,
ActivationOp
{}};
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_grouped_conv_fwd
<
ndim_spatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceGroupedConvNDFwdInstance
<
ndim_spatial
,
InLayout
,
WeiLayout
,
OutLayout
>>
(
do_verification
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
example/45_elementwise_normalization/CMakeLists.txt
0 → 100644
View file @
9608beee
add_example_executable
(
example_elementwise_layernorm_blockwise elementwise_layernorm_blockwise.cpp
)
example/45_elementwise_normalization/elementwise_layernorm_blockwise.cpp
0 → 100644
View file @
9608beee
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_normalization_impl.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"
using
ADataType
=
ck
::
half_t
;
// Input 1
using
BDataType
=
ck
::
half_t
;
// Input 2
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
XElementwiseOperation
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
YElementwiseOperation
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
constexpr
int
Rank
=
2
;
constexpr
int
NumReduceDim
=
1
;
// X = Elementwise(input1, input2, input3, ...)
// Y = Layernorm(X, beta, gamma)
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwiseNormalizationImpl
<
ck
::
Tuple
<
ADataType
,
BDataType
>
,
GammaDataType
,
BetaDataType
,
AccDataType
,
YDataType
,
XElementwiseOperation
,
YElementwiseOperation
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// ClusterM
32
,
// ClusterK
1
,
// SliceM
32
,
// SliceK
1
,
// SrcVecDim (0=M, 1=K)
8
,
// SrcScalarPerVector
1
,
// GammaVecDim (0=M, 1=K)
8
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
8
,
// BetaScalarPerVector
8
>
;
// OutScalarPerVector
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
void
host_elementwise2D
(
HostTensorC
&
C
,
const
HostTensorA
&
A
,
const
HostTensorB
&
B
,
const
std
::
vector
<
std
::
size_t
>&
shape
,
Functor
functor
)
{
using
ctype
=
ck
::
remove_reference_t
<
decltype
(
C
(
0
,
0
))
>
;
for
(
std
::
size_t
m
=
0
;
m
<
shape
[
0
];
++
m
)
for
(
std
::
size_t
n
=
0
;
n
<
shape
[
1
];
++
n
)
{
auto
a_val
=
A
(
m
,
n
);
auto
b_val
=
B
(
m
,
n
);
ctype
c_val
=
0
;
functor
(
c_val
,
a_val
,
b_val
);
C
(
m
,
n
)
=
c_val
;
}
}
int
main
()
{
bool
time_kernel
=
true
;
ck
::
index_t
M
=
48
*
256
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
Stride
=
N
;
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
std
::
vector
<
std
::
size_t
>
({
stride
}));
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
};
Tensor
<
ADataType
>
a
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
Tensor
<
BDataType
>
b
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
Tensor
<
GammaDataType
>
gamma
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
BetaDataType
>
beta
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
YDataType
>
y
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
a
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
gamma
.
GenerateTensorValue
(
GeneratorTensor_2
<
GammaDataType
>
{
-
5
,
5
});
beta
.
GenerateTensorValue
(
GeneratorTensor_2
<
BetaDataType
>
{
-
5
,
5
});
DeviceMem
a_dev
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_dev
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
gamma_dev
(
sizeof
(
GammaDataType
)
*
gamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
beta_dev
(
sizeof
(
BetaDataType
)
*
beta
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
y_dev
(
sizeof
(
YDataType
)
*
y
.
mDesc
.
GetElementSpaceSize
());
a_dev
.
ToDevice
(
a
.
mData
.
data
());
b_dev
.
ToDevice
(
b
.
mData
.
data
());
gamma_dev
.
ToDevice
(
gamma
.
mData
.
data
());
beta_dev
.
ToDevice
(
beta
.
mData
.
data
());
std
::
array
<
const
void
*
,
2
>
input
=
{
a_dev
.
GetDeviceBuffer
(),
b_dev
.
GetDeviceBuffer
()};
auto
device_instance
=
DeviceInstance
{};
auto
argument_ptr
=
device_instance
.
MakeArgumentPointer
(
{
M
,
N
},
{
std
::
vector
<
ck
::
index_t
>
{
a
.
mDesc
.
GetStrides
().
begin
(),
a
.
mDesc
.
GetStrides
().
end
()},
std
::
vector
<
ck
::
index_t
>
{
b
.
mDesc
.
GetStrides
().
begin
(),
b
.
mDesc
.
GetStrides
().
end
()},
},
{
0
,
1
},
{
0
,
1
},
std
::
vector
<
ck
::
index_t
>
{
y
.
mDesc
.
GetStrides
().
begin
(),
y
.
mDesc
.
GetStrides
().
end
()},
{
1
},
1e-4
,
input
,
gamma_dev
.
GetDeviceBuffer
(),
beta_dev
.
GetDeviceBuffer
(),
y_dev
.
GetDeviceBuffer
(),
XElementwiseOperation
{},
YElementwiseOperation
{});
if
(
!
device_instance
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
cout
<<
"The runtime parameters are not supported"
<<
std
::
endl
;
return
1
;
};
auto
invoker_ptr
=
device_instance
.
MakeInvokerPointer
();
float
ela_time
=
0
;
ela_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
float
data_mem_size
=
M
*
N
*
sizeof
(
ADataType
)
+
M
*
N
*
sizeof
(
BDataType
)
+
M
*
N
*
sizeof
(
YDataType
)
+
N
*
sizeof
(
GammaDataType
)
+
N
*
sizeof
(
BetaDataType
);
float
bandwidth
=
data_mem_size
*
1000
/
ela_time
/
1024
/
1024
/
1024
;
std
::
cout
<<
"Bandwidth is : "
<<
bandwidth
<<
"GB/s . "
<<
std
::
endl
;
std
::
cout
<<
"Time elapase is : "
<<
ela_time
<<
" ms . "
<<
std
::
endl
;
bool
pass
=
true
;
{
std
::
vector
<
std
::
size_t
>
mn
=
{
static_cast
<
unsigned
long
>
(
M
),
static_cast
<
unsigned
long
>
(
N
)};
Tensor
<
XDataType
>
x
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
host_elementwise2D
<
Tensor
<
ADataType
>
,
Tensor
<
BDataType
>
,
Tensor
<
XDataType
>
,
XElementwiseOperation
>
(
x
,
a
,
b
,
mn
,
XElementwiseOperation
{});
Tensor
<
YDataType
>
host_y
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceLayernorm
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
AccDataType
,
YElementwiseOperation
,
Rank
,
NumReduceDim
>
;
ReferenceInstance
ref
;
auto
ref_argument
=
ref
.
MakeArgument
(
x
,
gamma
,
beta
,
host_y
,
YElementwiseOperation
{},
{
M
,
N
},
{
1
},
1e-4
);
auto
ref_invoker
=
ref
.
MakeInvoker
();
ref_invoker
.
Run
(
ref_argument
);
y_dev
.
FromDevice
(
y
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
y
.
mData
,
host_y
.
mData
,
"Error: Incorrect results d1"
,
1e-3
,
1e-3
);
if
(
!
(
pass
))
{
std
::
cout
<<
"layernorm wrong"
<<
std
::
endl
;
}
}
return
(
pass
?
0
:
1
);
}
include/ck/ck.hpp
View file @
9608beee
...
@@ -126,8 +126,14 @@
...
@@ -126,8 +126,14 @@
#define CK_EXPERIMENTAL_USE_MEMCPY_FOR_BIT_CAST 1
#define CK_EXPERIMENTAL_USE_MEMCPY_FOR_BIT_CAST 1
// experimental feature: optimize for inter-wave scheduling policy
// experimental feature: optimize for inter-wave scheduling policy
#define CK_EXPERIMENTAL_INTER_WAVE_SCHEDULING
0
#define CK_EXPERIMENTAL_INTER_WAVE_SCHEDULING
1
#define CK_EXPERIMENTAL_INTER_WAVE_SCHEDULING_MAC_CLUSTERS 1
#define CK_EXPERIMENTAL_INTER_WAVE_SCHEDULING_MAC_CLUSTERS 1
// this will let make_default_loop_scheduler() return interwave scheduling flag by default
#define CK_EXPERIMENTAL_DEFAULT_TO_INTER_WAVE_SCHEDULING 0
// experimental feature: add instances using interwave scheduling
#define CK_EXPERIMENTAL_INTER_WAVE_INSTANCES 1
// experimental feature: add instances using pipeline v2
#define CK_EXPERIMENTAL_PIPELINE_V2_INSTANCES 1
// hack: have underlying assumption that need to be satsified, otherwise it's a bug
// hack: have underlying assumption that need to be satsified, otherwise it's a bug
// hack for forcing register to keep idx_diff_low_const in SGPR. idx_diff_low_const must be
// hack for forcing register to keep idx_diff_low_const in SGPR. idx_diff_low_const must be
...
@@ -144,26 +150,10 @@
...
@@ -144,26 +150,10 @@
// workaround: compiler gnerating inefficient ds_write instructions
// workaround: compiler gnerating inefficient ds_write instructions
#define CK_WORKAROUND_SWDEV_XXXXXX_INT8_DS_WRITE_ISSUE 1
#define CK_WORKAROUND_SWDEV_XXXXXX_INT8_DS_WRITE_ISSUE 1
// (gfx908 only) workaround: compiler crash in fused kernels on mainline #9110; #10738 seems ok
// error message was "fatal error: error in backend: Error while trying to spill VGPR0 from class
// VGPR_32: Cannot scavenge register without an emergency spill slot!"
// this fall back to less ideal way of handle NPadding in fused attention kernel
#ifdef __gfx908__
#define CK_WORKAROUND_SWDEV_XXXXXX_ATTN_KERNEL_CLANG_CANNOT_SCAVENGE_REGISTER 1
#else
// for __gfx90a__, ...
#define CK_WORKAROUND_SWDEV_XXXXXX_ATTN_KERNEL_CLANG_CANNOT_SCAVENGE_REGISTER 0
#endif // __gfx908__
// workaround: verifaction failure, due to compiler regression, for conv bwd-data fp16 using some
// workaround: verifaction failure, due to compiler regression, for conv bwd-data fp16 using some
// tuning parameter
// tuning parameter
#define CK_WORKAROUND_SWDEV_325164 0
#define CK_WORKAROUND_SWDEV_325164 0
// workaround: disable broken fused attention kernel instance that does not pass validation
// issue found on mi100/#10738 combo when irregular KPerBlock attention kernel has acc0 scaling
// enabled
#define CK_WORKAROUND_DISABLE_BROKEN_ATTN_KERNEL_INSTANCE 1
namespace
ck
{
namespace
ck
{
enum
struct
InMemoryDataOperationEnum
enum
struct
InMemoryDataOperationEnum
...
...
include/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp
View file @
9608beee
...
@@ -18,11 +18,11 @@ enum struct LoopScheduler
...
@@ -18,11 +18,11 @@ enum struct LoopScheduler
constexpr
LoopScheduler
make_default_loop_scheduler
()
constexpr
LoopScheduler
make_default_loop_scheduler
()
{
{
#if CK_EXPERIMENTAL_INTER_WAVE_SCHEDULING
#if CK_EXPERIMENTAL_
DEFAULT_TO_
INTER_WAVE_SCHEDULING
return
LoopScheduler
::
Interwave
;
return
LoopScheduler
::
Interwave
;
#else
#else
return
LoopScheduler
::
Default
;
return
LoopScheduler
::
Default
;
#endif // if CK_EXPERIMENTAL_INTER_WAVE_SCHEDULING
#endif // if CK_EXPERIMENTAL_
DEFAULT_TO_
INTER_WAVE_SCHEDULING
}
}
template
<
index_t
MNXdlPerWave
,
index_t
MNWaves
,
index_t
MNPerXdl
,
typename
TileDesc_K0_MN_K1
>
template
<
index_t
MNXdlPerWave
,
index_t
MNWaves
,
index_t
MNPerXdl
,
typename
TileDesc_K0_MN_K1
>
...
...
include/ck/tensor_operation/gpu/device/device_elementwise_normalization.hpp
0 → 100644
View file @
9608beee
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
InDataTypeTuple
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
AccDataType
,
typename
YDataType
,
typename
XElementwiseOperation
,
typename
YElementwiseOperation
,
index_t
Rank
,
index_t
NumReduceDim
>
struct
DeviceElementwiseNormalization
:
public
BaseOperator
{
static
constexpr
int
NumInput
=
InDataTypeTuple
::
Size
();
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
index_t
>
lengths
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumInput
>
inStridesArray
,
const
std
::
vector
<
index_t
>
gammaStrides
,
const
std
::
vector
<
index_t
>
betaStrides
,
const
std
::
vector
<
index_t
>
yStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
AccDataType
epsilon
,
const
std
::
array
<
const
void
*
,
NumInput
>
in_dev_buffers
,
const
void
*
p_gamma
,
const
void
*
p_beta
,
void
*
p_y
,
XElementwiseOperation
x_elementwise_op
,
YElementwiseOperation
y_elementwise_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
typename
InDataTypeTuple
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
AccDataType
,
typename
YDataType
,
typename
XElementwiseOperation
,
typename
YElementwiseOperation
,
index_t
Rank
,
index_t
NumReduceDim
>
using
DeviceElementwiseNormalizationPtr
=
std
::
unique_ptr
<
DeviceElementwiseNormalization
<
InDataTypeTuple
,
GammaDataType
,
BetaDataType
,
AccDataType
,
YDataType
,
XElementwiseOperation
,
YElementwiseOperation
,
Rank
,
NumReduceDim
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data.hpp
0 → 100644
View file @
9608beee
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
ck
::
index_t
NDimSpatial
,
typename
InputLayout
,
typename
WeightLayout
,
typename
OutputLayout
,
typename
InputDataType
,
typename
WeightDataType
,
typename
OutputDataType
,
typename
InputElementwiseOperation
,
typename
WeightElementwiseOperation
,
typename
OutputElementwiseOperation
>
struct
DeviceGroupedConvBwdData
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
void
*
p_input
,
const
void
*
p_weight
,
const
void
*
p_output
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
input_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
input_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
weight_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
weight_g_k_c_xs_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
output_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
output_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
InputElementwiseOperation
&
input_element_op
,
const
WeightElementwiseOperation
&
weight_element_op
,
const
OutputElementwiseOperation
&
output_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data_multiple_d.hpp
View file @
9608beee
...
@@ -6,6 +6,7 @@
...
@@ -6,6 +6,7 @@
#include <vector>
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data.hpp"
namespace
ck
{
namespace
ck
{
namespace
tensor_operation
{
namespace
tensor_operation
{
...
@@ -62,6 +63,100 @@ struct DeviceGroupedConvBwdDataMultipleD : public BaseOperator
...
@@ -62,6 +63,100 @@ struct DeviceGroupedConvBwdDataMultipleD : public BaseOperator
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
};
template
<
ck
::
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
>
struct
DeviceGroupedConvBwdDataMultipleD
<
NDimSpatial
,
ALayout
,
BLayout
,
Tuple
<>
,
ELayout
,
ADataType
,
BDataType
,
Tuple
<>
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
:
public
DeviceGroupedConvBwdData
<
NDimSpatial
,
ELayout
,
BLayout
,
ALayout
,
EDataType
,
BDataType
,
ADataType
,
CDEElementwiseOperation
,
BElementwiseOperation
,
AElementwiseOperation
>
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
// output image
const
void
*
p_b
,
// weight
const
std
::
array
<
const
void
*
,
0
>&
,
// bias
void
*
p_e
,
// input image
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_k_wos_lengths
,
// output image
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_k_wos_strides
,
// output image
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
// weight
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
// weight
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
0
>&
,
// bias
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
0
>&
,
// bias
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_c_wis_lengths
,
// input image
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_c_wis_strides
,
// input image
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
=
0
;
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
void
*
p_input
,
const
void
*
p_weight
,
const
void
*
p_output
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
input_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
input_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
weight_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
weight_g_k_c_xs_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
output_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
output_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
CDEElementwiseOperation
&
input_element_op
,
const
BElementwiseOperation
&
weight_element_op
,
const
AElementwiseOperation
&
output_element_op
)
override
final
{
return
MakeArgumentPointer
(
p_output
,
p_weight
,
std
::
array
<
const
void
*
,
0
>
{},
p_input
,
output_g_n_k_wos_lengths
,
output_g_n_k_wos_strides
,
weight_g_k_c_xs_lengths
,
weight_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
0
>
{},
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
0
>
{},
input_g_n_c_wis_lengths
,
input_g_n_c_wis_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
output_element_op
,
weight_element_op
,
input_element_op
);
}
};
}
// namespace device
}
// namespace device
}
// namespace tensor_operation
}
// namespace tensor_operation
}
// namespace ck
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_normalization.hpp
View file @
9608beee
...
@@ -33,6 +33,8 @@ struct DeviceNormalization : public BaseOperator
...
@@ -33,6 +33,8 @@ struct DeviceNormalization : public BaseOperator
const
void
*
p_gamma
,
const
void
*
p_gamma
,
const
void
*
p_beta
,
const
void
*
p_beta
,
void
*
p_y
,
void
*
p_y
,
void
*
p_savedMean
,
void
*
p_savedInvVar
,
AccElementwiseOperation
acc_elementwise_op
)
=
0
;
AccElementwiseOperation
acc_elementwise_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
...
...
include/ck/tensor_operation/gpu/device/device_softmax.hpp
View file @
9608beee
...
@@ -6,6 +6,7 @@
...
@@ -6,6 +6,7 @@
#include <memory>
#include <memory>
#include <vector>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
ck
{
...
...
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_xdl.hpp
View file @
9608beee
...
@@ -150,7 +150,10 @@ template <typename ADataType,
...
@@ -150,7 +150,10 @@ template <typename ADataType,
ck
::
index_t
BBlockTransferDstScalarPerVector_K1
,
ck
::
index_t
BBlockTransferDstScalarPerVector_K1
,
bool
BBlockLdsAddExtraN
,
bool
BBlockLdsAddExtraN
,
ck
::
index_t
CThreadTransferSrcDstVectorDim
,
ck
::
index_t
CThreadTransferSrcDstVectorDim
,
ck
::
index_t
CThreadTransferDstScalarPerVector
>
ck
::
index_t
CThreadTransferDstScalarPerVector
,
ck
::
index_t
NumGemmKPrefetchStage
=
1
,
ck
::
LoopScheduler
LoopSched
=
make_default_loop_scheduler
(),
ck
::
PipelineVersion
PipelineVer
=
ck
::
PipelineVersion
::
v1
>
struct
DeviceBatchedGemmXdl
:
public
DeviceBatchedGemm
<
ALayout
,
struct
DeviceBatchedGemmXdl
:
public
DeviceBatchedGemm
<
ALayout
,
BLayout
,
BLayout
,
CLayout
,
CLayout
,
...
@@ -323,7 +326,10 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
...
@@ -323,7 +326,10 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
BBlockLdsAddExtraN
,
BBlockLdsAddExtraN
,
Sequence
<
2
,
3
,
0
,
1
,
7
,
5
,
4
,
6
>
,
Sequence
<
2
,
3
,
0
,
1
,
7
,
5
,
4
,
6
>
,
CThreadTransferSrcDstVectorDim
,
CThreadTransferSrcDstVectorDim
,
CThreadTransferDstScalarPerVector
>
;
CThreadTransferDstScalarPerVector
,
NumGemmKPrefetchStage
,
LoopSched
,
PipelineVer
>
;
using
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
=
using
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
=
decltype
(
GridwiseGemm
::
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
CGridDesc_M_N
{}));
decltype
(
GridwiseGemm
::
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
CGridDesc_M_N
{}));
...
@@ -622,6 +628,12 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
...
@@ -622,6 +628,12 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
{
{
auto
str
=
std
::
stringstream
();
auto
str
=
std
::
stringstream
();
std
::
map
<
LoopScheduler
,
std
::
string
>
LoopSchedToString
{
{
LoopScheduler
::
Default
,
"Default"
},
{
LoopScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
PipelineVersion
,
std
::
string
>
PipelineVersionToString
{{
PipelineVersion
::
v1
,
"v1"
},
{
PipelineVersion
::
v2
,
"v2"
}};
// clang-format off
// clang-format off
str
<<
"DeviceBatchedGemmXdl"
str
<<
"DeviceBatchedGemmXdl"
<<
"<"
<<
"<"
...
@@ -629,7 +641,13 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
...
@@ -629,7 +641,13 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
<<
MPerBlock
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
K0PerBlock
<<
K0PerBlock
<<
">"
;
<<
">"
<<
" NumGemmKPrefetchStage: "
<<
NumGemmKPrefetchStage
<<
", "
<<
"LoopScheduler: "
<<
LoopSchedToString
[
LoopSched
]
<<
", "
<<
"PipelineVersion: "
<<
PipelineVersionToString
[
PipelineVer
];
// clang-format on
// clang-format on
return
str
.
str
();
return
str
.
str
();
...
...
include/ck/tensor_operation/gpu/device/impl/device_elementwise_normalization_impl.hpp
0 → 100644
View file @
9608beee
This diff is collapsed.
Click to expand it.
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp
View file @
9608beee
...
@@ -141,7 +141,8 @@ template <typename ALayout,
...
@@ -141,7 +141,8 @@ template <typename ALayout,
index_t
CShuffleNXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
LoopScheduler
LoopSched
=
make_default_loop_scheduler
(),
PipelineVersion
PipelineVer
=
PipelineVersion
::
v1
>
struct
DeviceGemmMultipleD_Xdl_CShuffle
:
public
DeviceGemmMultipleD
<
ALayout
,
struct
DeviceGemmMultipleD_Xdl_CShuffle
:
public
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
BLayout
,
DsLayout
,
DsLayout
,
...
@@ -282,7 +283,8 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
...
@@ -282,7 +283,8 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
CShuffleNXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
LoopSched
,
PipelineVer
>
;
// desc for blockwise copy
// desc for blockwise copy
using
AGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
using
AGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
...
@@ -664,6 +666,12 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
...
@@ -664,6 +666,12 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
{
{
auto
str
=
std
::
stringstream
();
auto
str
=
std
::
stringstream
();
std
::
map
<
LoopScheduler
,
std
::
string
>
LoopSchedToString
{
{
LoopScheduler
::
Default
,
"Default"
},
{
LoopScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
PipelineVersion
,
std
::
string
>
PipelineVersionToString
{{
PipelineVersion
::
v1
,
"v1"
},
{
PipelineVersion
::
v2
,
"v2"
}};
// clang-format off
// clang-format off
str
<<
"DeviceGemmMultipleD_Xdl_CShuffle"
str
<<
"DeviceGemmMultipleD_Xdl_CShuffle"
<<
"<"
<<
"<"
...
@@ -674,7 +682,11 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
...
@@ -674,7 +682,11 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
<<
AK1
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
BK1
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
getGemmSpecializationString
(
GemmSpec
)
<<
">"
;
<<
">"
<<
" LoopScheduler: "
<<
LoopSchedToString
[
LoopSched
]
<<
", "
<<
"PipelineVersion: "
<<
PipelineVersionToString
[
PipelineVer
];
// clang-format on
// clang-format on
return
str
.
str
();
return
str
.
str
();
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl.hpp
View file @
9608beee
...
@@ -56,7 +56,9 @@ template <typename ADataType,
...
@@ -56,7 +56,9 @@ template <typename ADataType,
bool
BBlockLdsAddExtraN
,
bool
BBlockLdsAddExtraN
,
ck
::
index_t
CThreadTransferSrcDstVectorDim
,
ck
::
index_t
CThreadTransferSrcDstVectorDim
,
ck
::
index_t
CThreadTransferDstScalarPerVector
,
ck
::
index_t
CThreadTransferDstScalarPerVector
,
ck
::
index_t
NumPrefetch
=
1
>
ck
::
index_t
NumPrefetch
=
1
,
ck
::
LoopScheduler
LoopSched
=
make_default_loop_scheduler
(),
ck
::
PipelineVersion
PipelineVer
=
ck
::
PipelineVersion
::
v1
>
struct
DeviceGemmXdl
:
public
DeviceGemm
<
ALayout
,
struct
DeviceGemmXdl
:
public
DeviceGemm
<
ALayout
,
BLayout
,
BLayout
,
CLayout
,
CLayout
,
...
@@ -230,7 +232,9 @@ struct DeviceGemmXdl : public DeviceGemm<ALayout,
...
@@ -230,7 +232,9 @@ struct DeviceGemmXdl : public DeviceGemm<ALayout,
Sequence
<
0
,
2
,
4
,
5
,
6
,
1
,
3
,
7
>
,
// CThreadTransferSrcDstAccessOrder,
Sequence
<
0
,
2
,
4
,
5
,
6
,
1
,
3
,
7
>
,
// CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim
,
CThreadTransferSrcDstVectorDim
,
CThreadTransferDstScalarPerVector
,
CThreadTransferDstScalarPerVector
,
NumPrefetch
>
;
NumPrefetch
,
LoopSched
,
PipelineVer
>
;
// Argument
// Argument
struct
Argument
:
public
BaseArgument
struct
Argument
:
public
BaseArgument
...
@@ -523,6 +527,12 @@ struct DeviceGemmXdl : public DeviceGemm<ALayout,
...
@@ -523,6 +527,12 @@ struct DeviceGemmXdl : public DeviceGemm<ALayout,
{
{
auto
str
=
std
::
stringstream
();
auto
str
=
std
::
stringstream
();
std
::
map
<
LoopScheduler
,
std
::
string
>
LoopSchedToString
{
{
LoopScheduler
::
Default
,
"Default"
},
{
LoopScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
PipelineVersion
,
std
::
string
>
PipelineVersionToString
{{
PipelineVersion
::
v1
,
"v1"
},
{
PipelineVersion
::
v2
,
"v2"
}};
// clang-format off
// clang-format off
str
<<
"DeviceGemmXdl"
str
<<
"DeviceGemmXdl"
<<
"<"
<<
"<"
...
@@ -535,7 +545,13 @@ struct DeviceGemmXdl : public DeviceGemm<ALayout,
...
@@ -535,7 +545,13 @@ struct DeviceGemmXdl : public DeviceGemm<ALayout,
<<
NPerXDL
<<
", "
<<
NPerXDL
<<
", "
<<
MXdlPerWave
<<
", "
<<
MXdlPerWave
<<
", "
<<
NXdlPerWave
<<
NXdlPerWave
<<
">"
;
<<
">"
<<
" NumPrefetch: "
<<
NumPrefetch
<<
", "
<<
"LoopScheduler: "
<<
LoopSchedToString
[
LoopSched
]
<<
", "
<<
"PipelineVersion: "
<<
PipelineVersionToString
[
PipelineVer
];
// clang-format on
// clang-format on
return
str
.
str
();
return
str
.
str
();
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp
View file @
9608beee
...
@@ -64,7 +64,8 @@ template <typename ALayout,
...
@@ -64,7 +64,8 @@ template <typename ALayout,
index_t
CShuffleNXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
LoopScheduler
LoopSched
=
make_default_loop_scheduler
(),
PipelineVersion
PipelineVer
=
PipelineVersion
::
v1
>
struct
DeviceGemm_Xdl_CShuffle
:
public
DeviceGemm
<
ALayout
,
struct
DeviceGemm_Xdl_CShuffle
:
public
DeviceGemm
<
ALayout
,
BLayout
,
BLayout
,
CLayout
,
CLayout
,
...
@@ -393,7 +394,8 @@ struct DeviceGemm_Xdl_CShuffle : public DeviceGemm<ALayout,
...
@@ -393,7 +394,8 @@ struct DeviceGemm_Xdl_CShuffle : public DeviceGemm<ALayout,
CShuffleNXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
LoopSched
,
PipelineVer
>
;
// Argument
// Argument
struct
Argument
:
public
BaseArgument
struct
Argument
:
public
BaseArgument
...
@@ -656,6 +658,12 @@ struct DeviceGemm_Xdl_CShuffle : public DeviceGemm<ALayout,
...
@@ -656,6 +658,12 @@ struct DeviceGemm_Xdl_CShuffle : public DeviceGemm<ALayout,
{
{
auto
str
=
std
::
stringstream
();
auto
str
=
std
::
stringstream
();
std
::
map
<
LoopScheduler
,
std
::
string
>
LoopSchedToString
{
{
LoopScheduler
::
Default
,
"Default"
},
{
LoopScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
PipelineVersion
,
std
::
string
>
PipelineVersionToString
{{
PipelineVersion
::
v1
,
"v1"
},
{
PipelineVersion
::
v2
,
"v2"
}};
// clang-format off
// clang-format off
str
<<
"DeviceGemm_Xdl_CShuffle"
str
<<
"DeviceGemm_Xdl_CShuffle"
<<
"<"
<<
"<"
...
@@ -665,7 +673,11 @@ struct DeviceGemm_Xdl_CShuffle : public DeviceGemm<ALayout,
...
@@ -665,7 +673,11 @@ struct DeviceGemm_Xdl_CShuffle : public DeviceGemm<ALayout,
<<
KPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
BK1
<<
">"
;
<<
">"
<<
" LoopScheduler: "
<<
LoopSchedToString
[
LoopSched
]
<<
", "
<<
"PipelineVersion: "
<<
PipelineVersionToString
[
PipelineVer
];;
// clang-format on
// clang-format on
return
str
.
str
();
return
str
.
str
();
...
...
include/ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp
View file @
9608beee
...
@@ -10,7 +10,7 @@
...
@@ -10,7 +10,7 @@
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_
layernorm
_welford_variance.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_
normalization
_welford_variance.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_set_buffer_value.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_set_buffer_value.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/kernel_launch.hpp"
...
@@ -24,17 +24,17 @@ template <typename GridwiseReduction,
...
@@ -24,17 +24,17 @@ template <typename GridwiseReduction,
typename
AccDataType
,
typename
AccDataType
,
typename
AccElementwiseOperation
,
typename
AccElementwiseOperation
,
typename
GridDesc_M_K
>
typename
GridDesc_M_K
>
__global__
void
kernel_
layernorm
(
const
GridDesc_M_K
x_grid_desc_m_k
,
__global__
void
kernel_
normalization
(
const
GridDesc_M_K
x_grid_desc_m_k
,
const
GridDesc_M_K
gamma_grid_desc_m_k
,
const
GridDesc_M_K
gamma_grid_desc_m_k
,
const
GridDesc_M_K
beta_grid_desc_m_k
,
const
GridDesc_M_K
beta_grid_desc_m_k
,
const
GridDesc_M_K
y_grid_desc_m_k
,
const
GridDesc_M_K
y_grid_desc_m_k
,
index_t
num_k_block_tile_iteration
,
index_t
num_k_block_tile_iteration
,
AccDataType
epsilon
,
AccDataType
epsilon
,
const
XDataType
*
const
__restrict__
p_x_global
,
const
XDataType
*
const
__restrict__
p_x_global
,
const
GammaDataType
*
const
__restrict__
p_gamma_global
,
const
GammaDataType
*
const
__restrict__
p_gamma_global
,
const
BetaDataType
*
const
__restrict__
p_beta_global
,
const
BetaDataType
*
const
__restrict__
p_beta_global
,
YDataType
*
const
__restrict__
p_y_global
,
YDataType
*
const
__restrict__
p_y_global
,
const
AccElementwiseOperation
acc_elementwise_op
)
const
AccElementwiseOperation
acc_elementwise_op
)
{
{
GridwiseReduction
::
Run
(
x_grid_desc_m_k
,
GridwiseReduction
::
Run
(
x_grid_desc_m_k
,
gamma_grid_desc_m_k
,
gamma_grid_desc_m_k
,
...
@@ -54,7 +54,7 @@ namespace ck {
...
@@ -54,7 +54,7 @@ namespace ck {
namespace
tensor_operation
{
namespace
tensor_operation
{
namespace
device
{
namespace
device
{
// Y =
LayerNorm
(X, Beta, Gamma)
// Y =
Normalization
(X, Beta, Gamma)
template
<
typename
XDataType
,
template
<
typename
XDataType
,
typename
GammaDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
BetaDataType
,
...
@@ -168,49 +168,49 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
...
@@ -168,49 +168,49 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
using
GridDesc_M_K
=
decltype
(
MakeSrc2dDescriptor
({
1
},
{
1
},
1
,
1
));
using
GridDesc_M_K
=
decltype
(
MakeSrc2dDescriptor
({
1
},
{
1
},
1
,
1
));
using
GridwiseReduceLayernormGeneric
=
using
GridwiseReduceLayernormGeneric
=
Gridwise
Layernorm
WelfordVariance_mk_to_mk
<
XDataType
,
Gridwise
Normalization
WelfordVariance_mk_to_mk
<
XDataType
,
GammaDataType
,
GammaDataType
,
BetaDataType
,
BetaDataType
,
YDataType
,
YDataType
,
AccDataType
,
AccDataType
,
AccElementwiseOperation
,
AccElementwiseOperation
,
GridDesc_M_K
,
GridDesc_M_K
,
BlockSize
,
BlockSize
,
MThreadClusterSize
,
MThreadClusterSize
,
KThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
MThreadSliceSize
,
KThreadSliceSize
,
KThreadSliceSize
,
XYSrcVectorDim
,
XYSrcVectorDim
,
XSrcVectorSize
,
XSrcVectorSize
,
GammaSrcVectorDim
,
GammaSrcVectorDim
,
GammaSrcVectorSize
,
GammaSrcVectorSize
,
BetaSrcVectorDim
,
BetaSrcVectorDim
,
BetaSrcVectorSize
,
BetaSrcVectorSize
,
XYSrcVectorDim
,
XYSrcVectorDim
,
YDstVectorSize
,
YDstVectorSize
,
false
>
;
false
>
;
using
Gridwise
ReduceLayernorm
SweepOnce
=
using
Gridwise
Normalization
SweepOnce
=
Gridwise
Layernorm
WelfordVariance_mk_to_mk
<
XDataType
,
Gridwise
Normalization
WelfordVariance_mk_to_mk
<
XDataType
,
GammaDataType
,
GammaDataType
,
BetaDataType
,
BetaDataType
,
YDataType
,
YDataType
,
AccDataType
,
AccDataType
,
AccElementwiseOperation
,
AccElementwiseOperation
,
GridDesc_M_K
,
GridDesc_M_K
,
BlockSize
,
BlockSize
,
MThreadClusterSize
,
MThreadClusterSize
,
KThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
MThreadSliceSize
,
KThreadSliceSize
,
KThreadSliceSize
,
XYSrcVectorDim
,
XYSrcVectorDim
,
XSrcVectorSize
,
XSrcVectorSize
,
GammaSrcVectorDim
,
GammaSrcVectorDim
,
GammaSrcVectorSize
,
GammaSrcVectorSize
,
BetaSrcVectorDim
,
BetaSrcVectorDim
,
BetaSrcVectorSize
,
BetaSrcVectorSize
,
XYSrcVectorDim
,
XYSrcVectorDim
,
YDstVectorSize
,
YDstVectorSize
,
true
>
;
true
>
;
struct
Argument
:
public
BaseArgument
struct
Argument
:
public
BaseArgument
{
{
...
@@ -295,22 +295,22 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
...
@@ -295,22 +295,22 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
{
const
auto
kernel_main
=
arg
.
isSweeponce_
const
auto
kernel_main
=
arg
.
isSweeponce_
?
kernel_
layernorm
<
GridwiseReduceLayernorm
SweepOnce
,
?
kernel_
normalization
<
GridwiseNormalization
SweepOnce
,
XDataType
,
XDataType
,
GammaDataType
,
GammaDataType
,
BetaDataType
,
BetaDataType
,
YDataType
,
YDataType
,
AccDataType
,
AccDataType
,
AccElementwiseOperation
,
AccElementwiseOperation
,
GridDesc_M_K
>
GridDesc_M_K
>
:
kernel_
layernorm
<
GridwiseReduceLayernormGeneric
,
:
kernel_
normalization
<
GridwiseReduceLayernormGeneric
,
XDataType
,
XDataType
,
GammaDataType
,
GammaDataType
,
BetaDataType
,
BetaDataType
,
YDataType
,
YDataType
,
AccDataType
,
AccDataType
,
AccElementwiseOperation
,
AccElementwiseOperation
,
GridDesc_M_K
>
;
GridDesc_M_K
>
;
float
avg_time
=
0
;
float
avg_time
=
0
;
avg_time
+=
launch_and_time_kernel
(
stream_config
,
avg_time
+=
launch_and_time_kernel
(
stream_config
,
...
@@ -426,8 +426,16 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
...
@@ -426,8 +426,16 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
const
void
*
p_gamma
,
const
void
*
p_gamma
,
const
void
*
p_beta
,
const
void
*
p_beta
,
void
*
p_y
,
void
*
p_y
,
void
*
p_saveMean
,
void
*
p_saveInvVar
,
AccElementwiseOperation
acc_elementwise_op
)
override
AccElementwiseOperation
acc_elementwise_op
)
override
{
{
// TODO
// Optional cache of the intermediate results (mean and InvVariance) during the
// forward pass could speedup in the backward
ignore
=
p_saveMean
;
ignore
=
p_saveInvVar
;
return
std
::
make_unique
<
Argument
>
(
lengths
,
return
std
::
make_unique
<
Argument
>
(
lengths
,
xStrides
,
xStrides
,
gammaStrides
,
gammaStrides
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_reduce_multiblock.hpp
View file @
9608beee
...
@@ -226,6 +226,30 @@ struct DeviceReduceMultiBlock
...
@@ -226,6 +226,30 @@ struct DeviceReduceMultiBlock
in_elementwise_op_
{
in_elementwise_op
},
in_elementwise_op_
{
in_elementwise_op
},
acc_elementwise_op_
{
acc_elementwise_op
}
acc_elementwise_op_
{
acc_elementwise_op
}
{
{
if
(
Rank
!=
inLengths
.
size
()
||
Rank
!=
inStrides
.
size
()
||
NumReduceDim
!=
reduceDims
.
size
())
{
throw
std
::
runtime_error
(
"One of inLengths/inStrides/reduceDims has invalid size!"
"
\n
Expected size inLengths: "
+
std
::
to_string
(
Rank
)
+
", inStrides: "
+
std
::
to_string
(
Rank
)
+
", reduceDims: "
+
std
::
to_string
(
NumReduceDim
)
+
"
\n
But have inLengths: "
+
std
::
to_string
(
inLengths
.
size
())
+
", inStrides: "
+
std
::
to_string
(
inStrides
.
size
())
+
", reduceDims: "
+
std
::
to_string
(
reduceDims
.
size
()));
}
for
(
std
::
size_t
i
=
0
;
i
<
reduceDims
.
size
();
++
i
)
{
if
(
reduceDims
[
i
]
<
0
||
reduceDims
[
i
]
>=
Rank
)
{
throw
std
::
runtime_error
(
"Provided reduce dimension exceed input tensor Rank!"
"
\n
Have reduceDims["
+
std
::
to_string
(
i
)
+
"]: "
+
std
::
to_string
(
reduceDims
[
i
]));
}
}
inLengths_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inLengths
,
reduceDims
);
inLengths_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inLengths
,
reduceDims
);
inStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inStrides
,
reduceDims
);
inStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inStrides
,
reduceDims
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_softmax_impl.hpp
View file @
9608beee
...
@@ -40,8 +40,9 @@ struct DeviceSoftmaxImpl : public DeviceSoftmax<InDataType,
...
@@ -40,8 +40,9 @@ struct DeviceSoftmaxImpl : public DeviceSoftmax<InDataType,
AccElementwiseOp
,
AccElementwiseOp
,
Rank
>
Rank
>
{
{
static
constexpr
index_t
kRank
=
Rank
;
static
constexpr
index_t
kRank
=
Rank
;
static
constexpr
index_t
kNumReduceDim
=
NumReduceDim
;
static
constexpr
index_t
kNumReduceDim
=
NumReduceDim
;
static
constexpr
index_t
kNumInvariantDim
=
Rank
-
NumReduceDim
;
virtual
index_t
GetRank
()
const
override
{
return
kRank
;
}
virtual
index_t
GetRank
()
const
override
{
return
kRank
;
}
...
@@ -168,6 +169,30 @@ struct DeviceSoftmaxImpl : public DeviceSoftmax<InDataType,
...
@@ -168,6 +169,30 @@ struct DeviceSoftmaxImpl : public DeviceSoftmax<InDataType,
in_elementwise_op_
{
in_elementwise_op
},
in_elementwise_op_
{
in_elementwise_op
},
acc_elementwise_op_
{
acc_elementwise_op
}
acc_elementwise_op_
{
acc_elementwise_op
}
{
{
if
(
Rank
!=
inLengths
.
size
()
||
Rank
!=
inStrides
.
size
()
||
NumReduceDim
!=
reduceDims
.
size
())
{
throw
std
::
runtime_error
(
"One of inLengths/inStrides/reduceDims has invalid size!"
"
\n
Expected size inLengths: "
+
std
::
to_string
(
Rank
)
+
", inStrides: "
+
std
::
to_string
(
Rank
)
+
", reduceDims: "
+
std
::
to_string
(
NumReduceDim
)
+
"
\n
But have inLengths: "
+
std
::
to_string
(
inLengths
.
size
())
+
", inStrides: "
+
std
::
to_string
(
inStrides
.
size
())
+
", reduceDims: "
+
std
::
to_string
(
reduceDims
.
size
()));
}
for
(
std
::
size_t
i
=
0
;
i
<
reduceDims
.
size
();
++
i
)
{
if
(
reduceDims
[
i
]
<
0
||
reduceDims
[
i
]
>=
Rank
)
{
throw
std
::
runtime_error
(
"Provided reduce dimension exceed input tensor Rank!"
"
\n
Have reduceDims["
+
std
::
to_string
(
i
)
+
"]: "
+
std
::
to_string
(
reduceDims
[
i
]));
}
}
inLengths_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inLengths
,
reduceDims
);
inLengths_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inLengths
,
reduceDims
);
inStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inStrides
,
reduceDims
);
inStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inStrides
,
reduceDims
);
...
@@ -257,40 +282,78 @@ struct DeviceSoftmaxImpl : public DeviceSoftmax<InDataType,
...
@@ -257,40 +282,78 @@ struct DeviceSoftmaxImpl : public DeviceSoftmax<InDataType,
};
};
};
};
bool
IsSupportedArgument
(
const
Base
Argument
*
p_arg
)
override
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
{
const
Argument
*
p_arg_
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
constexpr
(
InSrcVectorDim
==
0
)
if
constexpr
(
InSrcVectorDim
==
0
)
{
{
if
constexpr
(
NumInvariantDim
==
0
)
if
constexpr
(
k
NumInvariantDim
==
0
)
{
{
return
false
;
return
false
;
}
}
else
else
{
{
if
(
p_arg_
->
inStrides_
[
NumInvariantDim
-
1
]
!=
1
)
if
(
arg
.
inStrides_
[
kNumInvariantDim
-
1
]
!=
1
&&
InSrcVectorSize
!=
1
)
{
return
false
;
return
false
;
}
if
(
p_arg_
->
invariant_lowest_length_
%
InSrcVectorSize
!=
0
)
if
(
arg
.
invariant_lowest_length_
%
InSrcVectorSize
!=
0
)
{
return
false
;
return
false
;
};
}
}
}
}
else
else
{
{
if
(
p_arg_
->
inStrides_
[
Rank
-
1
]
!=
1
)
if
(
arg
.
inStrides_
[
Rank
-
1
]
!=
1
&&
InSrcVectorSize
!=
1
)
{
return
false
;
return
false
;
}
if
(
p_arg_
->
inLengths_
[
Rank
-
1
]
%
InSrcVectorSize
!=
0
)
if
(
arg
.
inLengths_
[
Rank
-
1
]
%
InSrcVectorSize
!=
0
)
{
return
false
;
return
false
;
};
}
}
// To improve
if
(
kNumInvariantDim
>
0
&&
arg
.
invariant_lowest_length_
%
OutDstVectorSize
!=
0
)
{
return
false
;
}
if
(
p_arg_
->
invariant_lowest_length_
%
OutDstVectorSize
!=
0
)
if
(
arg
.
inLengths_
[
Rank
-
1
]
%
OutDstVectorSize
!=
0
)
{
return
false
;
return
false
;
}
return
true
;
return
true
;
};
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
std
::
vector
<
index_t
>
inLengths
,
const
std
::
vector
<
index_t
>
inStrides
,
const
std
::
vector
<
int
>
reduceDims
,
const
AccDataType
alpha
,
const
AccDataType
beta
,
const
InDataType
*
in_dev
,
OutDataType
*
out_dev
,
InElementwiseOp
in_elementwise_op
,
AccElementwiseOp
acc_elementwise_op
)
{
return
Argument
{
inLengths
,
inStrides
,
reduceDims
,
alpha
,
beta
,
in_dev
,
out_dev
,
in_elementwise_op
,
acc_elementwise_op
};
};
//
//
// @brief Makes a pointer to Argument class.
// @brief Makes a pointer to Argument class.
//
//
...
@@ -330,6 +393,8 @@ struct DeviceSoftmaxImpl : public DeviceSoftmax<InDataType,
...
@@ -330,6 +393,8 @@ struct DeviceSoftmaxImpl : public DeviceSoftmax<InDataType,
acc_elementwise_op
);
acc_elementwise_op
);
};
};
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
{
return
std
::
make_unique
<
Invoker
>
();
return
std
::
make_unique
<
Invoker
>
();
...
@@ -340,10 +405,13 @@ struct DeviceSoftmaxImpl : public DeviceSoftmax<InDataType,
...
@@ -340,10 +405,13 @@ struct DeviceSoftmaxImpl : public DeviceSoftmax<InDataType,
auto
str
=
std
::
stringstream
();
auto
str
=
std
::
stringstream
();
// clang-format off
// clang-format off
str
<<
"DeviceReduceSoftmax<"
<<
BlockSize
<<
","
;
str
<<
"DeviceReduceSoftmax<"
str
<<
"M_C"
<<
MThreadClusterSize
<<
"_S"
<<
MThreadSliceSize
<<
","
;
<<
Rank
<<
","
<<
NumReduceDim
<<
","
<<
BlockSize
<<
","
str
<<
"K_C"
<<
KThreadClusterSize
<<
"_S"
<<
KThreadSliceSize
<<
","
;
<<
"M_C"
<<
MThreadClusterSize
<<
"_S"
<<
MThreadSliceSize
<<
","
str
<<
"InSrcVectorDim_"
<<
InSrcVectorDim
<<
"_InSrcVectorSize_"
<<
InSrcVectorSize
<<
"_OutDstVectorSize_"
<<
OutDstVectorSize
<<
">"
;
<<
"K_C"
<<
KThreadClusterSize
<<
"_S"
<<
KThreadSliceSize
<<
","
<<
"InSrcVectorDim_"
<<
InSrcVectorDim
<<
"_InSrcVectorSize_"
<<
InSrcVectorSize
<<
"_OutDstVectorSize_"
<<
OutDstVectorSize
<<
">"
;
// clang-format on
// clang-format on
return
str
.
str
();
return
str
.
str
();
...
...
Prev
1
2
3
4
5
6
…
9
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment