Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
76f2b6cd
Commit
76f2b6cd
authored
Jul 14, 2023
by
danyao12
Browse files
merge develop to attn-train-develop-qloop
parents
9b4c780a
1ee99dca
Changes
531
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1608 additions
and
24 deletions
+1608
-24
example/46_gemm_add_multiply/README.md
example/46_gemm_add_multiply/README.md
+26
-0
example/46_gemm_add_multiply/common.hpp
example/46_gemm_add_multiply/common.hpp
+102
-0
example/46_gemm_add_multiply/gemm_add_multiply_dl_fp16.cpp
example/46_gemm_add_multiply/gemm_add_multiply_dl_fp16.cpp
+47
-0
example/46_gemm_add_multiply/gemm_add_multiply_xdl_fp16.cpp
example/46_gemm_add_multiply/gemm_add_multiply_xdl_fp16.cpp
+47
-0
example/46_gemm_add_multiply/run_gemm_add_multiply_example.inc
...le/46_gemm_add_multiply/run_gemm_add_multiply_example.inc
+139
-0
example/47_gemm_bias_softmax_gemm_permute/CMakeLists.txt
example/47_gemm_bias_softmax_gemm_permute/CMakeLists.txt
+8
-0
example/47_gemm_bias_softmax_gemm_permute/gemm_bias_softmax_gemm_permute.cpp
...s_softmax_gemm_permute/gemm_bias_softmax_gemm_permute.cpp
+409
-0
example/48_pool3d_fwd/CMakeLists.txt
example/48_pool3d_fwd/CMakeLists.txt
+2
-0
example/48_pool3d_fwd/pool3d_fwd_common.hpp
example/48_pool3d_fwd/pool3d_fwd_common.hpp
+187
-0
example/48_pool3d_fwd/pool3d_fwd_fp16.cpp
example/48_pool3d_fwd/pool3d_fwd_fp16.cpp
+83
-0
example/49_maxpool2d_bwd/CMakeLists.txt
example/49_maxpool2d_bwd/CMakeLists.txt
+3
-0
example/49_maxpool2d_bwd/maxpool2d_bwd_bf16.cpp
example/49_maxpool2d_bwd/maxpool2d_bwd_bf16.cpp
+62
-0
example/49_maxpool2d_bwd/maxpool2d_bwd_common.hpp
example/49_maxpool2d_bwd/maxpool2d_bwd_common.hpp
+222
-0
example/49_maxpool2d_bwd/maxpool2d_bwd_fp16.cpp
example/49_maxpool2d_bwd/maxpool2d_bwd_fp16.cpp
+62
-0
example/49_maxpool2d_bwd/maxpool2d_bwd_fp32.cpp
example/49_maxpool2d_bwd/maxpool2d_bwd_fp32.cpp
+62
-0
example/50_put_element/CMakeLists.txt
example/50_put_element/CMakeLists.txt
+1
-0
example/50_put_element/put_element_fp16.cpp
example/50_put_element/put_element_fp16.cpp
+88
-0
include/ck/ck.hpp
include/ck/ck.hpp
+56
-22
include/ck/host_utility/device_prop.hpp
include/ck/host_utility/device_prop.hpp
+1
-1
include/ck/host_utility/hip_check_error.hpp
include/ck/host_utility/hip_check_error.hpp
+1
-1
No files found.
Too many changes to show.
To preserve performance only
531 of 531+
files are displayed.
Plain diff
Email patch
example/46_gemm_add_multiply/README.md
0 → 100644
View file @
76f2b6cd
# Instructions for ```example_gemm_add_multiply_dl_fp16```
## Run ```example_gemm_add_multiply_dl_fp16```
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: time kernel (0=no, 1=yes)
#arg4 to 11: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD0, StrideD1, StrideE"
./bin/example_gemm_add_multiply_dl_fp16 1 1 1
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
a_m_k: dim 2, lengths {3840, 4096}, strides {4096, 1}
b_k_n: dim 2, lengths {4096, 4096}, strides {4096, 1}
d0_m_n: dim 2, lengths {3840, 4096}, strides {0, 1}
d1_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
e_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
arg.a_grid_desc_k0_m0_m1_k1_{2048, 3840, 2}
arg.b_grid_desc_k0_n0_n1_k1_{2048, 4096, 2}
arg.e_grid_desc_m_n_{ 3840, 4096}
launch_and_time_kernel: grid_dim {960, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 3.99904 ms, 32.22 TFlops, 31.9913 GB/s, DeviceGemmMultipleD_Dl<256, 128, 128, 16, 2, 4, 4, 1>
```
example/46_gemm_add_multiply/common.hpp
0 → 100644
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <algorithm>
#include <cstddef>
#include <iostream>
#include <stdexcept>
#include <string>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddMultiply
=
ck
::
tensor_operation
::
element_wise
::
AddMultiply
;
using
BF16
=
ck
::
bhalf_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
I8
=
int8_t
;
using
I32
=
int32_t
;
struct
ProblemSize
final
{
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideD0
=
0
;
ck
::
index_t
StrideD1
=
4096
;
ck
::
index_t
StrideE
=
4096
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
};
inline
bool
parse_cmd_args
(
int
argc
,
char
*
argv
[],
ProblemSize
&
problem_size
,
ExecutionConfig
&
config
)
{
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
12
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
problem_size
.
M
=
std
::
stoi
(
argv
[
4
]);
problem_size
.
N
=
std
::
stoi
(
argv
[
5
]);
problem_size
.
K
=
std
::
stoi
(
argv
[
6
]);
problem_size
.
StrideA
=
std
::
stoi
(
argv
[
7
]);
problem_size
.
StrideB
=
std
::
stoi
(
argv
[
8
]);
problem_size
.
StrideD0
=
std
::
stoi
(
argv
[
9
]);
problem_size
.
StrideD1
=
std
::
stoi
(
argv
[
10
]);
problem_size
.
StrideE
=
std
::
stoi
(
argv
[
11
]);
}
else
{
std
::
cerr
<<
"arg1: verification (0=no, 1=yes)"
<<
std
::
endl
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<<
std
::
endl
<<
"arg3: time kernel (0=no, 1=yes)"
<<
std
::
endl
<<
"arg4 to 10: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD0, StrideD1, "
"StrideE"
<<
std
::
endl
;
return
false
;
}
return
true
;
}
example/46_gemm_add_multiply/gemm_add_multiply_dl_fp16.cpp
0 → 100644
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_dl.hpp"
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
D0DataType
=
F16
;
using
D1DataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
,
D1DataType
>
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Row
;
using
D0Layout
=
Row
;
using
D1Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
,
D1Layout
>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AddMultiply
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
// ##################| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| DsData| EData| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ##################| | | | | Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ##################| | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ##################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Dl
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
256
,
128
,
128
,
16
,
2
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
2
,
1
,
4
,
2
>
,
S
<
8
,
1
,
32
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
4
,
2
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
AccDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
#include "run_gemm_add_multiply_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_add_multiply_example
(
argc
,
argv
);
}
example/46_gemm_add_multiply/gemm_add_multiply_xdl_fp16.cpp
0 → 100644
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
D0DataType
=
F16
;
using
D1DataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
,
D1DataType
>
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Row
;
using
D0Layout
=
Row
;
using
D1Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
,
D1Layout
>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AddMultiply
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
DsLayout
,
Row
,
F16
,
F16
,
F32
,
F16
,
DsDataType
,
F16
,
PassThrough
,
PassThrough
,
CDEElementOp
,
GemmDefault
,
1
,
128
,
128
,
128
,
32
,
8
,
2
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
AccDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
#include "run_gemm_add_multiply_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_add_multiply_example
(
argc
,
argv
);
}
example/46_gemm_add_multiply/run_gemm_add_multiply_example.inc
0 → 100644
View file @
76f2b6cd
#pragma once
bool
run_gemm_add_multiply
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
using
namespace
ck
::
literals
;
auto
&
[
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideD0
,
StrideD1
,
StrideE
]
=
problem_size
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
constexpr
(
std
::
is_same_v
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1_
uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1_
uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
D0DataType
>
d0_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD0
,
D0Layout
{}));
Tensor
<
D1DataType
>
d1_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD1
,
D1Layout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_m_n: "
<<
d0_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_m_n: "
<<
d1_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
5
,
5
});
d1_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D1DataType
>
{
-
1
,
1
});
break
;
default
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
d1_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
0.0
,
1.0
});
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
d0_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_m_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_m_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
{
StrideD0
,
StrideD1
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
"wrong! this device_op instance does not support this problem"
<<
std
::
endl
;
return
true
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
std
::
size_t
flop
=
2_
uz
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
D0DataType
)
*
N
+
sizeof
(
D1DataType
)
*
M
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
device_op
.
GetTypeString
()
<<
std
::
endl
;
if
(
config
.
do_verification
)
{
Tensor
<
AccDataType
>
c_m_n
({
M
,
N
});
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d0_m_n
(
m
,
n
),
d1_m_n
(
m
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
);
}
return
true
;
}
bool
run_gemm_add_multiply_example
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
return
!
parse_cmd_args
(
argc
,
argv
,
problem_size
,
config
)
||
run_gemm_add_multiply
(
problem_size
,
config
);
}
example/47_gemm_bias_softmax_gemm_permute/CMakeLists.txt
0 → 100644
View file @
76f2b6cd
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_example_executable
(
example_gemm_bias_softmax_gemm_permute gemm_bias_softmax_gemm_permute.cpp
)
set
(
target 1
)
endif
()
endforeach
()
example/47_gemm_bias_softmax_gemm_permute/gemm_bias_softmax_gemm_permute.cpp
0 → 100644
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
B0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
C0DEElementOp
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
using
Acc0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
B1ElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKOPadding
;
constexpr
static
auto
MaskingSpec
=
ck
::
tensor_operation
::
device
::
MaskingSpecialization
::
MaskDisabled
;
static
constexpr
auto
TensorSpecA
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB0
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB1
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecC
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F16
;
using
B0DataType
=
F16
;
using
B1DataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
CDataType
=
F16
;
using
D0DataType
=
F16
;
using
Acc0BiasDataType
=
ck
::
Tuple
<
D0DataType
>
;
using
Acc1BiasDataType
=
ck
::
Tuple
<>
;
static
constexpr
ck
::
index_t
NumDimG
=
2
;
static
constexpr
ck
::
index_t
NumDimM
=
1
;
static
constexpr
ck
::
index_t
NumDimN
=
1
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
static
constexpr
ck
::
index_t
NumDimO
=
1
;
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc1BiasDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
C0DEElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
256
,
128
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
64
,
// Gemm1NPerBlock
32
,
// Gemm1KPerBlock
8
,
// AK1
8
,
// BK1
2
,
// B1K1
32
,
// MPerXDL
32
,
// NPerXDL
1
,
// MXdlPerWave
4
,
// NXdlPerWave
2
,
// Gemm1NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
// BBlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
// B1BlockTransfer
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
// CShuffleMXdlPerWavePerShuffle
2
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
,
// CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec
,
// MaskingSpecialization
1
>
;
// Ref Gemm0: fp16 in, fp32 out
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B0DataType
,
AccDataType
,
AccDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
>
;
// Ref Softmax: fp32 in, fp16 out
using
ReferenceSoftmaxInstance
=
ck
::
tensor_operation
::
host
::
ReferenceSoftmax
<
AccDataType
,
ADataType
,
AccDataType
>
;
// Ref Gemm1: fp16 in, fp16 out
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
CDataType
,
AccDataType
,
AElementOp
,
B1ElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
G0
=
3
;
int
G1
=
2
;
int
M
=
1024
;
int
N
=
1024
;
int
K
=
64
;
int
O
=
64
;
float
alpha
=
1
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
11
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
O
=
std
::
stoi
(
argv
[
7
]);
G0
=
std
::
stoi
(
argv
[
8
]);
G1
=
std
::
stoi
(
argv
[
9
]);
alpha
=
std
::
stof
(
argv
[
10
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 11: M, N, K, O, G0, G1
\n
"
);
printf
(
"arg10: scale (alpha)
\n
"
);
exit
(
0
);
}
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
G1
,
M
,
K
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
{
M
*
G1
*
K
,
K
,
G1
*
K
,
1
};
// A layout [G0, M, G1, K]
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_lengths
{
G0
,
G1
,
N
,
K
};
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_strides
{
N
*
G1
*
K
,
K
,
G1
*
K
,
1
};
// B0 layout [G0, N, G1, K]
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_lengths
{
G0
,
G1
,
O
,
N
};
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_strides
{
N
*
G1
*
O
,
O
,
1
,
G1
*
O
};
// B1 layout [G0, N, G1, O]
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_lengths
{
G0
,
G1
,
M
,
O
};
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_strides
{
M
*
G1
*
O
,
O
,
G1
*
O
,
1
};
// C layout [G0, M, G1, O]
// D layout [G0, M, G1, N]
std
::
vector
<
ck
::
index_t
>
d0_gs_ms_ns_lengths
{
G0
,
G1
,
M
,
N
};
std
::
vector
<
ck
::
index_t
>
d0_gs_ms_ns_strides
{
M
*
G1
*
N
,
N
,
G1
*
N
,
1
};
Tensor
<
ADataType
>
a_gs_ms_ks
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
);
Tensor
<
B0DataType
>
b0_gs_ns_ks
(
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
);
Tensor
<
B1DataType
>
b1_gs_os_ns
(
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
);
Tensor
<
D0DataType
>
d0_gs_ms_ns
(
d0_gs_ms_ns_lengths
,
d0_gs_ms_ns_strides
);
Tensor
<
CDataType
>
c_gs_ms_os_host_result
(
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
);
Tensor
<
CDataType
>
c_gs_ms_os_device_result
(
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
);
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_gs_ns_ks: "
<<
b0_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_gs_os_ns: "
<<
b1_gs_os_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_gs_ms_os: "
<<
c_gs_ms_os_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
d0_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
2
,
2
});
break
;
case
2
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
d0_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
1
,
1
});
break
;
case
3
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
d0_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
D0DataType
>
{
1
});
break
;
default:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
2
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
d0_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
D0DataType
>
{
1
});
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
G0
*
G1
*
M
*
K
);
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
G0
*
G1
*
N
*
K
);
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
G0
*
G1
*
M
*
N
);
DeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
G0
*
G1
*
O
*
N
);
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
G0
*
G1
*
M
*
O
);
a_device_buf
.
ToDevice
(
a_gs_ms_ks
.
mData
.
data
());
b0_device_buf
.
ToDevice
(
b0_gs_ns_ks
.
mData
.
data
());
b1_device_buf
.
ToDevice
(
b1_gs_os_ns
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_gs_ms_ns
.
mData
.
data
());
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
a_element_op
=
AElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
auto
c0de_element_op
=
C0DEElementOp
{
alpha
};
auto
acc0_element_op
=
Acc0ElementOp
{};
auto
b1_element_op
=
B1ElementOp
{};
auto
c_element_op
=
CElementOp
{};
auto
argument
=
device_op
.
MakeArgument
(
static_cast
<
const
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
B0DataType
*>
(
b0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
B1DataType
*>
(
b1_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
std
::
array
<
void
*
,
1
>
{
d0_device_buf
.
GetDeviceBuffer
()},
// p_acc0_biases
{},
// p_acc1_biases
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
,
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
,
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d0_gs_ms_ns_lengths
},
// acc0_biases_gs_ms_ns_lengths
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d0_gs_ms_ns_strides
},
// acc0_biases_gs_ms_ns_strides
{},
// acc1_biases_gs_ms_os_lengths
{},
// acc1_biases_gs_ms_os_strides
a_element_op
,
b0_element_op
,
c0de_element_op
,
b1_element_op
,
c_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
ck
::
index_t
BatchCount
=
G0
*
G1
;
std
::
size_t
flop
=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
BatchCount
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
+
sizeof
(
CDataType
)
*
M
*
O
+
sizeof
(
D0DataType
)
*
M
*
N
)
*
BatchCount
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_gs_ms_os_device_result
.
mData
.
data
());
Tensor
<
ADataType
>
a_g_m_k
({
BatchCount
,
M
,
K
});
Tensor
<
B0DataType
>
b0_g_k_n
({
BatchCount
,
K
,
N
});
Tensor
<
B1DataType
>
b1_g_n_o
({
BatchCount
,
N
,
O
});
Tensor
<
AccDataType
>
acc0_g_m_n
({
BatchCount
,
M
,
N
});
// scratch object after gemm0
Tensor
<
ADataType
>
a1_g_m_n
({
BatchCount
,
M
,
N
});
// scratch object after softmax
Tensor
<
CDataType
>
c_g_m_o_host_result
({
BatchCount
,
M
,
O
});
// scratch object after gemm1
Tensor
<
D0DataType
>
d0_g_m_n
({
BatchCount
,
M
,
N
});
// permute
a_gs_ms_ks
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
a_g_m_k
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
b0_gs_ns_ks
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
b0_g_k_n
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
3
],
idx
[
2
])
=
self
(
idx
);
});
b1_gs_os_ns
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
b1_g_n_o
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
3
],
idx
[
2
])
=
self
(
idx
);
});
d0_gs_ms_ns
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
d0_g_m_n
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
// gemm 0
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
a_g_m_k
,
b0_g_k_n
,
acc0_g_m_n
,
a_element_op
,
b0_element_op
,
acc0_element_op
);
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
acc0_g_m_n
.
ForEach
([
&
](
auto
&
,
auto
idx
)
{
c0de_element_op
(
acc0_g_m_n
(
idx
),
acc0_g_m_n
(
idx
),
d0_g_m_n
(
idx
));
});
// masking
const
auto
mask
=
DeviceOpInstance
::
C0MatrixMask
(
N
);
acc0_g_m_n
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
if
(
mask
.
IsMaskedElement
(
idx
[
1
],
idx
[
2
]))
self
(
idx
)
=
-
ck
::
NumericLimits
<
float
>::
Infinity
();
});
// softmax
auto
ref_softmax
=
ReferenceSoftmaxInstance
{};
auto
ref_softmax_invoker
=
ref_softmax
.
MakeInvoker
();
auto
ref_softmax_argument
=
ref_softmax
.
MakeArgument
(
acc0_g_m_n
,
a1_g_m_n
,
1
,
0
,
{
2
});
ref_softmax_invoker
.
Run
(
ref_softmax_argument
);
// gemm1
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
a1_g_m_n
,
b1_g_n_o
,
c_g_m_o_host_result
,
PassThrough
{},
b1_element_op
,
c_element_op
);
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
// permute
c_gs_ms_os_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
const
size_t
&
g0
=
idx
[
0
];
const
size_t
&
g1
=
idx
[
1
];
const
size_t
g
=
g0
*
G1
+
g1
;
self
(
idx
)
=
c_g_m_o_host_result
(
g
,
idx
[
2
],
idx
[
3
]);
});
// default absolute error and relative error is 0.001
double
rtol
=
1e-3
;
double
atol
=
1e-3
;
return
ck
::
utils
::
check_err
(
c_gs_ms_os_device_result
.
mData
,
c_gs_ms_os_host_result
.
mData
,
"Error: Incorrect results!"
,
rtol
,
atol
)
?
0
:
1
;
}
return
0
;
}
example/48_pool3d_fwd/CMakeLists.txt
0 → 100644
View file @
76f2b6cd
add_example_executable
(
example_pool3d_fwd_fp16 pool3d_fwd_fp16.cpp
)
example/48_pool3d_fwd/pool3d_fwd_common.hpp
0 → 100644
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/utility/reduction_functions_accumulate.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool3d_fwd_ndhwc_ndhwc.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp"
template
<
typename
InDataType
,
typename
OutDataType
,
typename
ComputeDataType
,
typename
IndexDataType
,
typename
InLayout
,
typename
OutLayout
,
ck
::
ReduceTensorOp
ReduceOpId
,
bool
PropagateNan
,
bool
OutputIndex
>
bool
pool3d_test
(
bool
do_verification
,
bool
time_kernel
,
ck
::
index_t
N
,
ck
::
index_t
C
,
ck
::
index_t
Z
,
ck
::
index_t
Y
,
ck
::
index_t
X
,
ck
::
index_t
Di
,
ck
::
index_t
Hi
,
ck
::
index_t
Wi
,
ck
::
index_t
window_stride_d
,
ck
::
index_t
window_stride_h
,
ck
::
index_t
window_stride_w
,
ck
::
index_t
in_left_pad_d
,
ck
::
index_t
in_left_pad_h
,
ck
::
index_t
in_left_pad_w
,
ck
::
index_t
in_right_pad_d
,
ck
::
index_t
in_right_pad_h
,
ck
::
index_t
in_right_pad_w
)
{
using
DevicePoolFwdInstance
=
ck
::
tensor_operation
::
device
::
DevicePool3dFwd_Input_N_Di_Hi_Wi_C_Output_N_Do_Ho_Wo_C
<
InDataType
,
// InDataType
OutDataType
,
// OutDataType
IndexDataType
,
// IndexDataType
ComputeDataType
,
// ComputeDataType
ReduceOpId
,
OutputIndex
,
64
,
// BlockSize
64
,
// ReduceMThreadClusterSize
1
,
// ReduceKThreadClusterSize
4
,
// ReduceMThreadSliceSize
1
,
// ReduceKThreadSliceSize
4
>
;
// InSrcOutDstVectorSize
const
ck
::
index_t
Do
=
(
Di
+
in_left_pad_d
+
in_right_pad_d
-
Z
)
/
window_stride_d
+
1
;
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
Y
)
/
window_stride_h
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
X
)
/
window_stride_w
+
1
;
const
std
::
vector
<
ck
::
index_t
>
window_spatial_lengths
{
Z
,
Y
,
X
};
const
std
::
vector
<
ck
::
index_t
>
window_strides
{
window_stride_d
,
window_stride_h
,
window_stride_w
};
const
std
::
vector
<
ck
::
index_t
>
input_left_pads
{
in_left_pad_d
,
in_left_pad_h
,
in_left_pad_w
};
const
std
::
vector
<
ck
::
index_t
>
input_right_pads
{
in_right_pad_d
,
in_right_pad_h
,
in_right_pad_w
};
// tensor layout
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
D
,
std
::
size_t
H
,
std
::
size_t
W
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCDHW
>::
value
)
{
return
HostTensorDescriptor
({
N_
,
C_
,
D
,
H
,
W
},
{
C_
*
D
*
H
*
W
,
D
*
H
*
W
,
H
*
W
,
W
,
1
_uz
});
}
else
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NDHWC
>::
value
)
{
return
HostTensorDescriptor
({
N_
,
C_
,
D
,
H
,
W
},
{
D
*
C_
*
H
*
W
,
1
_uz
,
C_
*
H
*
W
,
W
*
C_
,
C_
});
}
};
Tensor
<
InDataType
>
in_n_c_di_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Di
,
Hi
,
Wi
,
InLayout
{}));
Tensor
<
OutDataType
>
out_n_c_do_ho_wo_host
(
f_host_tensor_descriptor
(
N
,
C
,
Do
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
IndexDataType
>
out_indices_n_c_do_ho_wo_host
(
f_host_tensor_descriptor
(
N
,
C
,
Do
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
OutDataType
>
out_n_c_do_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Do
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
IndexDataType
>
out_indices_n_c_do_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Do
,
Ho
,
Wo
,
OutLayout
{}));
std
::
cout
<<
"in_n_c_di_hi_wi: "
<<
in_n_c_di_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_c_do_ho_wo: "
<<
out_n_c_do_ho_wo_host
.
mDesc
<<
std
::
endl
;
in_n_c_di_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
1.0
,
1.0
});
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_di_hi_wi
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_c_do_ho_wo_device
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_indices_device_buf
(
sizeof
(
IndexDataType
)
*
out_indices_n_c_do_ho_wo_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in_n_c_di_hi_wi
.
mData
.
data
());
auto
pool
=
DevicePoolFwdInstance
{};
auto
invoker_ptr
=
pool
.
MakeInvokerPointer
();
auto
argument_ptr
=
pool
.
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
out_indices_device_buf
.
GetDeviceBuffer
()),
{
N
,
C
,
Di
,
Hi
,
Wi
},
{
Z
,
Y
,
X
},
{
N
,
C
,
Do
,
Ho
,
Wo
},
{
Di
*
C
*
Hi
*
Wi
,
1
,
C
*
Hi
*
Wi
,
Wi
*
C
,
C
},
{
Do
*
C
*
Ho
*
Wo
,
1
,
C
*
Ho
*
Wo
,
Wo
*
C
,
C
},
{
Do
*
C
*
Ho
*
Wo
,
1
,
C
*
Ho
*
Wo
,
Wo
*
C
,
C
},
window_strides
,
input_left_pads
,
input_right_pads
,
{
2
,
3
,
4
});
if
(
!
pool
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
throw
std
::
runtime_error
(
"wrong! device_op with the specified compilation parameters does "
"not support this problem"
);
}
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
cout
<<
"Perf: "
<<
ave_time
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
using
ReferencePoolingFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferencePoolingFwd
<
5
,
3
,
InDataType
,
OutDataType
,
ComputeDataType
,
IndexDataType
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
;
auto
ref_pooling
=
ReferencePoolingFwdInstance
{};
auto
ref_pooling_invoker
=
ref_pooling
.
MakeInvoker
();
auto
ref_pooling_argument
=
ref_pooling
.
MakeArgument
(
in_n_c_di_hi_wi
,
out_n_c_do_ho_wo_host
,
out_indices_n_c_do_ho_wo_host
,
window_spatial_lengths
,
window_strides
,
input_left_pads
,
input_right_pads
);
ref_pooling_invoker
.
Run
(
ref_pooling_argument
);
out_device_buf
.
FromDevice
(
out_n_c_do_ho_wo_device
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out_n_c_do_ho_wo_device
,
out_n_c_do_ho_wo_host
);
if
constexpr
(
OutputIndex
)
{
out_indices_device_buf
.
FromDevice
(
out_indices_n_c_do_ho_wo_device
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out_indices_n_c_do_ho_wo_device
,
out_indices_n_c_do_ho_wo_host
);
};
}
return
(
pass
);
};
example/48_pool3d_fwd/pool3d_fwd_fp16.cpp
0 → 100644
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "pool3d_fwd_common.hpp"
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
ComputeDataType
=
float
;
using
IndexDataType
=
int32_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWC
;
#if 1
static
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
MAX
;
#else
static
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
AVG
;
#endif
static
constexpr
bool
OutputIndex
=
false
;
static
constexpr
bool
PropagateNan
=
false
;
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
// Pool shape
ck
::
index_t
N
=
2
;
ck
::
index_t
C
=
32
;
ck
::
index_t
Z
=
2
;
ck
::
index_t
Y
=
2
;
ck
::
index_t
X
=
2
;
ck
::
index_t
Di
=
30
;
ck
::
index_t
Hi
=
30
;
ck
::
index_t
Wi
=
30
;
ck
::
index_t
window_stride_d
=
2
;
ck
::
index_t
window_stride_h
=
2
;
ck
::
index_t
window_stride_w
=
2
;
ck
::
index_t
in_left_pad_d
=
1
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_d
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
bool
pass
=
pool3d_test
<
InDataType
,
OutDataType
,
ComputeDataType
,
IndexDataType
,
InLayout
,
OutLayout
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
do_verification
,
time_kernel
,
N
,
C
,
Z
,
Y
,
X
,
Di
,
Hi
,
Wi
,
window_stride_d
,
window_stride_h
,
window_stride_w
,
in_left_pad_d
,
in_left_pad_h
,
in_left_pad_w
,
in_right_pad_d
,
in_right_pad_h
,
in_right_pad_w
);
return
(
pass
?
0
:
1
);
}
example/49_maxpool2d_bwd/CMakeLists.txt
0 → 100644
View file @
76f2b6cd
add_example_executable
(
example_maxpool2d_bwd_bf16 maxpool2d_bwd_bf16.cpp
)
add_example_executable
(
example_maxpool2d_bwd_fp16 maxpool2d_bwd_fp16.cpp
)
add_example_executable
(
example_maxpool2d_bwd_fp32 maxpool2d_bwd_fp32.cpp
)
example/49_maxpool2d_bwd/maxpool2d_bwd_bf16.cpp
0 → 100644
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "maxpool2d_bwd_common.hpp"
using
InDataType
=
ck
::
bhalf_t
;
using
OutDataType
=
ck
::
bhalf_t
;
using
IndexDataType
=
int32_t
;
using
ComputeDataType
=
float
;
using
DInDataType
=
ck
::
bhalf_t
;
using
DOutDataType
=
ck
::
bhalf_t
;
static
constexpr
bool
PropagateNan
=
false
;
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
// Pool shape
ck
::
index_t
N
=
1
;
ck
::
index_t
C
=
1
;
ck
::
index_t
Y
=
3
;
ck
::
index_t
X
=
3
;
ck
::
index_t
Hi
=
32
;
ck
::
index_t
Wi
=
32
;
ck
::
index_t
window_stride_h
=
1
;
ck
::
index_t
window_stride_w
=
1
;
ck
::
index_t
in_left_pad_h
=
0
;
ck
::
index_t
in_left_pad_w
=
0
;
ck
::
index_t
in_right_pad_h
=
0
;
ck
::
index_t
in_right_pad_w
=
0
;
bool
pass
=
maxpool_bwd_test
<
InDataType
,
OutDataType
,
IndexDataType
,
ComputeDataType
,
DInDataType
,
DOutDataType
,
PropagateNan
>
(
do_verification
,
time_kernel
,
N
,
C
,
Y
,
X
,
Hi
,
Wi
,
window_stride_h
,
window_stride_w
,
in_left_pad_h
,
in_left_pad_w
,
in_right_pad_h
,
in_right_pad_w
);
return
(
pass
?
0
:
1
);
}
example/49_maxpool2d_bwd/maxpool2d_bwd_common.hpp
0 → 100644
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_index_pool_bwd_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_maxpool_bwd.hpp"
template
<
typename
InDataType
,
typename
OutDataType
,
typename
IndexDataType
,
typename
ComputeDataType
,
typename
DInDataType
,
typename
DOutDataType
,
bool
PropagateNan
>
bool
maxpool_bwd_test
(
bool
do_verification
,
bool
time_kernel
,
ck
::
index_t
N
,
ck
::
index_t
C
,
ck
::
index_t
Y
,
ck
::
index_t
X
,
ck
::
index_t
Hi
,
ck
::
index_t
Wi
,
ck
::
index_t
window_stride_h
,
ck
::
index_t
window_stride_w
,
ck
::
index_t
in_left_pad_h
,
ck
::
index_t
in_left_pad_w
,
ck
::
index_t
in_right_pad_h
,
ck
::
index_t
in_right_pad_w
)
{
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DevicePoolFwdInstance
=
ck
::
tensor_operation
::
device
::
DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C
<
InDataType
,
// InDataType
OutDataType
,
// OutDataType
IndexDataType
,
// IndexDataType
ComputeDataType
,
// ComputeDataType
ck
::
ReduceTensorOp
::
MAX
,
true
,
// OutputIndex
64
,
// BlockSize
64
,
// ReduceMThreadClusterSize
1
,
// ReduceKThreadClusterSize
4
,
// ReduceMThreadSliceSize
1
,
// ReduceKThreadSliceSize
1
>
;
// InSrcOutDstVectorSize
using
DeviceMaxPoolBwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceIndexPoolBwdImpl
<
DOutDataType
,
IndexDataType
,
DInDataType
,
4
>
;
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
Y
)
/
window_stride_h
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
X
)
/
window_stride_w
+
1
;
const
std
::
vector
<
ck
::
index_t
>
window_spatial_lengths
{
Y
,
X
};
const
std
::
vector
<
ck
::
index_t
>
window_strides
{
window_stride_h
,
window_stride_w
};
const
std
::
vector
<
ck
::
index_t
>
input_left_pads
{
in_left_pad_h
,
in_left_pad_w
};
const
std
::
vector
<
ck
::
index_t
>
input_right_pads
{
in_right_pad_h
,
in_right_pad_w
};
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
)
{
using
namespace
ck
::
literals
;
// reference need Tensor with NCHW order
return
HostTensorDescriptor
({
N_
,
C_
,
H
,
W
},
{
C_
*
H
*
W
,
1
_uz
,
W
*
C_
,
C_
});
};
// in
Tensor
<
InDataType
>
in_n_c_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
));
// out
Tensor
<
OutDataType
>
out_n_c_ho_wo_host
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
));
Tensor
<
OutDataType
>
out_n_c_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
));
// indices
Tensor
<
IndexDataType
>
indices_n_c_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
));
Tensor
<
IndexDataType
>
indices_n_c_ho_wo_host
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
));
// dout
Tensor
<
DOutDataType
>
dout_n_c_ho_wo
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
));
// din
Tensor
<
DInDataType
>
din_n_c_hi_wi_host
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
));
Tensor
<
DInDataType
>
din_n_c_hi_wi_device
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_c_ho_wo: "
<<
out_n_c_ho_wo_host
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"indices_n_c_ho_wo: "
<<
indices_n_c_ho_wo_host
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"dout_n_c_ho_wo: "
<<
dout_n_c_ho_wo
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"din_n_c_hi_wi: "
<<
din_n_c_hi_wi_host
.
mDesc
<<
std
::
endl
;
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
1.0
,
1.0
});
dout_n_c_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_3
<
DOutDataType
>
{
-
1.0
,
1.0
});
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_c_ho_wo_device
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
indices_device_buf
(
sizeof
(
IndexDataType
)
*
indices_n_c_ho_wo_device
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dout_device_buf
(
sizeof
(
DOutDataType
)
*
dout_n_c_ho_wo
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
din_device_buf
(
sizeof
(
DInDataType
)
*
din_n_c_hi_wi_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
dout_device_buf
.
ToDevice
(
dout_n_c_ho_wo
.
mData
.
data
());
auto
pool_fwd
=
DevicePoolFwdInstance
{};
auto
pool_fwd_invoker_ptr
=
pool_fwd
.
MakeInvokerPointer
();
auto
pool_fwd_argument_ptr
=
pool_fwd
.
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
indices_device_buf
.
GetDeviceBuffer
()),
{
N
,
C
,
Hi
,
Wi
},
window_spatial_lengths
,
{
N
,
C
,
Ho
,
Wo
},
{
C
*
Hi
*
Wi
,
1
,
Wi
*
C
,
C
},
{
C
*
Ho
*
Wo
,
1
,
Wo
*
C
,
C
},
{
C
*
Ho
*
Wo
,
1
,
Wo
*
C
,
C
},
window_strides
,
input_left_pads
,
input_right_pads
,
{
2
,
3
});
if
(
!
pool_fwd
.
IsSupportedArgument
(
pool_fwd_argument_ptr
.
get
()))
{
throw
std
::
runtime_error
(
"wrong! pool_fwd with the specified compilation parameters does "
"not support this problem"
);
}
float
ave_time_fwd
=
pool_fwd_invoker_ptr
->
Run
(
pool_fwd_argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
auto
pool_bwd
=
DeviceMaxPoolBwdInstance
{};
auto
pool_bwd_invoker_ptr
=
pool_bwd
.
MakeInvokerPointer
();
auto
pool_bwd_argument_ptr
=
pool_bwd
.
MakeArgumentPointer
(
static_cast
<
DOutDataType
*>
(
dout_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
indices_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DInDataType
*>
(
din_device_buf
.
GetDeviceBuffer
()),
dout_n_c_ho_wo
.
mDesc
.
GetElementSpaceSize
(),
din_n_c_hi_wi_device
.
mDesc
.
GetElementSpaceSize
(),
window_spatial_lengths
,
window_strides
);
if
(
!
pool_bwd
.
IsSupportedArgument
(
pool_bwd_argument_ptr
.
get
()))
{
throw
std
::
runtime_error
(
"wrong! pool_bwd with the specified compilation parameters does "
"not support this problem"
);
}
size_t
pool_bwd_workspace_sz
=
pool_bwd
.
GetWorkSpaceSize
(
pool_bwd_argument_ptr
.
get
());
DeviceMem
pool_bwd_workspace_device_buf
(
pool_bwd_workspace_sz
);
pool_bwd
.
SetWorkSpacePointer
(
pool_bwd_argument_ptr
.
get
(),
pool_bwd_workspace_device_buf
.
GetDeviceBuffer
());
float
ave_time_bwd
=
pool_bwd_invoker_ptr
->
Run
(
pool_bwd_argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
cout
<<
"Pool fwd perf: "
<<
ave_time_fwd
<<
" ms"
<<
std
::
endl
;
std
::
cout
<<
"Pool bwd perf: "
<<
ave_time_bwd
<<
" ms"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
using
ReferencePoolingFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferencePoolingFwd
<
4
,
2
,
InDataType
,
OutDataType
,
ComputeDataType
,
IndexDataType
,
ck
::
ReduceTensorOp
::
MAX
,
PropagateNan
,
true
>
;
auto
ref_pooling_fwd
=
ReferencePoolingFwdInstance
{};
auto
ref_pooling_fwd_invoker
=
ref_pooling_fwd
.
MakeInvoker
();
auto
ref_pooling_fwd_argument
=
ref_pooling_fwd
.
MakeArgument
(
in_n_c_hi_wi
,
out_n_c_ho_wo_host
,
indices_n_c_ho_wo_host
,
window_spatial_lengths
,
window_strides
,
input_left_pads
,
input_right_pads
);
ref_pooling_fwd_invoker
.
Run
(
ref_pooling_fwd_argument
);
using
ReferencePoolingBwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceMaxPoolBwd
<
DOutDataType
,
IndexDataType
,
ComputeDataType
,
DInDataType
,
PassThrough
>
;
auto
ref_pooling_bwd
=
ReferencePoolingBwdInstance
{};
auto
ref_pooling_bwd_invoker
=
ref_pooling_bwd
.
MakeInvoker
();
auto
ref_pooling_bwd_argument
=
ref_pooling_bwd
.
MakeArgument
(
dout_n_c_ho_wo
,
indices_n_c_ho_wo_host
,
din_n_c_hi_wi_host
,
PassThrough
{});
ref_pooling_bwd_invoker
.
Run
(
ref_pooling_bwd_argument
);
out_device_buf
.
FromDevice
(
out_n_c_ho_wo_device
.
mData
.
data
());
indices_device_buf
.
FromDevice
(
indices_n_c_ho_wo_device
.
mData
.
data
());
din_device_buf
.
FromDevice
(
din_n_c_hi_wi_device
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out_n_c_ho_wo_device
,
out_n_c_ho_wo_host
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
indices_n_c_ho_wo_device
,
indices_n_c_ho_wo_host
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
din_n_c_hi_wi_device
,
din_n_c_hi_wi_host
);
}
return
(
pass
);
};
example/49_maxpool2d_bwd/maxpool2d_bwd_fp16.cpp
0 → 100644
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "maxpool2d_bwd_common.hpp"
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
IndexDataType
=
int32_t
;
using
ComputeDataType
=
float
;
using
DInDataType
=
ck
::
half_t
;
using
DOutDataType
=
ck
::
half_t
;
static
constexpr
bool
PropagateNan
=
false
;
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
// Pool shape
ck
::
index_t
N
=
1
;
ck
::
index_t
C
=
1
;
ck
::
index_t
Y
=
3
;
ck
::
index_t
X
=
3
;
ck
::
index_t
Hi
=
32
;
ck
::
index_t
Wi
=
32
;
ck
::
index_t
window_stride_h
=
1
;
ck
::
index_t
window_stride_w
=
1
;
ck
::
index_t
in_left_pad_h
=
0
;
ck
::
index_t
in_left_pad_w
=
0
;
ck
::
index_t
in_right_pad_h
=
0
;
ck
::
index_t
in_right_pad_w
=
0
;
bool
pass
=
maxpool_bwd_test
<
InDataType
,
OutDataType
,
IndexDataType
,
ComputeDataType
,
DInDataType
,
DOutDataType
,
PropagateNan
>
(
do_verification
,
time_kernel
,
N
,
C
,
Y
,
X
,
Hi
,
Wi
,
window_stride_h
,
window_stride_w
,
in_left_pad_h
,
in_left_pad_w
,
in_right_pad_h
,
in_right_pad_w
);
return
(
pass
?
0
:
1
);
}
example/49_maxpool2d_bwd/maxpool2d_bwd_fp32.cpp
0 → 100644
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "maxpool2d_bwd_common.hpp"
using
InDataType
=
float
;
using
OutDataType
=
float
;
using
IndexDataType
=
int32_t
;
using
ComputeDataType
=
float
;
using
DInDataType
=
float
;
using
DOutDataType
=
float
;
static
constexpr
bool
PropagateNan
=
false
;
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
// Pool shape
ck
::
index_t
N
=
1
;
ck
::
index_t
C
=
1
;
ck
::
index_t
Y
=
2
;
ck
::
index_t
X
=
2
;
ck
::
index_t
Hi
=
32
;
ck
::
index_t
Wi
=
32
;
ck
::
index_t
window_stride_h
=
2
;
ck
::
index_t
window_stride_w
=
2
;
ck
::
index_t
in_left_pad_h
=
0
;
ck
::
index_t
in_left_pad_w
=
0
;
ck
::
index_t
in_right_pad_h
=
0
;
ck
::
index_t
in_right_pad_w
=
0
;
bool
pass
=
maxpool_bwd_test
<
InDataType
,
OutDataType
,
IndexDataType
,
ComputeDataType
,
DInDataType
,
DOutDataType
,
PropagateNan
>
(
do_verification
,
time_kernel
,
N
,
C
,
Y
,
X
,
Hi
,
Wi
,
window_stride_h
,
window_stride_w
,
in_left_pad_h
,
in_left_pad_w
,
in_right_pad_h
,
in_right_pad_w
);
return
(
pass
?
0
:
1
);
}
example/50_put_element/CMakeLists.txt
0 → 100644
View file @
76f2b6cd
add_example_executable
(
example_put_element_fp16 put_element_fp16.cpp
)
example/50_put_element/put_element_fp16.cpp
0 → 100644
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_put_element_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
XDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
IndexDataType
=
int32_t
;
using
YElementwiseOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DevicePutElementImpl
<
XDataType
,
// XDataType
IndexDataType
,
// IndexDataType
YDataType
,
// YDataType
YElementwiseOp
,
ck
::
InMemoryDataOperationEnum
::
Set
,
1
>
;
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
int
N
=
1024
;
Tensor
<
XDataType
>
x
(
HostTensorDescriptor
{
N
,
1
});
Tensor
<
IndexDataType
>
indices
(
HostTensorDescriptor
{
N
,
1
});
Tensor
<
YDataType
>
y
(
HostTensorDescriptor
{
N
,
1
});
x
.
GenerateTensorValue
(
GeneratorTensor_3
<
XDataType
>
{
-
1.0
,
1.0
});
for
(
int
i
=
0
;
i
<
N
;
++
i
)
indices
(
i
)
=
i
;
DeviceMem
x_device_buf
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
y_device_buf
(
sizeof
(
YDataType
)
*
y
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
indices_device_buf
(
sizeof
(
IndexDataType
)
*
indices
.
mDesc
.
GetElementSpaceSize
());
x_device_buf
.
ToDevice
(
x
.
mData
.
data
());
indices_device_buf
.
ToDevice
(
indices
.
mData
.
data
());
auto
put_instance
=
DeviceInstance
{};
auto
put_invoker_ptr
=
put_instance
.
MakeInvokerPointer
();
auto
put_argument_ptr
=
put_instance
.
MakeArgumentPointer
(
static_cast
<
XDataType
*>
(
x_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
indices_device_buf
.
GetDeviceBuffer
()),
static_cast
<
YDataType
*>
(
y_device_buf
.
GetDeviceBuffer
()),
N
,
N
,
YElementwiseOp
{});
if
(
!
put_instance
.
IsSupportedArgument
(
put_argument_ptr
.
get
()))
{
throw
std
::
runtime_error
(
"argument is not supported!"
);
}
float
ave_time
=
put_invoker_ptr
->
Run
(
put_argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
cout
<<
"perf: "
<<
ave_time
<<
" ms"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
Tensor
<
YDataType
>
y_host
(
HostTensorDescriptor
{
N
,
1
});
for
(
int
i
=
0
;
i
<
N
;
++
i
)
{
IndexDataType
idx
=
indices
(
i
);
y_host
(
idx
)
=
x
(
i
);
}
y_device_buf
.
FromDevice
(
y
.
mData
.
data
());
pass
=
ck
::
utils
::
check_err
(
y
,
y_host
);
}
return
(
pass
?
0
:
1
);
}
include/ck/ck.hpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -18,36 +18,49 @@
#define CK_USE_LAUNCH_BOUNDS 1
#ifdef CK_USE_LAUNCH_BOUNDS
// for most kernels
#define CK_MAX_THREAD_PER_BLOCK 256
#define CK_MIN_BLOCK_PER_CU 2
// for wavelet GEMM kernel
#define CK_WAVELET_MAX_THREAD_PER_BLOCK 512
#define CK_WAVELET_MIN_BLOCK_PER_CU 2
#endif
// kernel attribute: amdgpu_waves_per_eu()
#ifdef CK_USE_WAVES_PER_EU
// for 1-wave kernels, control arguments of amdgpu_waves_per_eu() attribute
#ifndef CK_MIN_WAVES_PER_EU
#define CK_MIN_WAVES_PER_EU 0
#endif
// check GPU target
#ifdef __HIP_DEVICE_COMPILE__
#if !(defined(__gfx803__) || defined(__gfx900__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx90a__) || defined(__gfx1030__) || defined(__gfx1100__))
#error Not supported target
#ifndef CK_MAX_WAVES_PER_EU
#define CK_MAX_WAVES_PER_EU 0
#endif
#else
#define CK_USE_WAVES_PER_EU 0
#endif
// buffer resource
#ifndef __HIP_DEVICE_COMPILE__ // for host code
#define CK_BUFFER_RESOURCE_3RD_DWORD -1
#elif defined(__gfx803__) || defined(__gfx900__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx90a__) // for GPU code
defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || \
defined(__gfx942__) // for GPU code
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x00020000
#elif defined(__gfx1030__) // for GPU code
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x31014000
#elif defined(__gfx1100__) // for GPU code
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x100
20
000
#elif defined(__gfx1100__)
|| defined(__gfx1101__) || defined(__gfx1102__)
// for GPU code
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x
3
100
4
000
#endif
// FMA instruction
#ifndef __HIP_DEVICE_COMPILE__ // for host code, define nothing
#elif defined(__gfx803__) || defined(__gfx900__) // for GPU code
#define CK_USE_AMD_V_MAC_F32
#elif defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx
1030
__) // for GPU code
#elif defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) ||
defined(__gfx1030__) ||
\
defined(__gfx
940__) || defined(__gfx941__) || defined(__gfx942
__) // for GPU code
#define CK_USE_AMD_V_FMAC_F32
#define CK_USE_AMD_V_DOT2_F32_F16
#define CK_USE_AMD_V_DOT4_I32_I8
...
...
@@ -56,18 +69,23 @@
// MFMA instruction
#ifndef __HIP_DEVICE_COMPILE__ // for host code
#define CK_USE_AMD_MFMA
#elif defined(__gfx908__) || defined(__gfx90a__) // for GPU code
#elif defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || \
defined(__gfx942__) // for GPU code
#define CK_USE_AMD_MFMA
#endif
#if
defined(__gfx90a__)
#if
(
defined(__gfx90a__)
|| defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
#define CK_USE_AMD_MFMA_BF16_1K_OP
#endif
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
#define CK_USE_AMD_MFMA_GFX940
#endif
// WMMA instruction
#ifndef __HIP_DEVICE_COMPILE__ // for host code
#define CK_USE_AMD_WMMA
#elif defined(__gfx1100__) // for GPU code
#elif defined(__gfx1100__)
|| defined(__gfx1101__) || defined(__gfx1102__)
// for GPU code
#define CK_USE_AMD_WMMA
#endif
...
...
@@ -83,13 +101,15 @@
// buffer atomic add: floating point
#ifndef __HIP_DEVICE_COMPILE__ // for host code
#define CK_USE_AMD_BUFFER_ATOMIC_ADD_FLOAT 1
#elif defined(__gfx908__) || defined(__gfx90a__) // for GPU code
#elif defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || \
defined(__gfx942__) // for GPU code
#define CK_USE_AMD_BUFFER_ATOMIC_ADD_FLOAT 1
#else // for GPU code
#define CK_USE_AMD_BUFFER_ATOMIC_ADD_FLOAT 0
#endif
#if defined(__gfx90a__) // for GPU code
#if(defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || \
defined(__gfx942__)) // for GPU code
#define CK_USE_AMD_BUFFER_ATOMIC_MAX_FLOAT64 1
#else
#define CK_USE_AMD_BUFFER_ATOMIC_MAX_FLOAT64 0
...
...
@@ -143,6 +163,10 @@
#define CK_EXPERIMENTAL_INTER_WAVE_INSTANCES 1
// experimental feature: add instances using pipeline v2
#define CK_EXPERIMENTAL_PIPELINE_V2_INSTANCES 1
// experimental feature: optimize pipeline v2 by IGLP strategy (value=ID of strategy)
#ifndef CK_EXPERIMENTAL_PIPELINE_V2_IGLP_OPT
#define CK_EXPERIMENTAL_PIPELINE_V2_IGLP_OPT 0
#endif
// hack: have underlying assumption that need to be satsified, otherwise it's a bug
// hack for forcing register to keep idx_diff_low_const in SGPR. idx_diff_low_const must be
...
...
@@ -163,16 +187,26 @@
// tuning parameter
#define CK_WORKAROUND_SWDEV_325164 0
// workaround: a BF16 attention kernel for gfx908 is likely affected by a compiler issue
#ifdef __gfx908__
#define CK_WORKAROUND_SWDEV_XXXXXX_BF16_ATTEN_FWD_GFX908_ISSUE 1
#else // __gfx90a__, ...
#define CK_WORKAROUND_SWDEV_XXXXXX_BF16_ATTEN_FWD_GFX908_ISSUE 0
#endif // __gfx908__
// workaround: compiler not emiting reciprocal instruction frm __frcp_rn()
#define CK_WORKAROUND_SWDEV_383542 1
// workaround: compiler issue on gfx908
#define CK_WORKAROUND_SWDEV_388832 1
// workaround: Grouped Conv2d_bwd_data fails for already implemented instance
#define CK_WORKAROUND_SWDEV_3318619 0
// flag to enable (1) or disable (0) the debugging output in some kernels
#define DEBUG_LOG 0
// denorm test fix, required to work around dissue
#ifndef CK_WORKAROUND_DENORM_FIX
#define CK_WORKAROUND_DENORM_FIX 0
#elif
// enable only on MI200
#define CK_WORKAROUND_DENORM_FIX = CK_WORKAROUND_DENORM_FIX && defined(__gfx90a__)
#endif // CK_WORKAROUND_DENORM_FIX
namespace
ck
{
enum
struct
InMemoryDataOperationEnum
...
...
include/ck/host_utility/device_prop.hpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
include/ck/host_utility/hip_check_error.hpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
Prev
1
…
13
14
15
16
17
18
19
20
21
…
27
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment