Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
7c284291
Commit
7c284291
authored
Nov 13, 2023
by
Artur Wojcik
Browse files
Merge branch 'develop' into uif2-initial
parents
751432ca
600fc000
Changes
162
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
705 additions
and
118 deletions
+705
-118
Jenkinsfile
Jenkinsfile
+1
-1
client_example/05_layernorm/CMakeLists.txt
client_example/05_layernorm/CMakeLists.txt
+9
-3
client_example/05_layernorm/layernorm2d_fwd.cpp
client_example/05_layernorm/layernorm2d_fwd.cpp
+10
-10
client_example/05_layernorm/layernorm4d_fwd.cpp
client_example/05_layernorm/layernorm4d_fwd.cpp
+201
-0
client_example/18_groupnorm/groupnorm_swish.cpp
client_example/18_groupnorm/groupnorm_swish.cpp
+10
-10
client_example/23_elementwise_transpose/CMakeLists.txt
client_example/23_elementwise_transpose/CMakeLists.txt
+2
-0
client_example/23_elementwise_transpose/elementwise_transpose_3d.cpp
...ple/23_elementwise_transpose/elementwise_transpose_3d.cpp
+139
-0
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu.inc
...scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu.inc
+1
-1
client_example/24_grouped_convnd_fwd_scaleadd_ab/CMakeLists.txt
..._example/24_grouped_convnd_fwd_scaleadd_ab/CMakeLists.txt
+11
-0
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab.inc
...d_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab.inc
+221
-0
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_bf16.cpp
...vnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_bf16.cpp
+13
-0
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp16.cpp
...vnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp16.cpp
+13
-0
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp32.cpp
...vnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp32.cpp
+13
-0
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_int8.cpp
...vnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_int8.cpp
+13
-0
example/27_layernorm/CMakeLists.txt
example/27_layernorm/CMakeLists.txt
+0
-2
example/27_layernorm/layernorm_fp16.cpp
example/27_layernorm/layernorm_fp16.cpp
+0
-44
example/27_layernorm/layernorm_splitk_fp16.cpp
example/27_layernorm/layernorm_splitk_fp16.cpp
+0
-45
example/27_layernorm2d_fwd/CMakeLists.txt
example/27_layernorm2d_fwd/CMakeLists.txt
+2
-0
example/27_layernorm2d_fwd/common.hpp
example/27_layernorm2d_fwd/common.hpp
+2
-2
example/27_layernorm2d_fwd/layernorm2d_fwd_fp16.cpp
example/27_layernorm2d_fwd/layernorm2d_fwd_fp16.cpp
+44
-0
No files found.
Jenkinsfile
View file @
7c284291
...
...
@@ -767,7 +767,7 @@ pipeline {
}
agent
{
label
rocmnode
(
"gfx908 || gfx90a"
)
}
environment
{
setup_args
=
""" -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941;gfx942" """
setup_args
=
""" -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941;gfx942"
-DCMAKE_EXE_LINKER_FLAGS=" -L ${env.WORKSPACE}/script -T hip_fatbin_insert "
"""
execute_args
=
""" cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941;gfx942" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
}
steps
{
...
...
client_example/05_layernorm/CMakeLists.txt
View file @
7c284291
add_executable
(
client_layernorm2d layernorm2d.cpp
)
target_link_libraries
(
client_layernorm2d PRIVATE composable_kernel::device_operations
)
target_compile_features
(
client_layernorm2d PRIVATE cxx_std_17
)
\ No newline at end of file
add_executable
(
client_layernorm2d_fwd layernorm2d_fwd.cpp
)
target_link_libraries
(
client_layernorm2d_fwd PRIVATE composable_kernel::device_operations
)
target_compile_features
(
client_layernorm2d_fwd PRIVATE cxx_std_17
)
add_executable
(
client_layernorm4d_fwd layernorm4d_fwd.cpp
)
target_link_libraries
(
client_layernorm4d_fwd PRIVATE composable_kernel::device_operations
)
target_compile_features
(
client_layernorm4d_fwd PRIVATE cxx_std_17
)
client_example/05_layernorm/layernorm2d.cpp
→
client_example/05_layernorm/layernorm2d
_fwd
.cpp
View file @
7c284291
...
...
@@ -7,10 +7,10 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization
_fwd
.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization
_fwd
.hpp"
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
...
...
@@ -57,14 +57,14 @@ int main(int argc, char* argv[])
SimpleDeviceMem
save_inv_std_device_buf
(
sizeof
(
SaveMeanInvStdDataType
)
*
M
);
#endif
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalization
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
PassThrough
,
Rank
,
NumReduceDim
>
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalization
Fwd
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
PassThrough
,
Rank
,
NumReduceDim
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
...
...
client_example/05_layernorm/layernorm4d_fwd.cpp
0 → 100644
View file @
7c284291
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization_fwd.hpp"
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
SaveMeanInvStdDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
#define SAVE_MEAN_INV_STD
constexpr
int
Rank
=
4
;
constexpr
int
NumReduceDim
=
3
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
index_t
N
=
256
;
ck
::
index_t
H
=
16
;
ck
::
index_t
W
=
16
;
ck
::
index_t
C
=
8
;
std
::
vector
<
ck
::
index_t
>
strideXY
=
{
H
*
W
*
C
,
W
*
C
,
C
,
1
};
std
::
vector
<
ck
::
index_t
>
strideGammaBeta
=
{
0
,
W
*
C
,
C
,
1
};
std
::
vector
<
ck
::
index_t
>
strideSaveMeanInvStd
=
{
1
};
SimpleDeviceMem
x_device_buf
(
sizeof
(
XDataType
)
*
N
*
H
*
W
*
C
);
SimpleDeviceMem
gamma_device_buf
(
sizeof
(
GammaDataType
)
*
H
*
W
*
C
);
SimpleDeviceMem
beta_device_buf
(
sizeof
(
BetaDataType
)
*
H
*
W
*
C
);
SimpleDeviceMem
y_device_buf
(
sizeof
(
YDataType
)
*
N
*
H
*
W
*
C
);
#ifdef SAVE_MEAN_INV_STD
SimpleDeviceMem
save_mean_device_buf
(
sizeof
(
SaveMeanInvStdDataType
)
*
N
);
SimpleDeviceMem
save_inv_std_device_buf
(
sizeof
(
SaveMeanInvStdDataType
)
*
N
);
#endif
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationFwd
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
PassThrough
,
Rank
,
NumReduceDim
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
({
N
,
H
,
W
,
C
},
// lengths
strideXY
,
// xStrides
strideGammaBeta
,
// gammaStrides
strideGammaBeta
,
// betaStrides
strideXY
,
// yStrides
strideSaveMeanInvStd
,
// save_mean Strides
strideSaveMeanInvStd
,
// save_inv_std Strides
{
1
,
2
,
3
},
// reduceDims
1e-4
,
x_device_buf
.
GetDeviceBuffer
(),
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
(),
y_device_buf
.
GetDeviceBuffer
(),
#ifdef SAVE_MEAN_INV_STD
save_mean_device_buf
.
GetDeviceBuffer
(),
save_inv_std_device_buf
.
GetDeviceBuffer
(),
#else
nullptr
,
nullptr
,
#endif
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_byte
=
sizeof
(
XDataType
)
*
N
*
H
*
W
*
C
+
sizeof
(
GammaDataType
)
*
H
*
W
*
C
+
sizeof
(
BetaDataType
)
*
H
*
W
*
C
+
sizeof
(
YDataType
)
*
N
*
H
*
W
*
C
;
#ifdef SAVE_MEAN_INV_STD
num_byte
+=
sizeof
(
SaveMeanInvStdDataType
)
*
N
*
2
;
#endif
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
({
N
,
H
,
W
,
C
},
// lengths
strideXY
,
// xStrides
strideGammaBeta
,
// gammaStrides
strideGammaBeta
,
// betaStrides
strideXY
,
// yStrides
strideSaveMeanInvStd
,
// save_mean Strides
strideSaveMeanInvStd
,
// save_inv_std Strides
{
1
,
2
,
3
},
// reduceDims
1e-4
,
x_device_buf
.
GetDeviceBuffer
(),
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
(),
y_device_buf
.
GetDeviceBuffer
(),
#ifdef SAVE_MEAN_INV_STD
save_mean_device_buf
.
GetDeviceBuffer
(),
save_inv_std_device_buf
.
GetDeviceBuffer
(),
#else
nullptr
,
nullptr
,
#endif
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/18_groupnorm/groupnorm_swish.cpp
View file @
7c284291
...
...
@@ -7,10 +7,10 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization
_fwd
.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization_swish.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization_
fwd_
swish.hpp"
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
float
;
...
...
@@ -64,14 +64,14 @@ int main(int argc, char* argv[])
SimpleDeviceMem
save_inv_std_device_buf
(
sizeof
(
SaveMeanInvStdDataType
)
*
N
*
G
);
#endif
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalization
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
Swish
,
Rank
,
NumReduceDim
>
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalization
Fwd
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
Swish
,
Rank
,
NumReduceDim
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
...
...
client_example/23_elementwise_transpose/CMakeLists.txt
0 → 100644
View file @
7c284291
add_executable
(
client_elementwise_transpose3d elementwise_transpose_3d.cpp
)
target_link_libraries
(
client_elementwise_transpose3d PRIVATE composable_kernel::device_operations
)
client_example/23_elementwise_transpose/elementwise_transpose_3d.cpp
0 → 100644
View file @
7c284291
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_3d_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/transpose_3d.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
()
{
const
int
N
=
16
;
const
int
C
=
8
;
const
int
D
=
8
;
const
int
H
=
8
;
const
int
W
=
8
;
std
::
vector
<
std
::
size_t
>
ncdhw
=
{
N
,
C
,
D
,
H
,
W
};
std
::
vector
<
std
::
size_t
>
nchwd
=
{
N
,
C
,
H
,
W
,
D
};
auto
size
=
N
*
C
*
D
*
H
*
W
;
std
::
array
<
ck
::
index_t
,
5
>
ab_lengths
{
N
,
C
,
H
,
W
,
D
};
std
::
array
<
ck
::
index_t
,
5
>
a_strides
=
{
C
*
D
*
H
*
W
,
H
*
W
,
W
,
1
,
D
*
H
*
W
};
// N, C, D, H, W
std
::
array
<
ck
::
index_t
,
5
>
b_strides
=
{
C
*
H
*
W
*
D
,
H
*
W
*
D
,
W
*
D
,
D
,
1
};
// N, C, H, W, D
SimpleDeviceMem
a_dev_buf
(
sizeof
(
ADataType
)
*
size
);
SimpleDeviceMem
b_dev_buf
(
sizeof
(
BDataType
)
*
size
);
std
::
array
<
const
void
*
,
1
>
input
=
{
a_dev_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_dev_buf
.
GetDeviceBuffer
()};
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ADataType
>
,
ck
::
Tuple
<
BDataType
>
,
PassThrough
,
5
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceElementwisePermuteInstance
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_byte
=
sizeof
(
ADataType
)
*
(
ncdhw
[
0
]
*
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
])
+
sizeof
(
BDataType
)
*
(
ncdhw
[
0
]
*
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
]);
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu.inc
View file @
7c284291
...
...
@@ -63,7 +63,7 @@ int execute_conv_fwd_scaleadd_scaleadd_relu()
K
*
Z
*
Y
*
X
*
C
,
Z
*
Y
*
X
*
C
,
1
,
Y
*
X
*
C
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
6
>
out_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
6
>
out_strides
{
C
,
Do
*
Ho
*
Wo
*
G
*
C
,
1
,
Ho
*
Wo
*
G
*
C
,
Wo
*
G
*
C
,
G
*
C
};
K
,
Do
*
Ho
*
Wo
*
G
*
K
,
1
,
Ho
*
Wo
*
G
*
K
,
Wo
*
G
*
K
,
G
*
K
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
,
1
};
...
...
client_example/24_grouped_convnd_fwd_scaleadd_ab/CMakeLists.txt
0 → 100644
View file @
7c284291
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_fp32 grouped_conv_fwd_scaleadd_ab_fp32.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_fp32 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_fp16 grouped_conv_fwd_scaleadd_ab_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_fp16 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_bf16 grouped_conv_fwd_scaleadd_ab_bf16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_bf16 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_int8 grouped_conv_fwd_scaleadd_ab_int8.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_int8 PRIVATE composable_kernel::device_operations
)
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab.inc
0 → 100644
View file @
7c284291
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_scaleadd_ab.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ScaleAdd
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
32
;
static
constexpr
ck
::
index_t
N
=
64
;
// batch size
static
constexpr
ck
::
index_t
K
=
64
;
// output channel
static
constexpr
ck
::
index_t
C
=
32
;
// input channel (per group)
static
constexpr
ck
::
index_t
Z
=
3
;
// filter D
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
static
constexpr
ck
::
index_t
X
=
3
;
// filter W
static
constexpr
ck
::
index_t
Di
=
14
;
// input D
static
constexpr
ck
::
index_t
Hi
=
14
;
// input H
static
constexpr
ck
::
index_t
Wi
=
14
;
// input W
static
constexpr
ck
::
index_t
Do
=
14
;
// output D
static
constexpr
ck
::
index_t
Ho
=
14
;
// output H
static
constexpr
ck
::
index_t
Wo
=
14
;
// output W
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
execute_conv_fwd_scaleadd_ab
()
{
constexpr
ck
::
index_t
NumAs
=
2
;
constexpr
ck
::
index_t
NumBs
=
2
;
constexpr
float
scale
=
1.5
f
;
// We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space.
// However, CK's API only accepts lengths and strides with order of GNCDHW/GKCZYX/GNKDHW.
// Hence, we need to adjust the order of strides.
std
::
array
<
ck
::
index_t
,
6
>
in_lengths
{
G
,
N
,
C
,
Di
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
6
>
in_strides
{
C
,
Di
*
Hi
*
Wi
*
G
*
C
,
1
,
Hi
*
Wi
*
G
*
C
,
Wi
*
G
*
C
,
G
*
C
};
std
::
array
<
ck
::
index_t
,
6
>
wei_lengths
{
G
,
K
,
C
,
Z
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
6
>
wei_strides
{
K
*
Z
*
Y
*
X
*
C
,
Z
*
Y
*
X
*
C
,
1
,
Y
*
X
*
C
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
6
>
out_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
6
>
out_strides
{
K
,
Do
*
Ho
*
Wo
*
G
*
K
,
1
,
Ho
*
Wo
*
G
*
K
,
Wo
*
G
*
K
,
G
*
K
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
,
1
};
using
InputDtype
=
ck
::
tuple_element_t
<
0
,
InDataType
>
;
using
InputBiasDtype
=
ck
::
tuple_element_t
<
1
,
InDataType
>
;
using
WeightDtype
=
ck
::
tuple_element_t
<
0
,
WeiDataType
>
;
using
WeightBiasDtype
=
ck
::
tuple_element_t
<
1
,
WeiDataType
>
;
SimpleDeviceMem
in
(
sizeof
(
InputDtype
)
*
N
*
Di
*
Hi
*
Wi
*
G
*
C
);
SimpleDeviceMem
in_bias
(
sizeof
(
InputBiasDtype
)
*
N
*
Di
*
Hi
*
Wi
*
G
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeightDtype
)
*
G
*
K
*
Z
*
Y
*
X
*
C
);
SimpleDeviceMem
wei_bias
(
sizeof
(
WeightBiasDtype
)
*
G
*
K
*
Z
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
ScaleAdd
,
ScaleAdd
,
PassThrough
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
std
::
array
<
const
void
*
,
NumAs
>
as
=
{
in
.
GetDeviceBuffer
(),
in_bias
.
GetDeviceBuffer
()};
std
::
array
<
const
void
*
,
NumBs
>
bs
=
{
wei
.
GetDeviceBuffer
(),
wei_bias
.
GetDeviceBuffer
()};
std
::
array
<
const
void
*
,
0
>
ds
{};
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
as
,
bs
,
ds
,
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{},
{},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
ScaleAdd
{
scale
},
ScaleAdd
{
scale
},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Do
*
Ho
*
Wo
*
Z
*
Y
*
X
+
N
*
Di
*
Hi
*
Wi
*
G
*
C
+
G
*
K
*
Z
*
Y
*
X
*
C
;
std
::
size_t
num_bytes
=
2
*
sizeof
(
InDataType
)
*
N
*
Di
*
Hi
*
Wi
*
G
*
C
+
2
*
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
+
sizeof
(
OutDataType
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
as
,
bs
,
ds
,
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{},
{},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
ScaleAdd
{
scale
},
ScaleAdd
{
scale
},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_bf16.cpp
0 → 100644
View file @
7c284291
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
ck
::
Tuple
<
ck
::
bhalf_t
,
ck
::
bhalf_t
>
;
using
WeiDataType
=
ck
::
Tuple
<
ck
::
bhalf_t
,
ck
::
bhalf_t
>
;
using
OutDataType
=
ck
::
bhalf_t
;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_ab
();
}
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp16.cpp
0 → 100644
View file @
7c284291
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
ck
::
Tuple
<
ck
::
half_t
,
ck
::
half_t
>
;
using
WeiDataType
=
ck
::
Tuple
<
ck
::
half_t
,
ck
::
half_t
>
;
using
OutDataType
=
ck
::
half_t
;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_ab
();
}
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp32.cpp
0 → 100644
View file @
7c284291
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
ck
::
Tuple
<
float
,
float
>
;
using
WeiDataType
=
ck
::
Tuple
<
float
,
float
>
;
using
OutDataType
=
float
;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_ab
();
}
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_int8.cpp
0 → 100644
View file @
7c284291
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
ck
::
Tuple
<
int8_t
,
int8_t
>
;
using
WeiDataType
=
ck
::
Tuple
<
int8_t
,
int8_t
>
;
using
OutDataType
=
int8_t
;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_ab
();
}
example/27_layernorm/CMakeLists.txt
deleted
100644 → 0
View file @
751432ca
add_example_executable
(
example_layernorm_fp16 layernorm_fp16.cpp
)
add_example_executable
(
example_layernorm_splitk_fp16 layernorm_splitk_fp16.cpp
)
example/27_layernorm/layernorm_fp16.cpp
deleted
100644 → 0
View file @
751432ca
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
SaveMeanInvStdDataType
=
float
;
using
ComputeDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
#define SAVE_MEAN_INV_STD
constexpr
int
Rank
=
2
;
constexpr
int
NumReduceDim
=
1
;
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationImpl
<
XDataType
,
GammaDataType
,
BetaDataType
,
ComputeDataType
,
YDataType
,
SaveMeanInvStdDataType
,
PassThrough
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// ClusterM
32
,
// ClusterK
1
,
// SliceM
8
,
// SliceK
1
,
// XYVectorDim (0=M, 1=K)
8
,
// SrcScalarPerVector
1
,
// GammaVecDim (0=M, 1=K)
8
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
8
,
// BetaScalarPerVector
8
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
#include "run_layernorm_example.inc"
int
main
()
{
return
run_groupnorm_example
<
DeviceInstance
>
();
}
example/27_layernorm/layernorm_splitk_fp16.cpp
deleted
100644 → 0
View file @
751432ca
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
SaveMeanInvStdDataType
=
float
;
using
ComputeDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
#define SAVE_MEAN_INV_STD
constexpr
int
Rank
=
2
;
constexpr
int
NumReduceDim
=
1
;
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationSplitKImpl
<
XDataType
,
GammaDataType
,
BetaDataType
,
ComputeDataType
,
YDataType
,
SaveMeanInvStdDataType
,
PassThrough
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// ClusterM
32
,
// ClusterK
1
,
// SliceM
8
,
// SliceK
1
,
// XYVectorDim (0=M, 1=K)
8
,
// XScalarPerVector
1
,
// GammaVecDim (0=M, 1=K)
8
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
8
,
// BetaScalarPerVector
8
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
#include "run_layernorm_example.inc"
int
main
()
{
return
run_groupnorm_example
<
DeviceInstance
>
();
}
example/27_layernorm2d_fwd/CMakeLists.txt
0 → 100644
View file @
7c284291
add_example_executable
(
example_layernorm2d_fwd_fp16 layernorm2d_fwd_fp16.cpp
)
add_example_executable
(
example_layernorm2d_fwd_splitk_fp16 layernorm2d_fwd_splitk_fp16.cpp
)
example/27_layernorm/common.hpp
→
example/27_layernorm
2d_fwd
/common.hpp
View file @
7c284291
...
...
@@ -10,8 +10,8 @@
#include <getopt.h>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_splitk_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_
fwd_
impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_
fwd_
splitk_impl.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
example/27_layernorm2d_fwd/layernorm2d_fwd_fp16.cpp
0 → 100644
View file @
7c284291
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
SaveMeanInvStdDataType
=
float
;
using
ComputeDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
#define SAVE_MEAN_INV_STD
constexpr
int
Rank
=
2
;
constexpr
int
NumReduceDim
=
1
;
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationFwdImpl
<
XDataType
,
GammaDataType
,
BetaDataType
,
ComputeDataType
,
YDataType
,
SaveMeanInvStdDataType
,
PassThrough
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// ClusterM
32
,
// ClusterK
1
,
// SliceM
8
,
// SliceK
1
,
// XYVectorDim (0=M, 1=K)
8
,
// SrcScalarPerVector
1
,
// GammaVecDim (0=M, 1=K)
8
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
8
,
// BetaScalarPerVector
8
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
#include "run_layernorm_example.inc"
int
main
()
{
return
run_layernorm2d_fwd_example
<
DeviceInstance
>
();
}
Prev
1
2
3
4
5
…
9
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment