Commit 5b7c2432 authored by Adam Osewski's avatar Adam Osewski
Browse files

Merge remote-tracking branch 'rosenrodt/gemm-standalone-bench' into wavelet_model

parents 7e493730 5a995b14
......@@ -233,6 +233,7 @@ def buildHipClangJob(Map conf=[:]){
def variant = env.STAGE_NAME
def retimage
(retimage, image) = getDockerImage(conf)
gitStatusWrapper(credentialsId: "${status_wrapper_creds}", gitHubContext: "Jenkins - ${variant}", account: 'ROCmSoftwarePlatform', repo: 'composable_kernel') {
withDockerContainer(image: image, args: dockerOpts + ' -v=/var/jenkins/:/var/jenkins') {
......@@ -548,8 +549,9 @@ def process_results(Map conf=[:]){
}
}
//launch develop branch daily at 23:00 in FULL_QA mode
CRON_SETTINGS = BRANCH_NAME == "develop" ? '''0 23 * * * % RUN_FULL_QA=true''' : ""
//launch develop branch daily at 23:00 UT in FULL_QA mode and at 19:00 UT with latest staging compiler version
CRON_SETTINGS = BRANCH_NAME == "develop" ? '''0 23 * * * % RUN_FULL_QA=true;COMPILER_VERSION=release
0 19 * * * % BUILD_DOCKER=true;COMPILER_VERSION=amd-stg-open''' : ""
pipeline {
agent none
......
......@@ -8,7 +8,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_reduce.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/device_elementwise_instance.hpp"
......
......@@ -10,7 +10,7 @@
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/layernorm.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization.hpp"
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
......@@ -51,14 +51,14 @@ int main(int argc, char* argv[])
SimpleDeviceMem beta_device_buf(sizeof(BetaDataType) * N);
SimpleDeviceMem y_device_buf(sizeof(YDataType) * xy_size);
using DeviceOp = ck::tensor_operation::device::DeviceLayernorm<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
PassThrough,
Rank,
NumReduceDim>;
using DeviceOp = ck::tensor_operation::device::DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
PassThrough,
Rank,
NumReduceDim>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
......
add_executable(client_conv2d_fwd conv2d_fwd.cpp)
target_link_libraries(client_conv2d_fwd PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/convolution_forward.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::NHWC;
using WeiLayout = ck::tensor_layout::convolution::KYXC;
using OutLayout = ck::tensor_layout::convolution::NHWK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t N = 16;
static constexpr ck::index_t K = 32;
static constexpr ck::index_t C = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Hi = 224;
static constexpr ck::index_t Wi = 224;
static constexpr ck::index_t Ho = 113;
static constexpr ck::index_t Wo = 113;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
std::vector<ck::index_t> in_spatial_lengths{Hi, Wi};
std::vector<ck::index_t> filter_spatial_lengths{Y, X};
std::vector<ck::index_t> out_spatial_lengths{Ho, Wo};
std::vector<ck::index_t> filter_strides{2, 2};
std::vector<ck::index_t> filter_dilations{1, 1};
std::vector<ck::index_t> input_left_pads{2, 2};
std::vector<ck::index_t> input_right_pads{2, 2};
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * K * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * K);
using DeviceOp = ck::tensor_operation::device::DeviceConvFwd<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
PassThrough,
PassThrough,
PassThrough>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
out.GetDeviceBuffer(),
N,
K,
C,
in_spatial_lengths,
filter_spatial_lengths,
out_spatial_lengths,
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = 2 * N * K * C * Ho * Wo * Y * X;
std::size_t num_bytes = sizeof(InDataType) * N * Hi * Wi * C +
sizeof(WeiDataType) * K * Y * X * C +
sizeof(OutDataType) * N * Ho * Wo * K;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
out.GetDeviceBuffer(),
N,
K,
C,
in_spatial_lengths,
filter_spatial_lengths,
out_spatial_lengths,
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
\ No newline at end of file
......@@ -3,7 +3,7 @@
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_dl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp"
using ADataType = ck::half_t;
using BDataType = ck::half_t;
......
......@@ -3,7 +3,7 @@
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_dl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp"
using ADataType = float;
using BDataType = float;
......
......@@ -7,7 +7,7 @@
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_dl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp"
using ADataType = ck::int4_t;
using BDataType = ck::int4_t;
......
......@@ -3,7 +3,7 @@
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_dl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp"
using ADataType = int8_t;
using BDataType = int8_t;
......
......@@ -3,7 +3,7 @@
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
using ADataType = ck::bhalf_t;
using BDataType = ck::bhalf_t;
......
......@@ -3,7 +3,7 @@
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl.hpp"
using ADataType = double;
using BDataType = double;
......
......@@ -7,7 +7,7 @@
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
using ADataType = ck::int4_t;
using BDataType = ck::int4_t;
......
......@@ -3,7 +3,7 @@
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
using ADataType = int8_t;
using BDataType = int8_t;
......
......@@ -3,8 +3,8 @@
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_skip_b_lds.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_skip_b_lds.hpp"
using F16 = ck::half_t;
using F32 = float;
......
......@@ -8,7 +8,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
......
......@@ -9,7 +9,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
......
......@@ -12,7 +12,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/data_type.hpp"
......
......@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
......
......@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
......
......@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment