Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
95a83c6e
Commit
95a83c6e
authored
Nov 18, 2022
by
Adam Osewski
Browse files
Merge remote-tracking branch 'origin/develop' into wavelet_model
parents
5b7c2432
892a8d76
Changes
618
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
838 additions
and
78 deletions
+838
-78
script/process_perf_data.py
script/process_perf_data.py
+7
-7
test/CMakeLists.txt
test/CMakeLists.txt
+4
-3
test/batched_gemm/CMakeLists.txt
test/batched_gemm/CMakeLists.txt
+11
-0
test/batched_gemm/batched_gemm_bf16.cpp
test/batched_gemm/batched_gemm_bf16.cpp
+44
-0
test/batched_gemm/batched_gemm_fp32.cpp
test/batched_gemm/batched_gemm_fp32.cpp
+44
-0
test/batched_gemm/batched_gemm_int8.cpp
test/batched_gemm/batched_gemm_int8.cpp
+44
-0
test/batched_gemm_masking_scale_softmax_gemm_permute/CMakeLists.txt
...ed_gemm_masking_scale_softmax_gemm_permute/CMakeLists.txt
+0
-5
test/batched_gemm_softmax_gemm/test_batched_gemm_softmax_gemm_fp16.cpp
...gemm_softmax_gemm/test_batched_gemm_softmax_gemm_fp16.cpp
+9
-7
test/batched_gemm_softmax_gemm/test_batched_gemm_softmax_gemm_util.hpp
...gemm_softmax_gemm/test_batched_gemm_softmax_gemm_util.hpp
+11
-9
test/batched_gemm_softmax_gemm_permute/CMakeLists.txt
test/batched_gemm_softmax_gemm_permute/CMakeLists.txt
+8
-0
test/batched_gemm_softmax_gemm_permute/test_batched_gemm_softmax_gemm_permute_bf16.cpp
...m_permute/test_batched_gemm_softmax_gemm_permute_bf16.cpp
+182
-0
test/batched_gemm_softmax_gemm_permute/test_batched_gemm_softmax_gemm_permute_fp16.cpp
...m_permute/test_batched_gemm_softmax_gemm_permute_fp16.cpp
+33
-30
test/batched_gemm_softmax_gemm_permute/test_batched_gemm_softmax_gemm_permute_util.hpp
...m_permute/test_batched_gemm_softmax_gemm_permute_util.hpp
+368
-0
test/convnd_bwd_weight/CMakeLists.txt
test/convnd_bwd_weight/CMakeLists.txt
+0
-2
test/elementwise_normalization/CMakeLists.txt
test/elementwise_normalization/CMakeLists.txt
+7
-0
test/elementwise_normalization/test_elementwise_layernorm_fp16.cpp
...entwise_normalization/test_elementwise_layernorm_fp16.cpp
+47
-0
test/gemm/gemm_standalone_xdl_fp16.cpp
test/gemm/gemm_standalone_xdl_fp16.cpp
+2
-2
test/gemm/gemm_util.hpp
test/gemm/gemm_util.hpp
+10
-9
test/gemm_split_k/gemm_split_k.cpp
test/gemm_split_k/gemm_split_k.cpp
+5
-4
test/grouped_convnd_bwd_weight/CMakeLists.txt
test/grouped_convnd_bwd_weight/CMakeLists.txt
+2
-0
No files found.
script/process_perf_data.py
View file @
95a83c6e
...
...
@@ -81,7 +81,7 @@ def parse_logfile(logfile):
StrideA
=
[]
StrideB
=
[]
StrideC
=
[]
if
'perf_gemm'
in
logfile
:
if
'perf_gemm
.log
'
in
logfile
:
for
line
in
open
(
logfile
):
if
'Best Perf'
in
line
:
lst
=
line
.
split
()
...
...
@@ -120,14 +120,14 @@ def parse_logfile(logfile):
res
=
[
x
for
_
,
x
in
sorted
(
zip
(
tests
,
tflops
))]
#sorted_kernels = [x for _,x in sorted(zip(tests,kernels))]
test_list
=
list
(
range
(
1
,
len
(
tests
)
+
1
))
#parse conv_fwd performance tests:
elif
'conv_fwd'
in
logfile
:
#parse conv_fwd
and conv_bwd
performance tests:
elif
'conv_fwd'
in
logfile
or
'conv_bwd_data'
in
logfile
:
for
line
in
open
(
logfile
):
if
'tflops:'
in
line
:
lst
=
line
.
split
()
res
.
append
(
lst
[
1
])
#parse all other performance tests:
elif
'resnet50'
in
logfile
or
'batched_gemm'
in
logfile
or
'grouped_gemm'
in
logfile
or
'conv_bwd_data'
in
logfile
or
'gemm_bilinear'
in
logfile
or
'reduction'
in
logfile
:
elif
'resnet50'
in
logfile
or
'batched_gemm'
in
logfile
or
'grouped_gemm'
in
logfile
or
'gemm_bilinear'
in
logfile
or
'reduction'
in
logfile
:
for
line
in
open
(
logfile
):
if
'Best Perf'
in
line
:
lst
=
line
.
split
()
...
...
@@ -149,7 +149,7 @@ def store_new_test_result(table_name, test_results, testlist, branch_name, node_
df
=
pd
.
DataFrame
(
data
=
[
params
],
columns
=
[
'Branch_ID'
,
'Node_ID'
,
'GPU_arch'
,
'Compute Units'
,
'ROCM_version'
,
'HIP_version'
,
'Environment'
,
'Datetime'
])
df_add
=
pd
.
DataFrame
(
data
=
[
test_results
],
columns
=
testlist
)
df
=
pd
.
concat
([
df
,
df_add
],
axis
=
1
)
print
(
"new test results dataframe:"
,
df
)
#
print("new test results dataframe:",df)
df
.
to_sql
(
table_name
,
connection
,
if_exists
=
'append'
,
index
=
False
)
return
0
...
...
@@ -165,7 +165,7 @@ def compare_test_to_baseline(baseline,test,testlist):
print
(
"test # "
,
i
,
"shows regression by {:.3f}%"
.
format
(
(
float
(
test
[
i
])
-
base_list
[
i
])
/
base_list
[
i
]
*
100
))
regression
=
1
ave_perf
=
ave_perf
+
float
(
test
[
i
])
/
base_list
[
i
]
if
base_list
[
i
]
>
0
:
ave_perf
=
ave_perf
+
float
(
test
[
i
])
/
base_list
[
i
]
if
regression
==
0
:
print
(
"no regressions found"
)
ave_perf
=
ave_perf
/
len
(
base_list
)
...
...
@@ -248,7 +248,7 @@ def main():
conn
=
sqlEngine
.
connect
()
#save gemm performance tests:
if
'perf_gemm'
in
filename
:
if
'perf_gemm
.log
'
in
filename
:
#write the ck_gemm_test_params table only needed once the test set changes
#post_test_params(test_list,conn)
for
i
in
range
(
1
,
len
(
results
)
+
1
):
...
...
test/CMakeLists.txt
View file @
95a83c6e
...
...
@@ -26,7 +26,7 @@ function(add_gtest_executable TEST_NAME)
# suppress gtest warnings
target_compile_options
(
${
TEST_NAME
}
PRIVATE -Wno-global-constructors -Wno-undef
)
target_link_libraries
(
${
TEST_NAME
}
PRIVATE gtest_main
)
gtest_discover_tests
(
${
TEST_NAME
}
)
add_test
(
NAME
${
TEST_NAME
}
COMMAND $<TARGET_FILE:
${
TEST_NAME
}
>
)
rocm_install
(
TARGETS
${
TEST_NAME
}
COMPONENT tests
)
endfunction
(
add_gtest_executable TEST_NAME
)
...
...
@@ -41,14 +41,15 @@ add_subdirectory(batched_gemm)
add_subdirectory
(
batched_gemm_reduce
)
add_subdirectory
(
batched_gemm_gemm
)
add_subdirectory
(
batched_gemm_softmax_gemm
)
add_subdirectory
(
batched_gemm_
masking_scale_
softmax_gemm_permute
)
add_subdirectory
(
batched_gemm_softmax_gemm_permute
)
add_subdirectory
(
grouped_gemm
)
add_subdirectory
(
reduce
)
add_subdirectory
(
convnd_fwd
)
add_subdirectory
(
convnd_bwd_weight
)
add_subdirectory
(
convnd_bwd_data
)
add_subdirectory
(
grouped_convnd_fwd
)
add_subdirectory
(
grouped_convnd_bwd_weight
)
add_subdirectory
(
block_to_ctile_map
)
add_subdirectory
(
softmax
)
add_subdirectory
(
normalization
)
add_subdirectory
(
data_type
)
add_subdirectory
(
elementwise_normalization
)
test/batched_gemm/CMakeLists.txt
View file @
95a83c6e
...
...
@@ -2,3 +2,14 @@ add_test_executable(test_batched_gemm_fp16 batched_gemm_fp16.cpp)
target_link_libraries
(
test_batched_gemm_fp16 PRIVATE utility
)
target_link_libraries
(
test_batched_gemm_fp16 PRIVATE device_batched_gemm_instance
)
add_test_executable
(
test_batched_gemm_fp32 batched_gemm_fp32.cpp
)
target_link_libraries
(
test_batched_gemm_fp32 PRIVATE utility
)
target_link_libraries
(
test_batched_gemm_fp32 PRIVATE device_batched_gemm_instance
)
add_test_executable
(
test_batched_gemm_bf16 batched_gemm_bf16.cpp
)
target_link_libraries
(
test_batched_gemm_bf16 PRIVATE utility
)
target_link_libraries
(
test_batched_gemm_bf16 PRIVATE device_batched_gemm_instance
)
add_test_executable
(
test_batched_gemm_int8 batched_gemm_int8.cpp
)
target_link_libraries
(
test_batched_gemm_int8 PRIVATE utility
)
target_link_libraries
(
test_batched_gemm_int8 PRIVATE device_batched_gemm_instance
)
test/batched_gemm/batched_gemm_bf16.cpp
0 → 100644
View file @
95a83c6e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "profiler/include/profile_batched_gemm_impl.hpp"
namespace
{
using
ADataType
=
ck
::
bhalf_t
;
using
BDataType
=
ck
::
bhalf_t
;
using
CDataType
=
ck
::
bhalf_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
}
// namespace
int
main
()
{
int
M
=
256
;
int
N
=
256
;
int
K
=
128
;
int
BatchCount
=
3
;
bool
pass
=
true
;
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Row
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Col
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Row
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Col
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
std
::
cout
<<
"test BatchedGEMM bf16: "
<<
(
pass
?
"Pass"
:
"Fail"
)
<<
std
::
endl
;
return
pass
?
0
:
1
;
}
test/batched_gemm/batched_gemm_fp32.cpp
0 → 100644
View file @
95a83c6e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "profiler/include/profile_batched_gemm_impl.hpp"
namespace
{
using
ADataType
=
float
;
using
BDataType
=
float
;
using
CDataType
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
}
// namespace
int
main
()
{
int
M
=
256
;
int
N
=
256
;
int
K
=
128
;
int
BatchCount
=
3
;
bool
pass
=
true
;
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Row
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Col
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Row
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Col
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
std
::
cout
<<
"test BatchedGEMM fp32: "
<<
(
pass
?
"Pass"
:
"Fail"
)
<<
std
::
endl
;
return
pass
?
0
:
1
;
}
test/batched_gemm/batched_gemm_int8.cpp
0 → 100644
View file @
95a83c6e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "profiler/include/profile_batched_gemm_impl.hpp"
namespace
{
using
ADataType
=
int8_t
;
using
BDataType
=
int8_t
;
using
CDataType
=
int8_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
}
// namespace
int
main
()
{
int
M
=
256
;
int
N
=
256
;
int
K
=
128
;
int
BatchCount
=
3
;
bool
pass
=
true
;
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Row
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Col
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Row
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Col
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
std
::
cout
<<
"test BatchedGEMM int8: "
<<
(
pass
?
"Pass"
:
"Fail"
)
<<
std
::
endl
;
return
pass
?
0
:
1
;
}
test/batched_gemm_masking_scale_softmax_gemm_permute/CMakeLists.txt
deleted
100644 → 0
View file @
5b7c2432
add_custom_target
(
test_batched_gemm_masking_scale_softmax_gemm_permute
)
add_gtest_executable
(
test_batched_gemm_masking_scale_softmax_gemm_permute_fp16 test_batched_gemm_masking_scale_softmax_gemm_permute_fp16.cpp
)
target_link_libraries
(
test_batched_gemm_masking_scale_softmax_gemm_permute_fp16 PRIVATE utility device_batched_gemm_masking_scale_softmax_gemm_permute_instance
)
add_dependencies
(
test_batched_gemm_masking_scale_softmax_gemm_permute test_batched_gemm_masking_scale_softmax_gemm_permute_fp16
)
\ No newline at end of file
test/batched_gemm_softmax_gemm/test_batched_gemm_softmax_gemm_fp16.cpp
View file @
95a83c6e
...
...
@@ -9,9 +9,13 @@ class TestBatchedGemmSoftmaxGemmFP16 : public TestBatchedGemmSoftmaxGemm<Tuple>
{
};
using
Masked
=
std
::
true_type
;
using
NoMask
=
std
::
false_type
;
// clang-format off
using
KernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
F16
,
F16
,
F16
,
F16
,
Row
,
Col
,
Row
,
Row
>
std
::
tuple
<
F16
,
F16
,
F16
,
F16
,
Row
,
Col
,
Row
,
Row
,
NoMask
>
,
std
::
tuple
<
F16
,
F16
,
F16
,
F16
,
Row
,
Col
,
Row
,
Row
,
Masked
>
>
;
// clang-format on
...
...
@@ -120,7 +124,6 @@ TYPED_TEST(TestBatchedGemmSoftmaxGemmFP16, DISABLED_Bench_FP16_IrregularK)
using
ck
::
tensor_operation
::
device
::
GemmSpecialization
;
// TODO: enable KPadding tests when it is implemented
TEST
(
TestBatchedGemmSoftmaxGemmInterface
,
GemmSpecializationSizeMatch
)
{
int
P
=
120
;
// requires padding
...
...
@@ -152,12 +155,12 @@ TEST(TestBatchedGemmSoftmaxGemmInterface, GemmSpecializationSizeMismatch)
// IsSupported(M, N, K, O)
// clang-format off
EXPECT_FALSE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
Default
>
{}.
IsSupported
(
128
,
128
,
120
,
128
));
//
EXPECT_FALSE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKPadding>{}.IsSupported(128, 128, 128, 120));
EXPECT_FALSE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MNKPadding
>
{}.
IsSupported
(
128
,
128
,
128
,
120
));
// Kernel can't support odd K size because SrcVectorDim == KDim and must satisfy SizeKRaw % ABSrcScalarPerVector == 0
//
EXPECT_FALSE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKOPadding>{}.IsSupported(128, 128, 129, 128));
//
EXPECT_FALSE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKOPadding>{}.IsSupported(128, 128, 130, 128));
EXPECT_FALSE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MNKOPadding
>
{}.
IsSupported
(
128
,
128
,
129
,
128
));
EXPECT_FALSE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MNKOPadding
>
{}.
IsSupported
(
128
,
128
,
130
,
128
));
// Kernel can't support odd O size because SrcVectorDim == ODim and must satisfy SizeORaw % B1SrcScalarPerVector == 0
//
EXPECT_FALSE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKOPadding>{}.IsSupported(128, 128, 128, 129));
EXPECT_FALSE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MNKOPadding
>
{}.
IsSupported
(
128
,
128
,
128
,
129
));
// clang-format on
}
...
...
@@ -169,6 +172,5 @@ TYPED_TEST(TestBatchedGemmSoftmaxGemmFP16, AdhocTest)
{
1020
,
1020
,
64
,
128
,
24
},
{
576
,
576
,
64
,
64
,
24
},
};
this
->
bench_
=
true
;
this
->
Run
();
}
test/batched_gemm_softmax_gemm/test_batched_gemm_softmax_gemm_util.hpp
View file @
95a83c6e
...
...
@@ -28,6 +28,7 @@ struct TestBatchedGemmSoftmaxGemm : public ::testing::Test
using
B0Layout
=
std
::
tuple_element_t
<
5
,
Tuple
>
;
using
B1Layout
=
std
::
tuple_element_t
<
6
,
Tuple
>
;
using
CLayout
=
std
::
tuple_element_t
<
7
,
Tuple
>
;
using
MaskingType
=
std
::
tuple_element_t
<
8
,
Tuple
>
;
std
::
vector
<
std
::
vector
<
int
>>
lengths_
=
{{
256
,
256
,
64
,
64
,
4
},
{
256
,
256
,
128
,
128
,
4
},
...
...
@@ -54,7 +55,8 @@ struct TestBatchedGemmSoftmaxGemm : public ::testing::Test
ALayout
,
B0Layout
,
B1Layout
,
CLayout
>
(
CLayout
,
MaskingType
::
value
>
(
verify_
,
1
,
false
,
bench_
,
M
,
N
,
K
,
O
,
BatchCount
);
EXPECT_TRUE
(
pass
);
...
...
test/batched_gemm_softmax_gemm_permute/CMakeLists.txt
0 → 100644
View file @
95a83c6e
add_custom_target
(
test_batched_gemm_softmax_gemm_permute
)
add_gtest_executable
(
test_batched_gemm_softmax_gemm_permute_fp16 test_batched_gemm_softmax_gemm_permute_fp16.cpp
)
add_gtest_executable
(
test_batched_gemm_softmax_gemm_permute_bf16 test_batched_gemm_softmax_gemm_permute_bf16.cpp
)
target_link_libraries
(
test_batched_gemm_softmax_gemm_permute_fp16 PRIVATE utility device_batched_gemm_softmax_gemm_permute_instance
)
target_link_libraries
(
test_batched_gemm_softmax_gemm_permute_bf16 PRIVATE utility device_batched_gemm_softmax_gemm_permute_instance
)
add_dependencies
(
test_batched_gemm_softmax_gemm_permute test_batched_gemm_softmax_gemm_permute_fp16
)
add_dependencies
(
test_batched_gemm_softmax_gemm_permute test_batched_gemm_softmax_gemm_permute_bf16
)
\ No newline at end of file
test/batched_gemm_softmax_gemm_permute/test_batched_gemm_softmax_gemm_permute_bf16.cpp
0 → 100644
View file @
95a83c6e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "test_batched_gemm_softmax_gemm_permute_util.hpp"
template
<
typename
Tuple
>
class
TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16
:
public
TestBatchedGemmMaskingScaleSoftmaxGemmPermute
<
Tuple
>
{
};
using
I1_t
=
ck
::
Number
<
1
>
;
using
I2_t
=
ck
::
Number
<
2
>
;
using
MaskDisabled_t
=
ck
::
integral_constant
<
MaskingSpecialization
,
MaskingSpecialization
::
MaskDisabled
>
;
using
MaskOutUpperTriangle_t
=
ck
::
integral_constant
<
MaskingSpecialization
,
MaskingSpecialization
::
MaskOutUpperTriangle
>
;
// clang-format off
using
KernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
I2_t
,
I1_t
,
I1_t
,
I1_t
,
I1_t
,
BF16
,
BF16
,
BF16
,
BF16
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
MaskDisabled_t
>
,
std
::
tuple
<
I2_t
,
I1_t
,
I1_t
,
I1_t
,
I1_t
,
BF16
,
BF16
,
BF16
,
BF16
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
MaskOutUpperTriangle_t
>
>
;
// clang-format on
TYPED_TEST_SUITE
(
TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16
,
KernelTypes
);
TYPED_TEST
(
TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16
,
Test_BF16
)
{
this
->
Run
();
}
TYPED_TEST
(
TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16
,
Test_BF16_PadM
)
{
this
->
lengths_
=
std
::
vector
<
std
::
vector
<
int
>>
{
{
136
,
128
,
32
,
128
,
2
,
3
},
};
this
->
Run
();
}
TYPED_TEST
(
TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16
,
Test_BF16_PadN
)
{
this
->
lengths_
=
std
::
vector
<
std
::
vector
<
int
>>
{
{
128
,
136
,
32
,
128
,
3
,
2
},
};
this
->
Run
();
}
TYPED_TEST
(
TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16
,
Test_BF16_PadK
)
{
this
->
lengths_
=
std
::
vector
<
std
::
vector
<
int
>>
{
{
128
,
128
,
40
,
128
,
2
,
4
},
{
128
,
128
,
136
,
128
,
4
,
2
},
};
this
->
Run
();
}
TYPED_TEST
(
TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16
,
Test_BF16_PadO
)
{
this
->
lengths_
=
std
::
vector
<
std
::
vector
<
int
>>
{
{
128
,
128
,
32
,
136
,
1
,
3
},
};
this
->
Run
();
}
TYPED_TEST
(
TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16
,
Test_BF16_OddM
)
{
this
->
lengths_
=
std
::
vector
<
std
::
vector
<
int
>>
{
{
129
,
128
,
32
,
128
,
2
,
3
},
};
this
->
Run
();
}
TYPED_TEST
(
TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16
,
Test_BF16_OddN
)
{
this
->
lengths_
=
std
::
vector
<
std
::
vector
<
int
>>
{
{
128
,
129
,
32
,
128
,
4
,
3
},
};
this
->
Run
();
}
TYPED_TEST
(
TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16
,
Test_BF16_OddK
)
{
this
->
lengths_
=
std
::
vector
<
std
::
vector
<
int
>>
{
{
128
,
128
,
33
,
128
,
2
,
3
},
{
128
,
128
,
129
,
128
,
2
,
3
},
};
this
->
Run
();
}
// If kernel B1Layout is RowMajor, expect not to support odd O size
TYPED_TEST
(
TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16
,
Test_BF16_OddO
)
{
this
->
lengths_
=
std
::
vector
<
std
::
vector
<
int
>>
{
{
128
,
128
,
32
,
129
,
2
,
3
},
};
this
->
Run
();
}
TYPED_TEST
(
TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16
,
DISABLED_Bench_BF16_IrregularK
)
{
this
->
lengths_
=
std
::
vector
<
std
::
vector
<
int
>>
{{
256
,
256
,
160
,
160
,
1
,
16
},
{
256
,
64
,
160
,
64
,
1
,
16
},
{
1024
,
1024
,
80
,
80
,
1
,
16
},
{
1024
,
64
,
80
,
64
,
1
,
16
},
{
4096
,
4096
,
40
,
40
,
1
,
16
},
{
4096
,
64
,
40
,
64
,
1
,
16
}};
this
->
bench_
=
true
;
this
->
verify_
=
false
;
this
->
Run
();
}
TYPED_TEST
(
TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16
,
DISABLED_Bench_BF16
)
{
this
->
lengths_
=
std
::
vector
<
std
::
vector
<
int
>>
{
{
256
,
256
,
64
,
64
,
48
,
16
},
{
256
,
256
,
128
,
128
,
48
,
16
},
{
512
,
512
,
64
,
64
,
48
,
16
},
{
512
,
512
,
128
,
128
,
48
,
16
},
{
1024
,
1024
,
64
,
64
,
48
,
16
},
{
1024
,
1024
,
128
,
128
,
48
,
16
},
{
2048
,
2048
,
64
,
64
,
48
,
16
},
{
2048
,
2048
,
128
,
128
,
48
,
16
},
{
4096
,
4096
,
64
,
64
,
48
,
16
},
{
4096
,
4096
,
128
,
128
,
48
,
16
},
};
this
->
bench_
=
true
;
this
->
verify_
=
false
;
this
->
Run
();
}
using
ck
::
tensor_operation
::
device
::
GemmSpecialization
;
TEST
(
TestBatchedGemmMaskingScaleSoftmaxGemmPermuteInterface
,
GemmSpecializationSizeMatch
)
{
int
P
=
120
;
// requires padding
int
Q
=
128
;
// do not require padding
// IsSupported(M, N, K, O)
// clang-format off
EXPECT_TRUE
(
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
<
GemmSpecialization
::
Default
>
{}.
IsSupported
(
Q
,
Q
,
Q
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
<
GemmSpecialization
::
MPadding
>
{}.
IsSupported
(
P
,
Q
,
Q
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
<
GemmSpecialization
::
NPadding
>
{}.
IsSupported
(
Q
,
P
,
Q
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
<
GemmSpecialization
::
KPadding
>
{}.
IsSupported
(
Q
,
Q
,
P
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
<
GemmSpecialization
::
MNPadding
>
{}.
IsSupported
(
P
,
P
,
Q
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
<
GemmSpecialization
::
MKPadding
>
{}.
IsSupported
(
P
,
Q
,
P
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
<
GemmSpecialization
::
NKPadding
>
{}.
IsSupported
(
Q
,
P
,
P
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
<
GemmSpecialization
::
MNKPadding
>
{}.
IsSupported
(
P
,
P
,
P
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
<
GemmSpecialization
::
OPadding
>
{}.
IsSupported
(
Q
,
Q
,
Q
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
<
GemmSpecialization
::
MOPadding
>
{}.
IsSupported
(
P
,
Q
,
Q
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
<
GemmSpecialization
::
NOPadding
>
{}.
IsSupported
(
Q
,
P
,
Q
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
<
GemmSpecialization
::
KOPadding
>
{}.
IsSupported
(
Q
,
Q
,
P
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
<
GemmSpecialization
::
MNOPadding
>
{}.
IsSupported
(
P
,
P
,
Q
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
<
GemmSpecialization
::
MKOPadding
>
{}.
IsSupported
(
P
,
Q
,
P
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
<
GemmSpecialization
::
NKOPadding
>
{}.
IsSupported
(
Q
,
P
,
P
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
<
GemmSpecialization
::
MNKOPadding
>
{}.
IsSupported
(
P
,
P
,
P
,
P
));
// clang-format on
}
TEST
(
TestBatchedGemmMaskingScaleSoftmaxGemmPermuteInterface
,
GemmSpecializationSizeMismatch
)
{
// IsSupported(M, N, K, O)
// clang-format off
EXPECT_FALSE
(
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
<
GemmSpecialization
::
Default
>
{}.
IsSupported
(
128
,
128
,
120
,
128
));
EXPECT_FALSE
(
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
<
GemmSpecialization
::
MNKPadding
>
{}.
IsSupported
(
128
,
128
,
128
,
120
));
// Kernel can't support odd K size because SrcVectorDim == KDim and must satisfy SizeKRaw % ABSrcScalarPerVector == 0
EXPECT_FALSE
(
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
<
GemmSpecialization
::
MNKOPadding
>
{}.
IsSupported
(
128
,
128
,
129
,
128
));
EXPECT_FALSE
(
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
<
GemmSpecialization
::
MNKOPadding
>
{}.
IsSupported
(
128
,
128
,
130
,
128
));
// Kernel can't support odd O size because SrcVectorDim == ODim and must satisfy SizeORaw % B1SrcScalarPerVector == 0
EXPECT_FALSE
(
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
<
GemmSpecialization
::
MNKOPadding
>
{}.
IsSupported
(
128
,
128
,
128
,
129
));
// clang-format on
}
TYPED_TEST
(
TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16
,
AdhocTest
)
{
this
->
lengths_
=
std
::
vector
<
std
::
vector
<
int
>>
{
{
49
,
49
,
64
,
64
,
4
,
6
},
{
64
,
49
,
64
,
64
,
4
,
6
},
{
1020
,
1020
,
64
,
128
,
4
,
6
},
{
576
,
576
,
64
,
64
,
4
,
6
},
};
this
->
Run
();
}
test/batched_gemm_
masking_scale_
softmax_gemm_permute/test_batched_gemm_
masking_scale_
softmax_gemm_permute_fp16.cpp
→
test/batched_gemm_softmax_gemm_permute/test_batched_gemm_softmax_gemm_permute_fp16.cpp
View file @
95a83c6e
...
...
@@ -2,7 +2,7 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "test_batched_gemm_
masking_scale_
softmax_gemm_permute_util.hpp"
#include "test_batched_gemm_softmax_gemm_permute_util.hpp"
template
<
typename
Tuple
>
class
TestBatchedGemmMaskingScaleSoftmaxGemmPermuteFP16
...
...
@@ -10,13 +10,18 @@ class TestBatchedGemmMaskingScaleSoftmaxGemmPermuteFP16
{
};
using
I1_t
=
ck
::
Number
<
1
>
;
using
I2_t
=
ck
::
Number
<
2
>
;
using
MaskDisabled_t
=
ck
::
integral_constant
<
MaskingSpecialization
,
MaskingSpecialization
::
MaskDisabled
>
;
using
MaskOutUpperTriangle_t
=
ck
::
integral_constant
<
MaskingSpecialization
,
MaskingSpecialization
::
MaskOutUpperTriangle
>
;
// clang-format off
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
CPermuteNumDims_G_M_O
=
S
<
2
,
1
,
1
>
;
// "using CLayout = Row" has been replaced by CPermuteNumDims_G_M_O
using
KernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
F16
,
F16
,
F16
,
F16
,
Row
,
Col
,
Row
,
CPermuteNumDims_G_M_O
>
std
::
tuple
<
I2_t
,
I1_t
,
I1_t
,
I1_t
,
I1_t
,
F16
,
F16
,
F16
,
F16
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
MaskDisabled_t
>
,
std
::
tuple
<
I2_t
,
I1_t
,
I1_t
,
I1_t
,
I1_t
,
F16
,
F16
,
F16
,
F16
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
MaskOutUpperTriangle_t
>
>
;
// clang-format on
...
...
@@ -91,7 +96,7 @@ TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteFP16, Test_FP16_OddO)
this
->
Run
();
}
TYPED_TEST
(
TestBatchedGemmMaskingScaleSoftmaxGemmPermuteFP16
,
Bench_FP16_IrregularK
)
TYPED_TEST
(
TestBatchedGemmMaskingScaleSoftmaxGemmPermuteFP16
,
DISABLED_
Bench_FP16_IrregularK
)
{
this
->
lengths_
=
std
::
vector
<
std
::
vector
<
int
>>
{{
256
,
256
,
160
,
160
,
1
,
16
},
{
256
,
64
,
160
,
64
,
1
,
16
},
...
...
@@ -125,7 +130,6 @@ TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteFP16, DISABLED_Bench_FP1
using
ck
::
tensor_operation
::
device
::
GemmSpecialization
;
// TODO: enable KPadding tests when it is implemented
TEST
(
TestBatchedGemmMaskingScaleSoftmaxGemmPermuteInterface
,
GemmSpecializationSizeMatch
)
{
int
P
=
120
;
// requires padding
...
...
@@ -133,22 +137,22 @@ TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteInterface, GemmSpecializationS
// IsSupported(M, N, K, O)
// clang-format off
EXPECT_TRUE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
Default
>
{}.
IsSupported
(
Q
,
Q
,
Q
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MPadding
>
{}.
IsSupported
(
P
,
Q
,
Q
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
NPadding
>
{}.
IsSupported
(
Q
,
P
,
Q
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
KPadding
>
{}.
IsSupported
(
Q
,
Q
,
P
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MNPadding
>
{}.
IsSupported
(
P
,
P
,
Q
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MKPadding
>
{}.
IsSupported
(
P
,
Q
,
P
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
NKPadding
>
{}.
IsSupported
(
Q
,
P
,
P
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MNKPadding
>
{}.
IsSupported
(
P
,
P
,
P
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
OPadding
>
{}.
IsSupported
(
Q
,
Q
,
Q
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MOPadding
>
{}.
IsSupported
(
P
,
Q
,
Q
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
NOPadding
>
{}.
IsSupported
(
Q
,
P
,
Q
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
KOPadding
>
{}.
IsSupported
(
Q
,
Q
,
P
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MNOPadding
>
{}.
IsSupported
(
P
,
P
,
Q
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MKOPadding
>
{}.
IsSupported
(
P
,
Q
,
P
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
NKOPadding
>
{}.
IsSupported
(
Q
,
P
,
P
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MNKOPadding
>
{}.
IsSupported
(
P
,
P
,
P
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
Default
>
{}.
IsSupported
(
Q
,
Q
,
Q
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MPadding
>
{}.
IsSupported
(
P
,
Q
,
Q
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
NPadding
>
{}.
IsSupported
(
Q
,
P
,
Q
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
KPadding
>
{}.
IsSupported
(
Q
,
Q
,
P
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MNPadding
>
{}.
IsSupported
(
P
,
P
,
Q
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MKPadding
>
{}.
IsSupported
(
P
,
Q
,
P
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
NKPadding
>
{}.
IsSupported
(
Q
,
P
,
P
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MNKPadding
>
{}.
IsSupported
(
P
,
P
,
P
,
Q
));
EXPECT_TRUE
(
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
OPadding
>
{}.
IsSupported
(
Q
,
Q
,
Q
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MOPadding
>
{}.
IsSupported
(
P
,
Q
,
Q
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
NOPadding
>
{}.
IsSupported
(
Q
,
P
,
Q
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
KOPadding
>
{}.
IsSupported
(
Q
,
Q
,
P
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MNOPadding
>
{}.
IsSupported
(
P
,
P
,
Q
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MKOPadding
>
{}.
IsSupported
(
P
,
Q
,
P
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
NKOPadding
>
{}.
IsSupported
(
Q
,
P
,
P
,
P
));
EXPECT_TRUE
(
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MNKOPadding
>
{}.
IsSupported
(
P
,
P
,
P
,
P
));
// clang-format on
}
...
...
@@ -156,13 +160,13 @@ TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteInterface, GemmSpecializationS
{
// IsSupported(M, N, K, O)
// clang-format off
EXPECT_FALSE
(
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
Default
>
{}.
IsSupported
(
128
,
128
,
120
,
128
));
//
EXPECT_FALSE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKPadding>{}.IsSupported(128, 128, 128, 120));
EXPECT_FALSE
(
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
Default
>
{}.
IsSupported
(
128
,
128
,
120
,
128
));
EXPECT_FALSE
(
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MNKPadding
>
{}.
IsSupported
(
128
,
128
,
128
,
120
));
// Kernel can't support odd K size because SrcVectorDim == KDim and must satisfy SizeKRaw % ABSrcScalarPerVector == 0
//
EXPECT_FALSE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKOPadding>{}.IsSupported(128, 128, 129, 128));
//
EXPECT_FALSE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKOPadding>{}.IsSupported(128, 128, 130, 128));
EXPECT_FALSE
(
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MNKOPadding
>
{}.
IsSupported
(
128
,
128
,
129
,
128
));
EXPECT_FALSE
(
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MNKOPadding
>
{}.
IsSupported
(
128
,
128
,
130
,
128
));
// Kernel can't support odd O size because SrcVectorDim == ODim and must satisfy SizeORaw % B1SrcScalarPerVector == 0
//
EXPECT_FALSE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKOPadding>{}.IsSupported(128, 128, 128, 129));
EXPECT_FALSE
(
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
<
GemmSpecialization
::
MNKOPadding
>
{}.
IsSupported
(
128
,
128
,
128
,
129
));
// clang-format on
}
...
...
@@ -174,6 +178,5 @@ TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteFP16, AdhocTest)
{
1020
,
1020
,
64
,
128
,
4
,
6
},
{
576
,
576
,
64
,
64
,
4
,
6
},
};
this
->
bench_
=
true
;
this
->
Run
();
}
test/batched_gemm_
masking_scale_
softmax_gemm_permute/test_batched_gemm_
masking_scale_
softmax_gemm_permute_util.hpp
→
test/batched_gemm_softmax_gemm_permute/test_batched_gemm_softmax_gemm_permute_util.hpp
View file @
95a83c6e
...
...
@@ -4,15 +4,20 @@
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "profiler/include/profile_batched_gemm_masking_scale_softmax_gemm_permute_impl.hpp"
#include "profiler/include/profile_batched_gemm_softmax_gemm_permute_impl.hpp"
using
ck
::
tensor_operation
::
device
::
GemmSpecialization
;
using
ck
::
tensor_operation
::
device
::
MaskingSpecialization
;
using
ck
::
tensor_operation
::
device
::
TensorSpecialization
;
template
<
ck
::
index_t
N
>
using
I
=
ck
::
Number
<
N
>
;
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
...
...
@@ -20,14 +25,18 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
template
<
typename
Tuple
>
struct
TestBatchedGemmMaskingScaleSoftmaxGemmPermute
:
public
::
testing
::
Test
{
using
ADataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
B0DataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
B1DataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
CDataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
ALayout
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
B0Layout
=
std
::
tuple_element_t
<
5
,
Tuple
>
;
using
B1Layout
=
std
::
tuple_element_t
<
6
,
Tuple
>
;
using
CPermuteNumDims_G_M_O
=
std
::
tuple_element_t
<
7
,
Tuple
>
;
using
NumDimGType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
NumDimMType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
NumDimNType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
NumDimKType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
NumDimOType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
ADataType
=
std
::
tuple_element_t
<
5
,
Tuple
>
;
using
B0DataType
=
std
::
tuple_element_t
<
6
,
Tuple
>
;
using
B1DataType
=
std
::
tuple_element_t
<
7
,
Tuple
>
;
using
CDataType
=
std
::
tuple_element_t
<
8
,
Tuple
>
;
using
Acc0BiasDataType
=
std
::
tuple_element_t
<
9
,
Tuple
>
;
using
Acc1BiasDataType
=
std
::
tuple_element_t
<
10
,
Tuple
>
;
using
MaskingType
=
std
::
tuple_element_t
<
11
,
Tuple
>
;
std
::
vector
<
std
::
vector
<
int
>>
lengths_
=
{
{
256
,
256
,
64
,
64
,
6
,
4
},
...
...
@@ -42,15 +51,20 @@ struct TestBatchedGemmMaskingScaleSoftmaxGemmPermute : public ::testing::Test
void
RunSingle
(
int
M
,
int
N
,
int
K
,
int
O
,
int
G0
,
int
G1
)
{
bool
pass
=
ck
::
profiler
::
profile_batched_gemm_masking_scale_softmax_gemm_permute_impl
<
bool
pass
=
ck
::
profiler
::
profile_batched_gemm_softmax_gemm_permute_impl
<
NumDimGType
::
value
,
NumDimMType
::
value
,
NumDimNType
::
value
,
NumDimKType
::
value
,
NumDimOType
::
value
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
ALayout
,
B0Layout
,
B1Layout
,
CPermuteNumDims_G_M_O
>
(
verify_
,
1
,
false
,
bench_
,
M
,
N
,
K
,
O
,
G0
,
G1
);
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
MaskingType
::
value
>
(
verify_
,
2
,
false
,
bench_
,
M
,
N
,
K
,
O
,
G0
,
G1
);
EXPECT_TRUE
(
pass
);
}
...
...
@@ -72,19 +86,13 @@ struct TestBatchedGemmMaskingScaleSoftmaxGemmPermute : public ::testing::Test
};
template
<
GemmSpecialization
GemmSpec
>
struct
DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
struct
DeviceInstanceWrapper_
G2M1N1K1O1_
TNTT_FP16_M128_N128_K32_O128
{
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
ALayout
=
Row
;
using
B0Layout
=
Col
;
using
B1Layout
=
Row
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
CPermuteNumDims_G_M_O
=
S
<
2
,
1
,
1
>
;
// "using CLayout = Row" has been replaced by CPermuteNumDims_G_M_O
using
ADataType
=
F16
;
using
B0DataType
=
F16
;
...
...
@@ -103,14 +111,17 @@ struct DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
using
DeviceGemmGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
ALayout
,
B0Layout
,
B1Layout
,
CPermuteNumDims_G_M_O
,
2
,
1
,
1
,
1
,
1
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
...
...
@@ -119,6 +130,10 @@ struct DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecialization
::
Default
,
// ATensorSpec
TensorSpecialization
::
Default
,
// B0TensorSpec
TensorSpecialization
::
Default
,
// B1TensorSpec
TensorSpecialization
::
Default
,
// CTensorSpec
1
,
256
,
128
,
// MPerBlock
...
...
@@ -159,29 +174,189 @@ struct DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
2
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
,
// CShuffleBlockTransferScalarPerVector_NPerBlock
true
>
;
// Masking
MaskingSpecialization
::
MaskOutUpperTriangle
>
;
// MaskOutUpperTriangle
bool
IsSupported
(
int
M
,
int
N
,
int
K
,
int
O
)
{
const
int
G0
=
1
,
G1
=
1
;
// A layout [G0, M, G1, K]
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
G1
,
M
,
K
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
{
M
*
G1
*
K
,
K
,
G1
*
K
,
1
};
// B0 layout [G0, N, G1, K]
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_lengths
{
G0
,
G1
,
N
,
K
};
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_strides
{
N
*
G1
*
K
,
K
,
G1
*
K
,
1
};
// B1 layout [G0, N, G1, O]
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_lengths
{
G0
,
G1
,
O
,
N
};
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_strides
{
N
*
G1
*
O
,
O
,
1
,
G1
*
O
};
// C layout [G0, M, G1, O]
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_lengths
{
G0
,
G1
,
M
,
O
};
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_strides
{
M
*
G1
*
O
,
O
,
G1
*
O
,
1
};
auto
gemm
=
DeviceGemmGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
nullptr
),
static_cast
<
B0DataType
*>
(
nullptr
),
static_cast
<
B1DataType
*>
(
nullptr
),
static_cast
<
CDataType
*>
(
nullptr
),
{},
// p_acc0_biases
{},
// p_acc1_biases
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
,
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
,
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
,
{},
// acc0_biases_gs_ms_ns_lengths
{},
// acc0_biases_gs_ms_ns_strides
{},
// acc1_biases_gs_ms_os_lengths
{},
// acc1_biases_gs_ms_os_strides
PassThrough
{},
// a_element_op
PassThrough
{},
// b0_element_op
Scale
{
1.
f
},
// acc0_element_op
PassThrough
{},
// b1_element_op
PassThrough
{});
// c_element_op
return
gemm
.
IsSupportedArgument
(
argument
);
}
};
template
<
GemmSpecialization
GemmSpec
>
struct
DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
{
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
ADataType
=
BF16
;
using
B0DataType
=
BF16
;
using
B1DataType
=
BF16
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
BF16
;
using
CDataType
=
BF16
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
Scale
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
// static constexpr auto GemmSpec = std::tuple_element_t<0, Tuple>::value;
using
DeviceGemmGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
2
,
1
,
1
,
1
,
1
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecialization
::
Default
,
// ATensorSpec
TensorSpecialization
::
Default
,
// B0TensorSpec
TensorSpecialization
::
Default
,
// B1TensorSpec
TensorSpecialization
::
Default
,
// CTensorSpec
1
,
256
,
128
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
128
,
// Gemm1NPerBlock
32
,
// Gemm1KPerBlock
8
,
// AK1
8
,
// BK1
2
,
// B1K1
32
,
// MPerXDL
32
,
// NPerXDL
1
,
// MXdlPerWave
4
,
// NXdlPerWave
4
,
// Gemm1NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
// BBlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
// B1BlockTransfer
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
// CShuffleMXdlPerWavePerShuffle
2
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
,
// CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpecialization
::
MaskOutUpperTriangle
>
;
// MaskOutUpperTriangle
bool
IsSupported
(
int
M
,
int
N
,
int
K
,
int
O
)
{
const
int
G0
=
1
,
G1
=
1
;
// A layout [G0, M, G1, K]
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
G1
,
M
,
K
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
{
M
*
G1
*
K
,
K
,
G1
*
K
,
1
};
// B0 layout [G0, N, G1, K]
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_lengths
{
G0
,
G1
,
N
,
K
};
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_strides
{
N
*
G1
*
K
,
K
,
G1
*
K
,
1
};
// B1 layout [G0, N, G1, O]
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_lengths
{
G0
,
G1
,
O
,
N
};
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_strides
{
N
*
G1
*
O
,
O
,
1
,
G1
*
O
};
// C layout [G0, M, G1, O]
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_lengths
{
G0
,
G1
,
M
,
O
};
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_strides
{
M
*
G1
*
O
,
O
,
G1
*
O
,
1
};
auto
gemm
=
DeviceGemmGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
nullptr
),
static_cast
<
B0DataType
*>
(
nullptr
),
static_cast
<
B1DataType
*>
(
nullptr
),
static_cast
<
CDataType
*>
(
nullptr
),
M
,
N
,
K
,
O
,
0
,
// BatchCount
{
0
,
0
,
M
,
O
},
// gs ms ns lengths
{
0
,
O
,
0
,
1
},
// gs ms ns strides
0
,
// StrideA
0
,
// StrideB0
0
,
// StrideB1
0
,
// BatchStrideA
0
,
// BatchStrideB0
0
,
// BatchStrideB1
{},
// p_acc0_biases
{},
// p_acc1_biases
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
,
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
,
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
,
{},
// acc0_biases_gs_ms_ns_lengths
{},
// acc0_biases_gs_ms_ns_strides
{},
// acc1_biases_gs_ms_os_lengths
{},
// acc1_biases_gs_ms_os_strides
PassThrough
{},
// a_element_op
PassThrough
{},
// b0_element_op
Scale
{
1.
f
},
// acc0_element_op
...
...
test/convnd_bwd_weight/CMakeLists.txt
deleted
100644 → 0
View file @
5b7c2432
add_gtest_executable
(
test_convnd_bwd_weight convnd_bwd_weight.cpp
)
target_link_libraries
(
test_convnd_bwd_weight PRIVATE utility device_conv1d_bwd_weight_instance device_conv2d_bwd_weight_instance device_conv3d_bwd_weight_instance
)
test/elementwise_normalization/CMakeLists.txt
0 → 100644
View file @
95a83c6e
add_custom_target
(
test_elementwise_normalization
)
add_gtest_executable
(
test_elementwise_layernorm_fp16 test_elementwise_layernorm_fp16.cpp
)
target_link_libraries
(
test_elementwise_layernorm_fp16 PRIVATE utility device_elementwise_normalization_instance
)
add_dependencies
(
test_elementwise_normalization test_elementwise_layernorm_fp16
)
test/elementwise_normalization/test_elementwise_layernorm_fp16.cpp
0 → 100644
View file @
95a83c6e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/include/profile_elementwise_layernorm_impl.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ck
::
index_t
;
template
<
typename
Tuple
>
class
TestElementwiseLayernorm
:
public
::
testing
::
Test
{
protected:
using
ADataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
BDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
GammaDataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
BetaDataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
AccDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
YDataType
=
std
::
tuple_element_t
<
5
,
Tuple
>
;
void
Run
()
{
// M, N
std
::
vector
<
std
::
vector
<
ck
::
index_t
>>
lengths
=
{
{
1
,
1
},
{
25
,
16
},
{
39
,
777
},
{
100
,
200
},
{
1024
,
1024
},
{
48
*
256
,
2048
}};
for
(
auto
length
:
lengths
)
{
bool
success
=
ck
::
profiler
::
profile_elementwise_layernorm_impl
<
ADataType
,
BDataType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
YDataType
>
(
true
,
2
,
false
,
false
,
length
);
EXPECT_TRUE
(
success
);
}
}
};
using
KernelTypes
=
::
testing
::
Types
<
// ADataType, BDataType, GammaDataType, BetaDataType, AccDataType, YDataType>
std
::
tuple
<
F16
,
F16
,
F16
,
F16
,
F32
,
F16
>>
;
TYPED_TEST_SUITE
(
TestElementwiseLayernorm
,
KernelTypes
);
TYPED_TEST
(
TestElementwiseLayernorm
,
Test_FP16
)
{
this
->
Run
();
}
test/gemm/gemm_standalone_xdl_fp16.cpp
View file @
95a83c6e
...
...
@@ -70,7 +70,7 @@ int main(int argc, char* argv[])
{
GemmParams
{
2048
,
1664
,
4096
},
LayoutConfig
{
false
,
true
,
true
},
add_gemm_f16_nt_256x128
},
{
GemmParams
{
1024
,
1664
,
4096
},
LayoutConfig
{
false
,
true
,
true
},
add_gemm_f16_nt_128x128
},
{
GemmParams
{
1024
,
832
,
4096
},
LayoutConfig
{
false
,
true
,
true
},
add_gemm_f16_nt_128x64
},
{
GemmParams
{
2048
,
3328
,
4096
},
LayoutConfig
{
true
,
false
,
true
},
add_gemm_f16_tn_256x
128
},
{
GemmParams
{
2048
,
3328
,
4096
},
LayoutConfig
{
true
,
false
,
true
},
add_gemm_f16_tn_256x
256
},
{
GemmParams
{
2048
,
1664
,
4096
},
LayoutConfig
{
true
,
false
,
true
},
add_gemm_f16_tn_256x128
},
{
GemmParams
{
1024
,
1664
,
4096
},
LayoutConfig
{
true
,
false
,
true
},
add_gemm_f16_tn_128x128
},
{
GemmParams
{
1024
,
832
,
4096
},
LayoutConfig
{
true
,
false
,
true
},
add_gemm_f16_tn_128x64
},
...
...
@@ -87,7 +87,7 @@ int main(int argc, char* argv[])
{
GemmParams
{
2560
,
1408
,
4096
},
LayoutConfig
{
false
,
true
,
true
},
add_gemm_f16_nt_256x128
},
{
GemmParams
{
1280
,
1408
,
4096
},
LayoutConfig
{
false
,
true
,
true
},
add_gemm_f16_nt_128x128
},
{
GemmParams
{
1280
,
704
,
4096
},
LayoutConfig
{
false
,
true
,
true
},
add_gemm_f16_nt_128x64
},
{
GemmParams
{
2560
,
2816
,
4096
},
LayoutConfig
{
true
,
false
,
true
},
add_gemm_f16_tn_256x
128
},
{
GemmParams
{
2560
,
2816
,
4096
},
LayoutConfig
{
true
,
false
,
true
},
add_gemm_f16_tn_256x
256
},
{
GemmParams
{
2560
,
1408
,
4096
},
LayoutConfig
{
true
,
false
,
true
},
add_gemm_f16_tn_256x128
},
{
GemmParams
{
1280
,
1408
,
4096
},
LayoutConfig
{
true
,
false
,
true
},
add_gemm_f16_tn_128x128
},
{
GemmParams
{
1280
,
704
,
4096
},
LayoutConfig
{
true
,
false
,
true
},
add_gemm_f16_tn_128x64
},
...
...
test/gemm/gemm_util.hpp
View file @
95a83c6e
...
...
@@ -9,6 +9,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
...
...
@@ -128,15 +129,15 @@ struct TestGemm
{
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
...
...
@@ -229,27 +230,27 @@ struct TestGemm
bool
res
=
false
;
if
(
std
::
is_same
<
CDataType
,
float
>::
value
)
{
res
=
ck
::
utils
::
check_err
(
c_device
.
mData
,
c_host
.
mData
);
res
=
ck
::
utils
::
check_err
(
c_device
,
c_host
);
std
::
cout
<<
(
res
?
"SUCCESS"
:
"FAILURE"
)
<<
std
::
endl
;
}
else
if
(
std
::
is_same
<
CDataType
,
ck
::
half_t
>::
value
)
{
res
=
ck
::
utils
::
check_err
(
c_device
.
mData
,
c_host
.
mData
);
res
=
ck
::
utils
::
check_err
(
c_device
,
c_host
);
std
::
cout
<<
(
res
?
"SUCCESS"
:
"FAILURE"
)
<<
std
::
endl
;
}
else
if
(
std
::
is_same
<
CDataType
,
ck
::
bhalf_t
>::
value
)
{
res
=
ck
::
utils
::
check_err
(
c_device
.
mData
,
c_host
.
mData
);
res
=
ck
::
utils
::
check_err
(
c_device
,
c_host
);
std
::
cout
<<
(
res
?
"SUCCESS"
:
"FAILURE"
)
<<
std
::
endl
;
}
else
if
(
std
::
is_same
<
CDataType
,
int8_t
>::
value
)
{
res
=
ck
::
utils
::
check_err
(
c_device
.
mData
,
c_host
.
mData
);
res
=
ck
::
utils
::
check_err
(
c_device
,
c_host
);
std
::
cout
<<
(
res
?
"SUCCESS"
:
"FAILURE"
)
<<
std
::
endl
;
}
else
if
(
std
::
is_same
<
CDataType
,
double
>::
value
)
{
res
=
ck
::
utils
::
check_err
(
c_device
.
mData
,
c_host
.
mData
);
res
=
ck
::
utils
::
check_err
(
c_device
,
c_host
);
std
::
cout
<<
(
res
?
"SUCCESS"
:
"FAILURE"
)
<<
std
::
endl
;
}
...
...
test/gemm_split_k/gemm_split_k.cpp
View file @
95a83c6e
...
...
@@ -16,6 +16,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/host_gemm.hpp"
...
...
@@ -93,15 +94,15 @@ int test_gemm(const gemmArgs& args)
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
bool
row_major
)
{
using
namespace
ck
::
literals
;
if
(
row_major
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
...
...
test/grouped_convnd_bwd_weight/CMakeLists.txt
0 → 100644
View file @
95a83c6e
add_gtest_executable
(
test_grouped_convnd_bwd_weight grouped_convnd_bwd_weight.cpp
)
target_link_libraries
(
test_grouped_convnd_bwd_weight PRIVATE utility device_grouped_conv1d_bwd_weight_instance device_grouped_conv2d_bwd_weight_instance device_grouped_conv3d_bwd_weight_instance
)
Prev
1
…
26
27
28
29
30
31
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment