Commit 7d44e782 authored by rocking's avatar rocking
Browse files

Support any dimension for elementwise operation

parent 06e52d90
add_example_executable(example_broadcast_add_2d broadcast_add_2d.cpp) add_example_executable(example_broadcast_add_2d broadcast_add_2d.cpp)
add_example_executable(example_elementwise_add_1d elementwise_add_1d.cpp) add_example_executable(example_elementwise_add_1d elementwise_add_1d.cpp)
\ No newline at end of file add_example_executable(example_elementwise_add_4d elementwise_add_4d.cpp)
\ No newline at end of file
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include <math.h>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_reduce_util.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "binary_element_wise_operation.hpp"
#include "device_binary_elementwise.hpp"
using F16 = ck::half_t;
using F32 = float;
using ABDataType = F16;
using CDataType = F16;
using EltwiseComputeDataType = F32;
using Add = ck::tensor_operation::binary_element_wise::Add;
using DeviceElementwiseAddInstance = ck::tensor_operation::device::
DeviceBinaryElementwise<F16, F16, CDataType, EltwiseComputeDataType, Add, 4, 8>;
template <typename HostTensorA,
typename HostTensorB,
typename HostTensorC,
typename ComputeDataType,
typename Functor>
void host_elementwise4D(HostTensorC& C,
const HostTensorA& A,
const HostTensorB& B,
const std::vector<std::size_t>& shape,
Functor functor)
{
for(std::size_t n = 0; n < shape[0]; ++n)
for(std::size_t c = 0; c < shape[1]; ++c)
for(std::size_t h = 0; h < shape[2]; ++h)
for(std::size_t w = 0; w < shape[3]; ++w)
{
ComputeDataType a_val = static_cast<ComputeDataType>(A(n, c, h, w));
ComputeDataType b_val = static_cast<ComputeDataType>(B(n, c, h, w));
ComputeDataType c_val = 0;
functor(c_val, a_val, b_val);
C(n, c, h, w) = static_cast<ComputeDataType>(c_val);
}
}
int main()
{
bool do_verification = true;
bool time_kernel = false;
std::vector<std::size_t> nchw = {4, 16, 32, 32};
Tensor<ABDataType> a_m(nchw);
Tensor<ABDataType> b_m(nchw);
Tensor<ABDataType> c_m(nchw);
a_m.GenerateTensorValue(GeneratorTensor_3<ABDataType>{0.0, 1.0});
b_m.GenerateTensorValue(GeneratorTensor_3<ABDataType>{0.0, 1.0});
DeviceMem a_m_device_buf(sizeof(ABDataType) * a_m.mDesc.GetElementSpace());
DeviceMem b_m_device_buf(sizeof(ABDataType) * b_m.mDesc.GetElementSpace());
DeviceMem c_m_device_buf(sizeof(CDataType) * c_m.mDesc.GetElementSpace());
a_m_device_buf.ToDevice(a_m.mData.data());
b_m_device_buf.ToDevice(b_m.mData.data());
auto broadcastAdd = DeviceElementwiseAddInstance{};
auto argument = broadcastAdd.MakeArgumentPointer(a_m_device_buf.GetDeviceBuffer(),
b_m_device_buf.GetDeviceBuffer(),
c_m_device_buf.GetDeviceBuffer(),
ck::to_int_vector(nchw),
ck::to_int_vector(a_m.mDesc.GetStrides()),
ck::to_int_vector(b_m.mDesc.GetStrides()),
ck::to_int_vector(c_m.mDesc.GetStrides()),
Add{},
256);
if(!broadcastAdd.IsSupportedArgument(argument.get()))
{
throw std::runtime_error("The runtime parameters seems not supported by the "
"DeviceBinaryElementwise_2D instance, exiting!");
};
auto broadcastAdd_invoker_ptr = broadcastAdd.MakeInvokerPointer();
float ave_time =
broadcastAdd_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::cout << "Perf: " << ave_time << " ms" << std::endl;
bool pass = true;
if(do_verification)
{
c_m_device_buf.FromDevice(c_m.mData.data());
Tensor<CDataType> host_c_m(nchw);
host_elementwise4D<Tensor<ABDataType>,
Tensor<ABDataType>,
Tensor<CDataType>,
EltwiseComputeDataType,
Add>(host_c_m, a_m, b_m, nchw, Add{});
pass &= ck::utils::check_err(
c_m.mData, host_c_m.mData, "Error: Incorrect results d1", 1e-3, 1e-3);
}
return pass ? 0 : 1;
}
...@@ -35,54 +35,30 @@ struct DeviceBinaryElementwise : public BaseOperator ...@@ -35,54 +35,30 @@ struct DeviceBinaryElementwise : public BaseOperator
return desc_m0_pad; return desc_m0_pad;
} }
static auto MakeDescriptor_M0_1d(const std::vector<int>& shape,
const std::vector<int>& stride,
index_t gridSize,
index_t threadPerBlock)
{
const auto desc_m0 =
make_naive_tensor_descriptor(make_tuple(shape[0]), make_tuple(stride[0]));
return PadDescriptor_M0_1d(desc_m0, gridSize, threadPerBlock);
}
static auto MakeDescriptor_M0_2d(const std::vector<int>& shape,
const std::vector<int>& stride,
index_t gridSize,
index_t threadPerBlock)
{
const int m = shape[0];
const int n = shape[1];
// 2d desc - [m, n]
const auto desc_m_n =
make_naive_tensor_descriptor(make_tuple(m, n), make_tuple(stride[0], stride[1]));
// 1d desc - [m * n]
const auto desc_m0 =
transform_tensor_descriptor(desc_m_n,
make_tuple(make_merge_transform(make_tuple(m, n))),
make_tuple(Sequence<0, 1>{}),
make_tuple(Sequence<0>{}));
return PadDescriptor_M0_1d(desc_m0, gridSize, threadPerBlock);
}
static auto MakeDescriptor_M0(const std::vector<int>& shape, static auto MakeDescriptor_M0(const std::vector<int>& shape,
const std::vector<int>& stride, const std::vector<int>& stride,
index_t gridSize, index_t gridSize,
index_t threadPerBlock) index_t threadPerBlock)
{ {
static_assert(Dim == 1 || Dim == 2, auto tupleOfShape = generate_tuple([&](auto I) { return shape[I]; }, Number<Dim>{});
"wrong! DeviceBinaryElementwise not support this dimension"); auto tupleOfStride = generate_tuple([&](auto I) { return stride[I]; }, Number<Dim>{});
// TODO - 3D, 4D, 5D // nd desc - [s0, s1, s2, ...]
if constexpr(Dim == 1) const auto desc = make_naive_tensor_descriptor(tupleOfShape, tupleOfStride);
return MakeDescriptor_M0_1d(shape, stride, gridSize, threadPerBlock);
else if constexpr(Dim == 2) // merge nd to 1d desc - [s0 * s1 * ...]
return MakeDescriptor_M0_2d(shape, stride, gridSize, threadPerBlock); if constexpr(Dim > 1)
{
const auto desc_m0 = transform_tensor_descriptor(
desc,
make_tuple(make_merge_transform(tupleOfShape)),
make_tuple(generate_sequence_v2([&](auto I) { return I; }, Number<Dim>{})),
make_tuple(Sequence<0>{}));
return PadDescriptor_M0_1d(desc_m0, gridSize, threadPerBlock);
}
else else
return make_naive_tensor_descriptor(make_tuple(0), make_tuple(0)); return PadDescriptor_M0_1d(desc, gridSize, threadPerBlock);
} }
using GridDesc_M0 = decltype(MakeDescriptor_M0({1, 1}, {1, 1}, 1, 1)); using GridDesc_M0 = decltype(MakeDescriptor_M0({1, 1}, {1, 1}, 1, 1));
...@@ -169,7 +145,7 @@ struct DeviceBinaryElementwise : public BaseOperator ...@@ -169,7 +145,7 @@ struct DeviceBinaryElementwise : public BaseOperator
if(pArg == nullptr) if(pArg == nullptr)
return false; return false;
// m * n // shape[0] * shape[1] * shape[2] * ...
const auto m0 = pArg->c_grid_desc_m0_.GetLength(I0); const auto m0 = pArg->c_grid_desc_m0_.GetLength(I0);
if(m0 % ScalarPerVector != 0) if(m0 % ScalarPerVector != 0)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment