"LinuxGUI/vscode:/vscode.git/clone" did not exist on "5eec53539196a4a48c3a6f94badd7e7079eb0338"
Unverified Commit 823657ed authored by Chao Liu's avatar Chao Liu Committed by GitHub
Browse files

GEMM+Bias+ReLU+Add (#76)

* tweak conv for odd C

* update script

* clean up elementwise op

* fix build

* clean up

* added example for gemm+bias+relu+add

* added example for gemm+bias+relu

* add profiler for gemm_s_shuffle; re-org files

* add profiler

* fix build

* clean up

* clean up

* clean up

* fix build
parent 690c75a7
...@@ -4,15 +4,6 @@ ...@@ -4,15 +4,6 @@
#include <cstdlib> #include <cstdlib>
#include <stdlib.h> #include <stdlib.h>
#include <half.hpp> #include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "device_gemm_xdl.hpp"
#include "profile_gemm_impl.hpp" #include "profile_gemm_impl.hpp"
enum GemmMatrixLayout enum GemmMatrixLayout
......
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "profile_gemm_bias_relu_impl.hpp"
enum GemmMatrixLayout
{
MK_KN_MN, // 0
MK_NK_MN, // 1
KM_KN_MN, // 2
KM_NK_MN, // 3
MK_KN_NM, // 4
MK_NK_NM, // 5
KM_KN_NM, // 6
KM_NK_NM, // 7
};
enum GemmDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
};
int profile_gemm_bias_relu(int argc, char* argv[])
{
if(!(argc == 14 || argc == 15))
{
printf("arg1: tensor operation (gemm: GEMM+Bias+ReLU)\n");
printf("arg2: data type (0: fp32; 1: fp16)\n");
printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
printf(" 1: A[m, k] * B[n, k] = C[m, n];\n");
printf(" 2: A[k, m] * B[k, n] = C[m, n];\n");
printf(" 3: A[k, m] * B[n, k] = C[m, n])\n");
printf("arg4: verification (0: no; 1: yes)\n");
printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg8: print tensor value (0: no; 1: yes)\n");
printf("arg7: run kernel # of times (>1)\n");
printf("arg8 to 13: M, N, K, StrideA, StrideB, StrideC\n");
printf("arg14: split k into mulitiple batch\n");
exit(1);
}
const int data_type = static_cast<GemmDataType>(std::stoi(argv[2]));
const int layout = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const int nrepeat = std::stoi(argv[7]);
const int M = std::stoi(argv[8]);
const int N = std::stoi(argv[9]);
const int K = std::stoi(argv[10]);
const int StrideA = std::stoi(argv[11]);
const int StrideB = std::stoi(argv[12]);
const int StrideC = std::stoi(argv[13]);
int KBatch = 1;
if(argc == 15)
KBatch = std::stoi(argv[14]);
if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_gemm_bias_relu_impl<ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC);
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
ck::profiler::profile_gemm_bias_relu_impl<ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? K : StrideB,
(StrideC < 0) ? N : StrideC);
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_KN_MN)
{
ck::profiler::profile_gemm_bias_relu_impl<ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? M : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC);
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_NK_MN)
{
ck::profiler::profile_gemm_bias_relu_impl<ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? M : StrideA,
(StrideB < 0) ? K : StrideB,
(StrideC < 0) ? N : StrideC);
}
else
{
throw std::runtime_error("wrong! this data_type & layout is not implemented");
}
return 1;
}
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "profile_gemm_bias_relu_add_impl.hpp"
enum GemmMatrixLayout
{
MK_KN_MN, // 0
MK_NK_MN, // 1
KM_KN_MN, // 2
KM_NK_MN, // 3
MK_KN_NM, // 4
MK_NK_NM, // 5
KM_KN_NM, // 6
KM_NK_NM, // 7
};
enum GemmDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
};
int profile_gemm_bias_relu_add(int argc, char* argv[])
{
if(!(argc == 15 || argc == 16))
{
printf("arg1: tensor operation (gemm: GEMM+Bias+ReLU+Add)\n");
printf("arg2: data type (0: fp32; 1: fp16)\n");
printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
printf(" 1: A[m, k] * B[n, k] = C[m, n];\n");
printf(" 2: A[k, m] * B[k, n] = C[m, n];\n");
printf(" 3: A[k, m] * B[n, k] = C[m, n])\n");
printf("arg4: verification (0: no; 1: yes)\n");
printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg8: print tensor value (0: no; 1: yes)\n");
printf("arg7: run kernel # of times (>1)\n");
printf("arg8 to 14: M, N, K, StrideA, StrideB, StrideC, StrideC1\n");
printf("arg15: split k into mulitiple batch\n");
exit(1);
}
const int data_type = static_cast<GemmDataType>(std::stoi(argv[2]));
const int layout = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const int nrepeat = std::stoi(argv[7]);
const int M = std::stoi(argv[8]);
const int N = std::stoi(argv[9]);
const int K = std::stoi(argv[10]);
const int StrideA = std::stoi(argv[11]);
const int StrideB = std::stoi(argv[12]);
const int StrideC = std::stoi(argv[13]);
const int StrideC1 = std::stoi(argv[14]);
int KBatch = 1;
if(argc == 16)
KBatch = std::stoi(argv[15]);
if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_gemm_bias_relu_add_impl<ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC,
(StrideC1 < 0) ? N : StrideC1);
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
ck::profiler::profile_gemm_bias_relu_add_impl<ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? K : StrideB,
(StrideC < 0) ? N : StrideC,
(StrideC1 < 0) ? N : StrideC1);
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_KN_MN)
{
ck::profiler::profile_gemm_bias_relu_add_impl<ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? M : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC,
(StrideC1 < 0) ? N : StrideC1);
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_NK_MN)
{
ck::profiler::profile_gemm_bias_relu_add_impl<ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? M : StrideA,
(StrideB < 0) ? K : StrideB,
(StrideC < 0) ? N : StrideC,
(StrideC1 < 0) ? N : StrideC1);
}
else
{
throw std::runtime_error("wrong! this data_type & layout is not implemented");
}
return 1;
}
...@@ -6,6 +6,8 @@ ...@@ -6,6 +6,8 @@
#include <half.hpp> #include <half.hpp>
int profile_gemm(int, char*[]); int profile_gemm(int, char*[]);
int profile_gemm_bias_relu(int, char*[]);
int profile_gemm_bias_relu_add(int, char*[]);
int profile_conv_fwd(int, char*[]); int profile_conv_fwd(int, char*[]);
int profile_conv_fwd_bias_relu(int, char*[]); int profile_conv_fwd_bias_relu(int, char*[]);
int profile_conv_fwd_bias_relu_add(int, char*[]); int profile_conv_fwd_bias_relu_add(int, char*[]);
...@@ -17,6 +19,14 @@ int main(int argc, char* argv[]) ...@@ -17,6 +19,14 @@ int main(int argc, char* argv[])
{ {
return profile_gemm(argc, argv); return profile_gemm(argc, argv);
} }
if(strcmp(argv[1], "gemm_bias_relu") == 0)
{
return profile_gemm_bias_relu(argc, argv);
}
if(strcmp(argv[1], "gemm_bias_relu_add") == 0)
{
return profile_gemm_bias_relu_add(argc, argv);
}
else if(strcmp(argv[1], "conv_fwd") == 0) else if(strcmp(argv[1], "conv_fwd") == 0)
{ {
return profile_conv_fwd(argc, argv); return profile_conv_fwd(argc, argv);
...@@ -35,12 +45,16 @@ int main(int argc, char* argv[]) ...@@ -35,12 +45,16 @@ int main(int argc, char* argv[])
} }
else else
{ {
printf("arg1: tensor operation (gemm: GEMM;\n" // clang-format off
" conv_fwd: ForwardConvolution;\n" printf("arg1: tensor operation (gemm: GEMM\n"
" conv_fwd_bias_relu: ForwardConvolution+Bias+ReLU)\n" " gemm_bias_relu: GEMM+Bias+ReLU\n"
" conv_fwd_bias_relu_add: ForwardConvolution+Bias+ReLU+Add)\n" " gemm_bias_relu_add: GEMM+Bias+ReLU+Add\n"
" conv_fwd_bias_relu_atomic_add: " " conv_fwd: ForwardConvolution\n"
"ForwardConvolution+Bias+ReLU+AtomicAdd)\n"); " conv_fwd_bias_relu: ForwardConvolution+Bias+ReLU\n"
" conv_fwd_bias_relu_add: ForwardConvolution+Bias+ReLU+Add\n"
" conv_fwd_bias_relu_atomic_add: ForwardConvolution+Bias+ReLU+AtomicAdd\n");
// clang-format on
return 0; return 0;
} }
} }
...@@ -14,7 +14,6 @@ namespace host { ...@@ -14,7 +14,6 @@ namespace host {
template <typename InDataType, template <typename InDataType,
typename WeiDataType, typename WeiDataType,
typename OutDataType, typename OutDataType,
typename AccDataType,
typename InElementwiseOperation, typename InElementwiseOperation,
typename WeiElementwiseOperation, typename WeiElementwiseOperation,
typename OutElementwiseOperation> typename OutElementwiseOperation>
...@@ -68,7 +67,8 @@ struct ReferenceConvFwd : public device::BaseOperator ...@@ -68,7 +67,8 @@ struct ReferenceConvFwd : public device::BaseOperator
float Run(const Argument& arg) float Run(const Argument& arg)
{ {
auto f_nchw = [&](auto n, auto k, auto ho, auto wo) { auto f_nchw = [&](auto n, auto k, auto ho, auto wo) {
float v = 0; float v_acc = 0;
for(int c = 0; c < arg.wei_k_c_y_x_.mDesc.GetLengths()[1]; ++c) for(int c = 0; c < arg.wei_k_c_y_x_.mDesc.GetLengths()[1]; ++c)
{ {
for(int y = 0; y < arg.wei_k_c_y_x_.mDesc.GetLengths()[2]; ++y) for(int y = 0; y < arg.wei_k_c_y_x_.mDesc.GetLengths()[2]; ++y)
...@@ -82,17 +82,26 @@ struct ReferenceConvFwd : public device::BaseOperator ...@@ -82,17 +82,26 @@ struct ReferenceConvFwd : public device::BaseOperator
if(hi >= 0 && hi < arg.in_n_c_hi_wi_.mDesc.GetLengths()[2] && wi >= 0 && if(hi >= 0 && hi < arg.in_n_c_hi_wi_.mDesc.GetLengths()[2] && wi >= 0 &&
wi < arg.in_n_c_hi_wi_.mDesc.GetLengths()[3]) wi < arg.in_n_c_hi_wi_.mDesc.GetLengths()[3])
{ {
v += arg.in_element_op_( float v_in;
ck::type_convert<float>(arg.in_n_c_hi_wi_(n, c, hi, wi))) * float v_wei;
arg.wei_element_op_(
ck::type_convert<float>(arg.wei_k_c_y_x_(k, c, y, x))); arg.in_element_op_(
v_in,
static_cast<const float>(arg.in_n_c_hi_wi_(n, c, hi, wi)));
arg.wei_element_op_(
v_wei, static_cast<const float>(arg.wei_k_c_y_x_(k, c, y, x)));
v_acc += v_in * v_wei;
} }
} }
} }
} }
arg.out_n_k_ho_wo_(n, k, ho, wo) = float v_out;
ck::type_convert<OutDataType>(arg.out_element_op_(v));
arg.out_element_op_(v_out, v_acc);
arg.out_n_k_ho_wo_(n, k, ho, wo) = v_out;
}; };
make_ParallelTensorFunctor(f_nchw, make_ParallelTensorFunctor(f_nchw,
...@@ -101,6 +110,7 @@ struct ReferenceConvFwd : public device::BaseOperator ...@@ -101,6 +110,7 @@ struct ReferenceConvFwd : public device::BaseOperator
arg.out_n_k_ho_wo_.mDesc.GetLengths()[2], arg.out_n_k_ho_wo_.mDesc.GetLengths()[2],
arg.out_n_k_ho_wo_.mDesc.GetLengths()[3])( arg.out_n_k_ho_wo_.mDesc.GetLengths()[3])(
std::thread::hardware_concurrency()); std::thread::hardware_concurrency());
return 0; return 0;
} }
...@@ -160,6 +170,7 @@ struct ReferenceConvFwd : public device::BaseOperator ...@@ -160,6 +170,7 @@ struct ReferenceConvFwd : public device::BaseOperator
return str.str(); return str.str();
} }
}; };
} // namespace host } // namespace host
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
......
...@@ -15,7 +15,6 @@ namespace host { ...@@ -15,7 +15,6 @@ namespace host {
template <typename InDataType, template <typename InDataType,
typename WeiDataType, typename WeiDataType,
typename OutDataType, typename OutDataType,
typename AccDataType,
typename InElementwiseOperation, typename InElementwiseOperation,
typename WeiElementwiseOperation, typename WeiElementwiseOperation,
typename OutElementwiseOperation> typename OutElementwiseOperation>
...@@ -72,7 +71,8 @@ struct ReferenceConvFwd_Bias_Activation : public device::BaseOperator ...@@ -72,7 +71,8 @@ struct ReferenceConvFwd_Bias_Activation : public device::BaseOperator
float Run(const Argument& arg) float Run(const Argument& arg)
{ {
auto f_nchw = [&](auto n, auto k, auto ho, auto wo) { auto f_nchw = [&](auto n, auto k, auto ho, auto wo) {
float v = 0; float v_acc = 0;
for(int c = 0; c < arg.wei_k_c_y_x_.mDesc.GetLengths()[1]; ++c) for(int c = 0; c < arg.wei_k_c_y_x_.mDesc.GetLengths()[1]; ++c)
{ {
for(int y = 0; y < arg.wei_k_c_y_x_.mDesc.GetLengths()[2]; ++y) for(int y = 0; y < arg.wei_k_c_y_x_.mDesc.GetLengths()[2]; ++y)
...@@ -86,17 +86,26 @@ struct ReferenceConvFwd_Bias_Activation : public device::BaseOperator ...@@ -86,17 +86,26 @@ struct ReferenceConvFwd_Bias_Activation : public device::BaseOperator
if(hi >= 0 && hi < arg.in_n_c_hi_wi_.mDesc.GetLengths()[2] && wi >= 0 && if(hi >= 0 && hi < arg.in_n_c_hi_wi_.mDesc.GetLengths()[2] && wi >= 0 &&
wi < arg.in_n_c_hi_wi_.mDesc.GetLengths()[3]) wi < arg.in_n_c_hi_wi_.mDesc.GetLengths()[3])
{ {
v += arg.in_element_op_( float v_in;
ck::type_convert<float>(arg.in_n_c_hi_wi_(n, c, hi, wi))) * float v_wei;
arg.wei_element_op_(
ck::type_convert<float>(arg.wei_k_c_y_x_(k, c, y, x))); arg.in_element_op_(
v_in,
static_cast<const float>(arg.in_n_c_hi_wi_(n, c, hi, wi)));
arg.wei_element_op_(
v_wei, static_cast<const float>(arg.wei_k_c_y_x_(k, c, y, x)));
v_acc += v_in * v_wei;
} }
} }
} }
} }
arg.out_n_k_ho_wo_(n, k, ho, wo) = float v_out;
ck::type_convert<OutDataType>(arg.out_element_op_(v, arg.bias_k_(k)));
arg.out_element_op_(v_out, v_acc, static_cast<float>(arg.bias_k_(k)));
arg.out_n_k_ho_wo_(n, k, ho, wo) = v_out;
}; };
make_ParallelTensorFunctor(f_nchw, make_ParallelTensorFunctor(f_nchw,
...@@ -166,6 +175,7 @@ struct ReferenceConvFwd_Bias_Activation : public device::BaseOperator ...@@ -166,6 +175,7 @@ struct ReferenceConvFwd_Bias_Activation : public device::BaseOperator
return str.str(); return str.str();
} }
}; };
} // namespace host } // namespace host
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
......
...@@ -15,7 +15,6 @@ namespace host { ...@@ -15,7 +15,6 @@ namespace host {
template <typename InDataType, template <typename InDataType,
typename WeiDataType, typename WeiDataType,
typename OutDataType, typename OutDataType,
typename AccDataType,
typename InElementwiseOperation, typename InElementwiseOperation,
typename WeiElementwiseOperation, typename WeiElementwiseOperation,
typename OutElementwiseOperation> typename OutElementwiseOperation>
...@@ -75,7 +74,8 @@ struct ReferenceConvFwd_Bias_Activation_Add : public device::BaseOperator ...@@ -75,7 +74,8 @@ struct ReferenceConvFwd_Bias_Activation_Add : public device::BaseOperator
float Run(const Argument& arg) float Run(const Argument& arg)
{ {
auto f_nchw = [&](auto n, auto k, auto ho, auto wo) { auto f_nchw = [&](auto n, auto k, auto ho, auto wo) {
float v = 0; float v_acc = 0;
for(int c = 0; c < arg.wei_k_c_y_x_.mDesc.GetLengths()[1]; ++c) for(int c = 0; c < arg.wei_k_c_y_x_.mDesc.GetLengths()[1]; ++c)
{ {
for(int y = 0; y < arg.wei_k_c_y_x_.mDesc.GetLengths()[2]; ++y) for(int y = 0; y < arg.wei_k_c_y_x_.mDesc.GetLengths()[2]; ++y)
...@@ -89,23 +89,29 @@ struct ReferenceConvFwd_Bias_Activation_Add : public device::BaseOperator ...@@ -89,23 +89,29 @@ struct ReferenceConvFwd_Bias_Activation_Add : public device::BaseOperator
if(hi >= 0 && hi < arg.in_n_c_hi_wi_.mDesc.GetLengths()[2] && wi >= 0 && if(hi >= 0 && hi < arg.in_n_c_hi_wi_.mDesc.GetLengths()[2] && wi >= 0 &&
wi < arg.in_n_c_hi_wi_.mDesc.GetLengths()[3]) wi < arg.in_n_c_hi_wi_.mDesc.GetLengths()[3])
{ {
v += arg.in_element_op_( float v_in;
ck::type_convert<float>(arg.in_n_c_hi_wi_(n, c, hi, wi))) * float v_wei;
arg.wei_element_op_(
ck::type_convert<float>(arg.wei_k_c_y_x_(k, c, y, x))); arg.in_element_op_(
v_in,
static_cast<const float>(arg.in_n_c_hi_wi_(n, c, hi, wi)));
arg.wei_element_op_(
v_wei, static_cast<const float>(arg.wei_k_c_y_x_(k, c, y, x)));
v_acc += v_in * v_wei;
} }
} }
} }
} }
float v2 = ck::type_convert<float>(arg.out_n_k_ho_wo_(n, k, ho, wo)); float v_out;
arg.out_element_op_(v2, arg.out_element_op_(v_out,
v, v_acc,
ck::type_convert<float>(arg.bias_k_(k)), static_cast<const float>(arg.bias_k_(k)),
ck::type_convert<float>(arg.resi_n_k_ho_wo_(n, k, ho, wo))); static_cast<const float>(arg.resi_n_k_ho_wo_(n, k, ho, wo)));
arg.out_n_k_ho_wo_(n, k, ho, wo) = ck::type_convert<OutDataType>(v2); arg.out_n_k_ho_wo_(n, k, ho, wo) = v_out;
}; };
make_ParallelTensorFunctor(f_nchw, make_ParallelTensorFunctor(f_nchw,
...@@ -177,6 +183,7 @@ struct ReferenceConvFwd_Bias_Activation_Add : public device::BaseOperator ...@@ -177,6 +183,7 @@ struct ReferenceConvFwd_Bias_Activation_Add : public device::BaseOperator
return str.str(); return str.str();
} }
}; };
} // namespace host } // namespace host
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment