Commit 76f2b6cd authored by danyao12's avatar danyao12
Browse files

merge develop to attn-train-develop-qloop

parents 9b4c780a 1ee99dca
# Instructions for ```example_gemm_add_multiply_dl_fp16```
## Run ```example_gemm_add_multiply_dl_fp16```
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: time kernel (0=no, 1=yes)
#arg4 to 11: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD0, StrideD1, StrideE"
./bin/example_gemm_add_multiply_dl_fp16 1 1 1
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
a_m_k: dim 2, lengths {3840, 4096}, strides {4096, 1}
b_k_n: dim 2, lengths {4096, 4096}, strides {4096, 1}
d0_m_n: dim 2, lengths {3840, 4096}, strides {0, 1}
d1_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
e_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
arg.a_grid_desc_k0_m0_m1_k1_{2048, 3840, 2}
arg.b_grid_desc_k0_n0_n1_k1_{2048, 4096, 2}
arg.e_grid_desc_m_n_{ 3840, 4096}
launch_and_time_kernel: grid_dim {960, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 3.99904 ms, 32.22 TFlops, 31.9913 GB/s, DeviceGemmMultipleD_Dl<256, 128, 128, 16, 2, 4, 4, 1>
```
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <algorithm>
#include <cstddef>
#include <iostream>
#include <stdexcept>
#include <string>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddMultiply = ck::tensor_operation::element_wise::AddMultiply;
using BF16 = ck::bhalf_t;
using F16 = ck::half_t;
using F32 = float;
using I8 = int8_t;
using I32 = int32_t;
struct ProblemSize final
{
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideD0 = 0;
ck::index_t StrideD1 = 4096;
ck::index_t StrideE = 4096;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
};
inline bool
parse_cmd_args(int argc, char* argv[], ProblemSize& problem_size, ExecutionConfig& config)
{
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
}
else if(argc == 12)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
problem_size.M = std::stoi(argv[4]);
problem_size.N = std::stoi(argv[5]);
problem_size.K = std::stoi(argv[6]);
problem_size.StrideA = std::stoi(argv[7]);
problem_size.StrideB = std::stoi(argv[8]);
problem_size.StrideD0 = std::stoi(argv[9]);
problem_size.StrideD1 = std::stoi(argv[10]);
problem_size.StrideE = std::stoi(argv[11]);
}
else
{
std::cerr << "arg1: verification (0=no, 1=yes)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<< std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl
<< "arg4 to 10: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD0, StrideD1, "
"StrideE"
<< std::endl;
return false;
}
return true;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_dl.hpp"
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using D0DataType = F16;
using D1DataType = F16;
using DsDataType = ck::Tuple<D0DataType, D1DataType>;
using EDataType = F16;
using ALayout = Row;
using BLayout = Row;
using D0Layout = Row;
using D1Layout = Row;
using DsLayout = ck::Tuple<D0Layout, D1Layout>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddMultiply;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNPadding;
// clang-format off
using DeviceOpInstance = ck::tensor_operation::device::
// ##################| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| DsData| EData| A| B| CDE| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ##################| | | | | Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ##################| | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ##################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Dl< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 256, 128, 128, 16, 2, 4, 4, 1, S<8, 2>, S<8, 2>, S<8, 1, 1, 2>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<2, 1, 4, 2>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
#include "run_gemm_add_multiply_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_add_multiply_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using D0DataType = F16;
using D1DataType = F16;
using DsDataType = ck::Tuple<D0DataType, D1DataType>;
using EDataType = F16;
using ALayout = Row;
using BLayout = Row;
using D0Layout = Row;
using D1Layout = Row;
using DsLayout = ck::Tuple<D0Layout, D1Layout>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddMultiply;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNPadding;
// clang-format off
using DeviceOpInstance = ck::tensor_operation::device::
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, DsLayout, Row, F16, F16, F32, F16, DsDataType, F16, PassThrough, PassThrough, CDEElementOp, GemmDefault, 1, 128, 128, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
#include "run_gemm_add_multiply_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_add_multiply_example(argc, argv); }
#pragma once
bool run_gemm_add_multiply(const ProblemSize& problem_size, const ExecutionConfig& config)
{
using namespace ck::literals;
auto& [M, N, K, StrideA, StrideB, StrideD0, StrideD1, StrideE] = problem_size;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<D0DataType> d0_m_n(f_host_tensor_descriptor(M, N, StrideD0, D0Layout{}));
Tensor<D1DataType> d1_m_n(f_host_tensor_descriptor(M, N, StrideD1, D1Layout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "d0_m_n: " << d0_m_n.mDesc << std::endl;
std::cout << "d1_m_n: " << d1_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
switch(config.init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d0_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-5, 5});
d1_m_n.GenerateTensorValue(GeneratorTensor_2<D1DataType>{-1, 1});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d0_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{0.0, 1.0});
d1_m_n.GenerateTensorValue(GeneratorTensor_3<D1DataType>{0.0, 1.0});
}
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem d0_device_buf(sizeof(D0DataType) * d0_m_n.mDesc.GetElementSpaceSize());
DeviceMem d1_device_buf(sizeof(D1DataType) * d1_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
d0_device_buf.ToDevice(d0_m_n.mData.data());
d1_device_buf.ToDevice(d1_m_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
{d0_device_buf.GetDeviceBuffer(), d1_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
{StrideD0, StrideD1},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
std::cout << "wrong! this device_op instance does not support this problem" << std::endl;
return true;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
std::size_t flop = 2_uz * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(D0DataType) * N + sizeof(D1DataType) * M * N +
sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< device_op.GetTypeString() << std::endl;
if(config.do_verification)
{
Tensor<AccDataType> c_m_n({M, N});
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d0_m_n(m, n), d1_m_n(m, n));
}
}
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
return ck::utils::check_err(e_m_n_device_result, e_m_n_host_result);
}
return true;
}
bool run_gemm_add_multiply_example(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
return !parse_cmd_args(argc, argv, problem_size, config) ||
run_gemm_add_multiply(problem_size, config);
}
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_example_executable(example_gemm_bias_softmax_gemm_permute gemm_bias_softmax_gemm_permute.cpp)
set(target 1)
endif()
endforeach()
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using B0ElementOp = ck::tensor_operation::element_wise::PassThrough;
using C0DEElementOp = ck::tensor_operation::element_wise::ScaleAdd;
using Acc0ElementOp = ck::tensor_operation::element_wise::PassThrough;
using B1ElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
constexpr static auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
using F16 = ck::half_t;
using F32 = float;
using ADataType = F16;
using B0DataType = F16;
using B1DataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using CDataType = F16;
using D0DataType = F16;
using Acc0BiasDataType = ck::Tuple<D0DataType>;
using Acc1BiasDataType = ck::Tuple<>;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
static constexpr ck::index_t NumDimO = 1;
using DeviceOpInstance =
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
C0DEElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
64, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
2, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec, // MaskingSpecialization
1>;
// Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
AccDataType,
AccDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: fp32 in, fp16 out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<AccDataType, ADataType, AccDataType>;
// Ref Gemm1: fp16 in, fp16 out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
int G0 = 3;
int G1 = 2;
int M = 1024;
int N = 1024;
int K = 64;
int O = 64;
float alpha = 1;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 11)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
G0 = std::stoi(argv[8]);
G1 = std::stoi(argv[9]);
alpha = std::stof(argv[10]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 11: M, N, K, O, G0, G1\n");
printf("arg10: scale (alpha)\n");
exit(0);
}
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M, K};
std::vector<ck::index_t> a_gs_ms_ks_strides{
M * G1 * K, K, G1 * K, 1}; // A layout [G0, M, G1, K]
std::vector<ck::index_t> b0_gs_ns_ks_lengths{G0, G1, N, K};
std::vector<ck::index_t> b0_gs_ns_ks_strides{
N * G1 * K, K, G1 * K, 1}; // B0 layout [G0, N, G1, K]
std::vector<ck::index_t> b1_gs_os_ns_lengths{G0, G1, O, N};
std::vector<ck::index_t> b1_gs_os_ns_strides{
N * G1 * O, O, 1, G1 * O}; // B1 layout [G0, N, G1, O]
std::vector<ck::index_t> c_gs_ms_os_lengths{G0, G1, M, O};
std::vector<ck::index_t> c_gs_ms_os_strides{
M * G1 * O, O, G1 * O, 1}; // C layout [G0, M, G1, O]
// D layout [G0, M, G1, N]
std::vector<ck::index_t> d0_gs_ms_ns_lengths{G0, G1, M, N};
std::vector<ck::index_t> d0_gs_ms_ns_strides{M * G1 * N, N, G1 * N, 1};
Tensor<ADataType> a_gs_ms_ks(a_gs_ms_ks_lengths, a_gs_ms_ks_strides);
Tensor<B0DataType> b0_gs_ns_ks(b0_gs_ns_ks_lengths, b0_gs_ns_ks_strides);
Tensor<B1DataType> b1_gs_os_ns(b1_gs_os_ns_lengths, b1_gs_os_ns_strides);
Tensor<D0DataType> d0_gs_ms_ns(d0_gs_ms_ns_lengths, d0_gs_ms_ns_strides);
Tensor<CDataType> c_gs_ms_os_host_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
Tensor<CDataType> c_gs_ms_os_device_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl;
std::cout << "b0_gs_ns_ks: " << b0_gs_ns_ks.mDesc << std::endl;
std::cout << "b1_gs_os_ns: " << b1_gs_os_ns.mDesc << std::endl;
std::cout << "c_gs_ms_os: " << c_gs_ms_os_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
d0_gs_ms_ns.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-2, 2});
break;
case 2:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
d0_gs_ms_ns.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-1, 1});
break;
case 3:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
d0_gs_ms_ns.GenerateTensorValue(GeneratorTensor_1<D0DataType>{1});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<2>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
d0_gs_ms_ns.GenerateTensorValue(GeneratorTensor_1<D0DataType>{1});
}
DeviceMem a_device_buf(sizeof(ADataType) * G0 * G1 * M * K);
DeviceMem b0_device_buf(sizeof(B0DataType) * G0 * G1 * N * K);
DeviceMem d0_device_buf(sizeof(D0DataType) * G0 * G1 * M * N);
DeviceMem b1_device_buf(sizeof(B1DataType) * G0 * G1 * O * N);
DeviceMem c_device_buf(sizeof(CDataType) * G0 * G1 * M * O);
a_device_buf.ToDevice(a_gs_ms_ks.mData.data());
b0_device_buf.ToDevice(b0_gs_ns_ks.mData.data());
b1_device_buf.ToDevice(b1_gs_os_ns.mData.data());
d0_device_buf.ToDevice(d0_gs_ms_ns.mData.data());
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto c0de_element_op = C0DEElementOp{alpha};
auto acc0_element_op = Acc0ElementOp{};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
auto argument = device_op.MakeArgument(
static_cast<const ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<const B0DataType*>(b0_device_buf.GetDeviceBuffer()),
static_cast<const B1DataType*>(b1_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
std::array<void*, 1>{d0_device_buf.GetDeviceBuffer()}, // p_acc0_biases
{}, // p_acc1_biases
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b0_gs_ns_ks_lengths,
b0_gs_ns_ks_strides,
b1_gs_os_ns_lengths,
b1_gs_os_ns_strides,
c_gs_ms_os_lengths,
c_gs_ms_os_strides,
std::array<std::vector<ck::index_t>, 1>{
d0_gs_ms_ns_lengths}, // acc0_biases_gs_ms_ns_lengths
std::array<std::vector<ck::index_t>, 1>{
d0_gs_ms_ns_strides}, // acc0_biases_gs_ms_ns_strides
{}, // acc1_biases_gs_ms_os_lengths
{}, // acc1_biases_gs_ms_os_strides
a_element_op,
b0_element_op,
c0de_element_op,
b1_element_op,
c_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error("wrong! this device_op instance does not support this problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
ck::index_t BatchCount = G0 * G1;
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype =
(sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N + sizeof(B1DataType) * N * O +
sizeof(CDataType) * M * O + sizeof(D0DataType) * M * N) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< std::endl;
if(do_verification)
{
c_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
Tensor<ADataType> a_g_m_k({BatchCount, M, K});
Tensor<B0DataType> b0_g_k_n({BatchCount, K, N});
Tensor<B1DataType> b1_g_n_o({BatchCount, N, O});
Tensor<AccDataType> acc0_g_m_n({BatchCount, M, N}); // scratch object after gemm0
Tensor<ADataType> a1_g_m_n({BatchCount, M, N}); // scratch object after softmax
Tensor<CDataType> c_g_m_o_host_result({BatchCount, M, O}); // scratch object after gemm1
Tensor<D0DataType> d0_g_m_n({BatchCount, M, N});
// permute
a_gs_ms_ks.ForEach([&](auto& self, auto idx) {
a_g_m_k(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx);
});
b0_gs_ns_ks.ForEach([&](auto& self, auto idx) {
b0_g_k_n(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx);
});
b1_gs_os_ns.ForEach([&](auto& self, auto idx) {
b1_g_n_o(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx);
});
d0_gs_ms_ns.ForEach([&](auto& self, auto idx) {
d0_g_m_n(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx);
});
// gemm 0
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
acc0_g_m_n.ForEach([&](auto&, auto idx) {
c0de_element_op(acc0_g_m_n(idx), acc0_g_m_n(idx), d0_g_m_n(idx));
});
// masking
const auto mask = DeviceOpInstance::C0MatrixMask(N);
acc0_g_m_n.ForEach([&](auto& self, auto idx) {
if(mask.IsMaskedElement(idx[1], idx[2]))
self(idx) = -ck::NumericLimits<float>::Infinity();
});
// softmax
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument = ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2});
ref_softmax_invoker.Run(ref_softmax_argument);
// gemm1
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(
a1_g_m_n, b1_g_n_o, c_g_m_o_host_result, PassThrough{}, b1_element_op, c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
// permute
c_gs_ms_os_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * G1 + g1;
self(idx) = c_g_m_o_host_result(g, idx[2], idx[3]);
});
// default absolute error and relative error is 0.001
double rtol = 1e-3;
double atol = 1e-3;
return ck::utils::check_err(c_gs_ms_os_device_result.mData,
c_gs_ms_os_host_result.mData,
"Error: Incorrect results!",
rtol,
atol)
? 0
: 1;
}
return 0;
}
add_example_executable(example_pool3d_fwd_fp16 pool3d_fwd_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/utility/reduction_functions_accumulate.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool3d_fwd_ndhwc_ndhwc.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp"
template <typename InDataType,
typename OutDataType,
typename ComputeDataType,
typename IndexDataType,
typename InLayout,
typename OutLayout,
ck::ReduceTensorOp ReduceOpId,
bool PropagateNan,
bool OutputIndex>
bool pool3d_test(bool do_verification,
bool time_kernel,
ck::index_t N,
ck::index_t C,
ck::index_t Z,
ck::index_t Y,
ck::index_t X,
ck::index_t Di,
ck::index_t Hi,
ck::index_t Wi,
ck::index_t window_stride_d,
ck::index_t window_stride_h,
ck::index_t window_stride_w,
ck::index_t in_left_pad_d,
ck::index_t in_left_pad_h,
ck::index_t in_left_pad_w,
ck::index_t in_right_pad_d,
ck::index_t in_right_pad_h,
ck::index_t in_right_pad_w)
{
using DevicePoolFwdInstance =
ck::tensor_operation::device::DevicePool3dFwd_Input_N_Di_Hi_Wi_C_Output_N_Do_Ho_Wo_C<
InDataType, // InDataType
OutDataType, // OutDataType
IndexDataType, // IndexDataType
ComputeDataType, // ComputeDataType
ReduceOpId,
OutputIndex,
64, // BlockSize
64, // ReduceMThreadClusterSize
1, // ReduceKThreadClusterSize
4, // ReduceMThreadSliceSize
1, // ReduceKThreadSliceSize
4>; // InSrcOutDstVectorSize
const ck::index_t Do = (Di + in_left_pad_d + in_right_pad_d - Z) / window_stride_d + 1;
const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Y) / window_stride_h + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - X) / window_stride_w + 1;
const std::vector<ck::index_t> window_spatial_lengths{Z, Y, X};
const std::vector<ck::index_t> window_strides{
window_stride_d, window_stride_h, window_stride_w};
const std::vector<ck::index_t> input_left_pads{in_left_pad_d, in_left_pad_h, in_left_pad_w};
const std::vector<ck::index_t> input_right_pads{in_right_pad_d, in_right_pad_h, in_right_pad_w};
// tensor layout
auto f_host_tensor_descriptor = [](std::size_t N_,
std::size_t C_,
std::size_t D,
std::size_t H,
std::size_t W,
auto layout) {
using namespace ck::literals;
if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCDHW>::value)
{
return HostTensorDescriptor({N_, C_, D, H, W},
{C_ * D * H * W, D * H * W, H * W, W, 1_uz});
}
else if constexpr(ck::is_same<decltype(layout),
ck::tensor_layout::convolution::NDHWC>::value)
{
return HostTensorDescriptor({N_, C_, D, H, W},
{D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_});
}
};
Tensor<InDataType> in_n_c_di_hi_wi(f_host_tensor_descriptor(N, C, Di, Hi, Wi, InLayout{}));
Tensor<OutDataType> out_n_c_do_ho_wo_host(
f_host_tensor_descriptor(N, C, Do, Ho, Wo, OutLayout{}));
Tensor<IndexDataType> out_indices_n_c_do_ho_wo_host(
f_host_tensor_descriptor(N, C, Do, Ho, Wo, OutLayout{}));
Tensor<OutDataType> out_n_c_do_ho_wo_device(
f_host_tensor_descriptor(N, C, Do, Ho, Wo, OutLayout{}));
Tensor<IndexDataType> out_indices_n_c_do_ho_wo_device(
f_host_tensor_descriptor(N, C, Do, Ho, Wo, OutLayout{}));
std::cout << "in_n_c_di_hi_wi: " << in_n_c_di_hi_wi.mDesc << std::endl;
std::cout << "out_n_c_do_ho_wo: " << out_n_c_do_ho_wo_host.mDesc << std::endl;
in_n_c_di_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{-1.0, 1.0});
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_di_hi_wi.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) *
out_n_c_do_ho_wo_device.mDesc.GetElementSpaceSize());
DeviceMem out_indices_device_buf(sizeof(IndexDataType) *
out_indices_n_c_do_ho_wo_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in_n_c_di_hi_wi.mData.data());
auto pool = DevicePoolFwdInstance{};
auto invoker_ptr = pool.MakeInvokerPointer();
auto argument_ptr = pool.MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
static_cast<IndexDataType*>(out_indices_device_buf.GetDeviceBuffer()),
{N, C, Di, Hi, Wi},
{Z, Y, X},
{N, C, Do, Ho, Wo},
{Di * C * Hi * Wi, 1, C * Hi * Wi, Wi * C, C},
{Do * C * Ho * Wo, 1, C * Ho * Wo, Wo * C, C},
{Do * C * Ho * Wo, 1, C * Ho * Wo, Wo * C, C},
window_strides,
input_left_pads,
input_right_pads,
{2, 3, 4});
if(!pool.IsSupportedArgument(argument_ptr.get()))
{
throw std::runtime_error("wrong! device_op with the specified compilation parameters does "
"not support this problem");
}
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::cout << "Perf: " << ave_time << std::endl;
bool pass = true;
if(do_verification)
{
using ReferencePoolingFwdInstance =
ck::tensor_operation::host::ReferencePoolingFwd<5,
3,
InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
ReduceOpId,
PropagateNan,
OutputIndex>;
auto ref_pooling = ReferencePoolingFwdInstance{};
auto ref_pooling_invoker = ref_pooling.MakeInvoker();
auto ref_pooling_argument = ref_pooling.MakeArgument(in_n_c_di_hi_wi,
out_n_c_do_ho_wo_host,
out_indices_n_c_do_ho_wo_host,
window_spatial_lengths,
window_strides,
input_left_pads,
input_right_pads);
ref_pooling_invoker.Run(ref_pooling_argument);
out_device_buf.FromDevice(out_n_c_do_ho_wo_device.mData.data());
pass = pass && ck::utils::check_err(out_n_c_do_ho_wo_device, out_n_c_do_ho_wo_host);
if constexpr(OutputIndex)
{
out_indices_device_buf.FromDevice(out_indices_n_c_do_ho_wo_device.mData.data());
pass = pass && ck::utils::check_err(out_indices_n_c_do_ho_wo_device,
out_indices_n_c_do_ho_wo_host);
};
}
return (pass);
};
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "pool3d_fwd_common.hpp"
using InDataType = ck::half_t;
using OutDataType = ck::half_t;
using ComputeDataType = float;
using IndexDataType = int32_t;
using InLayout = ck::tensor_layout::convolution::NDHWC;
using OutLayout = ck::tensor_layout::convolution::NDHWC;
#if 1
static constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
#else
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
#endif
static constexpr bool OutputIndex = false;
static constexpr bool PropagateNan = false;
int main()
{
bool do_verification = true;
bool time_kernel = false;
// Pool shape
ck::index_t N = 2;
ck::index_t C = 32;
ck::index_t Z = 2;
ck::index_t Y = 2;
ck::index_t X = 2;
ck::index_t Di = 30;
ck::index_t Hi = 30;
ck::index_t Wi = 30;
ck::index_t window_stride_d = 2;
ck::index_t window_stride_h = 2;
ck::index_t window_stride_w = 2;
ck::index_t in_left_pad_d = 1;
ck::index_t in_left_pad_h = 1;
ck::index_t in_left_pad_w = 1;
ck::index_t in_right_pad_d = 1;
ck::index_t in_right_pad_h = 1;
ck::index_t in_right_pad_w = 1;
bool pass = pool3d_test<InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
InLayout,
OutLayout,
ReduceOpId,
PropagateNan,
OutputIndex>(do_verification,
time_kernel,
N,
C,
Z,
Y,
X,
Di,
Hi,
Wi,
window_stride_d,
window_stride_h,
window_stride_w,
in_left_pad_d,
in_left_pad_h,
in_left_pad_w,
in_right_pad_d,
in_right_pad_h,
in_right_pad_w);
return (pass ? 0 : 1);
}
add_example_executable(example_maxpool2d_bwd_bf16 maxpool2d_bwd_bf16.cpp)
add_example_executable(example_maxpool2d_bwd_fp16 maxpool2d_bwd_fp16.cpp)
add_example_executable(example_maxpool2d_bwd_fp32 maxpool2d_bwd_fp32.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "maxpool2d_bwd_common.hpp"
using InDataType = ck::bhalf_t;
using OutDataType = ck::bhalf_t;
using IndexDataType = int32_t;
using ComputeDataType = float;
using DInDataType = ck::bhalf_t;
using DOutDataType = ck::bhalf_t;
static constexpr bool PropagateNan = false;
int main()
{
bool do_verification = true;
bool time_kernel = false;
// Pool shape
ck::index_t N = 1;
ck::index_t C = 1;
ck::index_t Y = 3;
ck::index_t X = 3;
ck::index_t Hi = 32;
ck::index_t Wi = 32;
ck::index_t window_stride_h = 1;
ck::index_t window_stride_w = 1;
ck::index_t in_left_pad_h = 0;
ck::index_t in_left_pad_w = 0;
ck::index_t in_right_pad_h = 0;
ck::index_t in_right_pad_w = 0;
bool pass = maxpool_bwd_test<InDataType,
OutDataType,
IndexDataType,
ComputeDataType,
DInDataType,
DOutDataType,
PropagateNan>(do_verification,
time_kernel,
N,
C,
Y,
X,
Hi,
Wi,
window_stride_h,
window_stride_w,
in_left_pad_h,
in_left_pad_w,
in_right_pad_h,
in_right_pad_w);
return (pass ? 0 : 1);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_index_pool_bwd_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_maxpool_bwd.hpp"
template <typename InDataType,
typename OutDataType,
typename IndexDataType,
typename ComputeDataType,
typename DInDataType,
typename DOutDataType,
bool PropagateNan>
bool maxpool_bwd_test(bool do_verification,
bool time_kernel,
ck::index_t N,
ck::index_t C,
ck::index_t Y,
ck::index_t X,
ck::index_t Hi,
ck::index_t Wi,
ck::index_t window_stride_h,
ck::index_t window_stride_w,
ck::index_t in_left_pad_h,
ck::index_t in_left_pad_w,
ck::index_t in_right_pad_h,
ck::index_t in_right_pad_w)
{
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DevicePoolFwdInstance =
ck::tensor_operation::device::DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C<
InDataType, // InDataType
OutDataType, // OutDataType
IndexDataType, // IndexDataType
ComputeDataType, // ComputeDataType
ck::ReduceTensorOp::MAX,
true, // OutputIndex
64, // BlockSize
64, // ReduceMThreadClusterSize
1, // ReduceKThreadClusterSize
4, // ReduceMThreadSliceSize
1, // ReduceKThreadSliceSize
1>; // InSrcOutDstVectorSize
using DeviceMaxPoolBwdInstance = ck::tensor_operation::device::
DeviceIndexPoolBwdImpl<DOutDataType, IndexDataType, DInDataType, 4>;
const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Y) / window_stride_h + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - X) / window_stride_w + 1;
const std::vector<ck::index_t> window_spatial_lengths{Y, X};
const std::vector<ck::index_t> window_strides{window_stride_h, window_stride_w};
const std::vector<ck::index_t> input_left_pads{in_left_pad_h, in_left_pad_w};
const std::vector<ck::index_t> input_right_pads{in_right_pad_h, in_right_pad_w};
auto f_host_tensor_descriptor =
[](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W) {
using namespace ck::literals;
// reference need Tensor with NCHW order
return HostTensorDescriptor({N_, C_, H, W}, {C_ * H * W, 1_uz, W * C_, C_});
};
// in
Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi));
// out
Tensor<OutDataType> out_n_c_ho_wo_host(f_host_tensor_descriptor(N, C, Ho, Wo));
Tensor<OutDataType> out_n_c_ho_wo_device(f_host_tensor_descriptor(N, C, Ho, Wo));
// indices
Tensor<IndexDataType> indices_n_c_ho_wo_device(f_host_tensor_descriptor(N, C, Ho, Wo));
Tensor<IndexDataType> indices_n_c_ho_wo_host(f_host_tensor_descriptor(N, C, Ho, Wo));
// dout
Tensor<DOutDataType> dout_n_c_ho_wo(f_host_tensor_descriptor(N, C, Ho, Wo));
// din
Tensor<DInDataType> din_n_c_hi_wi_host(f_host_tensor_descriptor(N, C, Hi, Wi));
Tensor<DInDataType> din_n_c_hi_wi_device(f_host_tensor_descriptor(N, C, Hi, Wi));
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
std::cout << "out_n_c_ho_wo: " << out_n_c_ho_wo_host.mDesc << std::endl;
std::cout << "indices_n_c_ho_wo: " << indices_n_c_ho_wo_host.mDesc << std::endl;
std::cout << "dout_n_c_ho_wo: " << dout_n_c_ho_wo.mDesc << std::endl;
std::cout << "din_n_c_hi_wi: " << din_n_c_hi_wi_host.mDesc << std::endl;
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{-1.0, 1.0});
dout_n_c_ho_wo.GenerateTensorValue(GeneratorTensor_3<DOutDataType>{-1.0, 1.0});
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) *
out_n_c_ho_wo_device.mDesc.GetElementSpaceSize());
DeviceMem indices_device_buf(sizeof(IndexDataType) *
indices_n_c_ho_wo_device.mDesc.GetElementSpaceSize());
DeviceMem dout_device_buf(sizeof(DOutDataType) * dout_n_c_ho_wo.mDesc.GetElementSpaceSize());
DeviceMem din_device_buf(sizeof(DInDataType) *
din_n_c_hi_wi_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
dout_device_buf.ToDevice(dout_n_c_ho_wo.mData.data());
auto pool_fwd = DevicePoolFwdInstance{};
auto pool_fwd_invoker_ptr = pool_fwd.MakeInvokerPointer();
auto pool_fwd_argument_ptr = pool_fwd.MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
static_cast<IndexDataType*>(indices_device_buf.GetDeviceBuffer()),
{N, C, Hi, Wi},
window_spatial_lengths,
{N, C, Ho, Wo},
{C * Hi * Wi, 1, Wi * C, C},
{C * Ho * Wo, 1, Wo * C, C},
{C * Ho * Wo, 1, Wo * C, C},
window_strides,
input_left_pads,
input_right_pads,
{2, 3});
if(!pool_fwd.IsSupportedArgument(pool_fwd_argument_ptr.get()))
{
throw std::runtime_error("wrong! pool_fwd with the specified compilation parameters does "
"not support this problem");
}
float ave_time_fwd =
pool_fwd_invoker_ptr->Run(pool_fwd_argument_ptr.get(), StreamConfig{nullptr, time_kernel});
auto pool_bwd = DeviceMaxPoolBwdInstance{};
auto pool_bwd_invoker_ptr = pool_bwd.MakeInvokerPointer();
auto pool_bwd_argument_ptr = pool_bwd.MakeArgumentPointer(
static_cast<DOutDataType*>(dout_device_buf.GetDeviceBuffer()),
static_cast<IndexDataType*>(indices_device_buf.GetDeviceBuffer()),
static_cast<DInDataType*>(din_device_buf.GetDeviceBuffer()),
dout_n_c_ho_wo.mDesc.GetElementSpaceSize(),
din_n_c_hi_wi_device.mDesc.GetElementSpaceSize(),
window_spatial_lengths,
window_strides);
if(!pool_bwd.IsSupportedArgument(pool_bwd_argument_ptr.get()))
{
throw std::runtime_error("wrong! pool_bwd with the specified compilation parameters does "
"not support this problem");
}
size_t pool_bwd_workspace_sz = pool_bwd.GetWorkSpaceSize(pool_bwd_argument_ptr.get());
DeviceMem pool_bwd_workspace_device_buf(pool_bwd_workspace_sz);
pool_bwd.SetWorkSpacePointer(pool_bwd_argument_ptr.get(),
pool_bwd_workspace_device_buf.GetDeviceBuffer());
float ave_time_bwd =
pool_bwd_invoker_ptr->Run(pool_bwd_argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::cout << "Pool fwd perf: " << ave_time_fwd << " ms" << std::endl;
std::cout << "Pool bwd perf: " << ave_time_bwd << " ms" << std::endl;
bool pass = true;
if(do_verification)
{
using ReferencePoolingFwdInstance =
ck::tensor_operation::host::ReferencePoolingFwd<4,
2,
InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
ck::ReduceTensorOp::MAX,
PropagateNan,
true>;
auto ref_pooling_fwd = ReferencePoolingFwdInstance{};
auto ref_pooling_fwd_invoker = ref_pooling_fwd.MakeInvoker();
auto ref_pooling_fwd_argument = ref_pooling_fwd.MakeArgument(in_n_c_hi_wi,
out_n_c_ho_wo_host,
indices_n_c_ho_wo_host,
window_spatial_lengths,
window_strides,
input_left_pads,
input_right_pads);
ref_pooling_fwd_invoker.Run(ref_pooling_fwd_argument);
using ReferencePoolingBwdInstance =
ck::tensor_operation::host::ReferenceMaxPoolBwd<DOutDataType,
IndexDataType,
ComputeDataType,
DInDataType,
PassThrough>;
auto ref_pooling_bwd = ReferencePoolingBwdInstance{};
auto ref_pooling_bwd_invoker = ref_pooling_bwd.MakeInvoker();
auto ref_pooling_bwd_argument = ref_pooling_bwd.MakeArgument(
dout_n_c_ho_wo, indices_n_c_ho_wo_host, din_n_c_hi_wi_host, PassThrough{});
ref_pooling_bwd_invoker.Run(ref_pooling_bwd_argument);
out_device_buf.FromDevice(out_n_c_ho_wo_device.mData.data());
indices_device_buf.FromDevice(indices_n_c_ho_wo_device.mData.data());
din_device_buf.FromDevice(din_n_c_hi_wi_device.mData.data());
pass = pass && ck::utils::check_err(out_n_c_ho_wo_device, out_n_c_ho_wo_host);
pass = pass && ck::utils::check_err(indices_n_c_ho_wo_device, indices_n_c_ho_wo_host);
pass = pass && ck::utils::check_err(din_n_c_hi_wi_device, din_n_c_hi_wi_host);
}
return (pass);
};
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "maxpool2d_bwd_common.hpp"
using InDataType = ck::half_t;
using OutDataType = ck::half_t;
using IndexDataType = int32_t;
using ComputeDataType = float;
using DInDataType = ck::half_t;
using DOutDataType = ck::half_t;
static constexpr bool PropagateNan = false;
int main()
{
bool do_verification = true;
bool time_kernel = false;
// Pool shape
ck::index_t N = 1;
ck::index_t C = 1;
ck::index_t Y = 3;
ck::index_t X = 3;
ck::index_t Hi = 32;
ck::index_t Wi = 32;
ck::index_t window_stride_h = 1;
ck::index_t window_stride_w = 1;
ck::index_t in_left_pad_h = 0;
ck::index_t in_left_pad_w = 0;
ck::index_t in_right_pad_h = 0;
ck::index_t in_right_pad_w = 0;
bool pass = maxpool_bwd_test<InDataType,
OutDataType,
IndexDataType,
ComputeDataType,
DInDataType,
DOutDataType,
PropagateNan>(do_verification,
time_kernel,
N,
C,
Y,
X,
Hi,
Wi,
window_stride_h,
window_stride_w,
in_left_pad_h,
in_left_pad_w,
in_right_pad_h,
in_right_pad_w);
return (pass ? 0 : 1);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "maxpool2d_bwd_common.hpp"
using InDataType = float;
using OutDataType = float;
using IndexDataType = int32_t;
using ComputeDataType = float;
using DInDataType = float;
using DOutDataType = float;
static constexpr bool PropagateNan = false;
int main()
{
bool do_verification = true;
bool time_kernel = false;
// Pool shape
ck::index_t N = 1;
ck::index_t C = 1;
ck::index_t Y = 2;
ck::index_t X = 2;
ck::index_t Hi = 32;
ck::index_t Wi = 32;
ck::index_t window_stride_h = 2;
ck::index_t window_stride_w = 2;
ck::index_t in_left_pad_h = 0;
ck::index_t in_left_pad_w = 0;
ck::index_t in_right_pad_h = 0;
ck::index_t in_right_pad_w = 0;
bool pass = maxpool_bwd_test<InDataType,
OutDataType,
IndexDataType,
ComputeDataType,
DInDataType,
DOutDataType,
PropagateNan>(do_verification,
time_kernel,
N,
C,
Y,
X,
Hi,
Wi,
window_stride_h,
window_stride_w,
in_left_pad_h,
in_left_pad_w,
in_right_pad_h,
in_right_pad_w);
return (pass ? 0 : 1);
}
add_example_executable(example_put_element_fp16 put_element_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_put_element_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using XDataType = ck::half_t;
using YDataType = ck::half_t;
using IndexDataType = int32_t;
using YElementwiseOp = ck::tensor_operation::element_wise::PassThrough;
using DeviceInstance =
ck::tensor_operation::device::DevicePutElementImpl<XDataType, // XDataType
IndexDataType, // IndexDataType
YDataType, // YDataType
YElementwiseOp,
ck::InMemoryDataOperationEnum::Set,
1>;
int main()
{
bool do_verification = true;
bool time_kernel = false;
int N = 1024;
Tensor<XDataType> x(HostTensorDescriptor{N, 1});
Tensor<IndexDataType> indices(HostTensorDescriptor{N, 1});
Tensor<YDataType> y(HostTensorDescriptor{N, 1});
x.GenerateTensorValue(GeneratorTensor_3<XDataType>{-1.0, 1.0});
for(int i = 0; i < N; ++i)
indices(i) = i;
DeviceMem x_device_buf(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
DeviceMem y_device_buf(sizeof(YDataType) * y.mDesc.GetElementSpaceSize());
DeviceMem indices_device_buf(sizeof(IndexDataType) * indices.mDesc.GetElementSpaceSize());
x_device_buf.ToDevice(x.mData.data());
indices_device_buf.ToDevice(indices.mData.data());
auto put_instance = DeviceInstance{};
auto put_invoker_ptr = put_instance.MakeInvokerPointer();
auto put_argument_ptr = put_instance.MakeArgumentPointer(
static_cast<XDataType*>(x_device_buf.GetDeviceBuffer()),
static_cast<IndexDataType*>(indices_device_buf.GetDeviceBuffer()),
static_cast<YDataType*>(y_device_buf.GetDeviceBuffer()),
N,
N,
YElementwiseOp{});
if(!put_instance.IsSupportedArgument(put_argument_ptr.get()))
{
throw std::runtime_error("argument is not supported!");
}
float ave_time =
put_invoker_ptr->Run(put_argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::cout << "perf: " << ave_time << " ms" << std::endl;
bool pass = true;
if(do_verification)
{
Tensor<YDataType> y_host(HostTensorDescriptor{N, 1});
for(int i = 0; i < N; ++i)
{
IndexDataType idx = indices(i);
y_host(idx) = x(i);
}
y_device_buf.FromDevice(y.mData.data());
pass = ck::utils::check_err(y, y_host);
}
return (pass ? 0 : 1);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -18,36 +18,49 @@
#define CK_USE_LAUNCH_BOUNDS 1
#ifdef CK_USE_LAUNCH_BOUNDS
// for most kernels
#define CK_MAX_THREAD_PER_BLOCK 256
#define CK_MIN_BLOCK_PER_CU 2
// for wavelet GEMM kernel
#define CK_WAVELET_MAX_THREAD_PER_BLOCK 512
#define CK_WAVELET_MIN_BLOCK_PER_CU 2
#endif
// kernel attribute: amdgpu_waves_per_eu()
#ifdef CK_USE_WAVES_PER_EU
// for 1-wave kernels, control arguments of amdgpu_waves_per_eu() attribute
#ifndef CK_MIN_WAVES_PER_EU
#define CK_MIN_WAVES_PER_EU 0
#endif
// check GPU target
#ifdef __HIP_DEVICE_COMPILE__
#if !(defined(__gfx803__) || defined(__gfx900__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx90a__) || defined(__gfx1030__) || defined(__gfx1100__))
#error Not supported target
#ifndef CK_MAX_WAVES_PER_EU
#define CK_MAX_WAVES_PER_EU 0
#endif
#else
#define CK_USE_WAVES_PER_EU 0
#endif
// buffer resource
#ifndef __HIP_DEVICE_COMPILE__ // for host code
#define CK_BUFFER_RESOURCE_3RD_DWORD -1
#elif defined(__gfx803__) || defined(__gfx900__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx90a__) // for GPU code
defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || \
defined(__gfx942__) // for GPU code
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x00020000
#elif defined(__gfx1030__) // for GPU code
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x31014000
#elif defined(__gfx1100__) // for GPU code
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x10020000
#elif defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) // for GPU code
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x31004000
#endif
// FMA instruction
#ifndef __HIP_DEVICE_COMPILE__ // for host code, define nothing
#elif defined(__gfx803__) || defined(__gfx900__) // for GPU code
#define CK_USE_AMD_V_MAC_F32
#elif defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx1030__) // for GPU code
#elif defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) // for GPU code
#define CK_USE_AMD_V_FMAC_F32
#define CK_USE_AMD_V_DOT2_F32_F16
#define CK_USE_AMD_V_DOT4_I32_I8
......@@ -56,18 +69,23 @@
// MFMA instruction
#ifndef __HIP_DEVICE_COMPILE__ // for host code
#define CK_USE_AMD_MFMA
#elif defined(__gfx908__) || defined(__gfx90a__) // for GPU code
#elif defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || \
defined(__gfx942__) // for GPU code
#define CK_USE_AMD_MFMA
#endif
#if defined(__gfx90a__)
#if(defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
#define CK_USE_AMD_MFMA_BF16_1K_OP
#endif
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
#define CK_USE_AMD_MFMA_GFX940
#endif
// WMMA instruction
#ifndef __HIP_DEVICE_COMPILE__ // for host code
#define CK_USE_AMD_WMMA
#elif defined(__gfx1100__) // for GPU code
#elif defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) // for GPU code
#define CK_USE_AMD_WMMA
#endif
......@@ -83,13 +101,15 @@
// buffer atomic add: floating point
#ifndef __HIP_DEVICE_COMPILE__ // for host code
#define CK_USE_AMD_BUFFER_ATOMIC_ADD_FLOAT 1
#elif defined(__gfx908__) || defined(__gfx90a__) // for GPU code
#elif defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || \
defined(__gfx942__) // for GPU code
#define CK_USE_AMD_BUFFER_ATOMIC_ADD_FLOAT 1
#else // for GPU code
#define CK_USE_AMD_BUFFER_ATOMIC_ADD_FLOAT 0
#endif
#if defined(__gfx90a__) // for GPU code
#if(defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || \
defined(__gfx942__)) // for GPU code
#define CK_USE_AMD_BUFFER_ATOMIC_MAX_FLOAT64 1
#else
#define CK_USE_AMD_BUFFER_ATOMIC_MAX_FLOAT64 0
......@@ -143,6 +163,10 @@
#define CK_EXPERIMENTAL_INTER_WAVE_INSTANCES 1
// experimental feature: add instances using pipeline v2
#define CK_EXPERIMENTAL_PIPELINE_V2_INSTANCES 1
// experimental feature: optimize pipeline v2 by IGLP strategy (value=ID of strategy)
#ifndef CK_EXPERIMENTAL_PIPELINE_V2_IGLP_OPT
#define CK_EXPERIMENTAL_PIPELINE_V2_IGLP_OPT 0
#endif
// hack: have underlying assumption that need to be satsified, otherwise it's a bug
// hack for forcing register to keep idx_diff_low_const in SGPR. idx_diff_low_const must be
......@@ -163,16 +187,26 @@
// tuning parameter
#define CK_WORKAROUND_SWDEV_325164 0
// workaround: a BF16 attention kernel for gfx908 is likely affected by a compiler issue
#ifdef __gfx908__
#define CK_WORKAROUND_SWDEV_XXXXXX_BF16_ATTEN_FWD_GFX908_ISSUE 1
#else // __gfx90a__, ...
#define CK_WORKAROUND_SWDEV_XXXXXX_BF16_ATTEN_FWD_GFX908_ISSUE 0
#endif // __gfx908__
// workaround: compiler not emiting reciprocal instruction frm __frcp_rn()
#define CK_WORKAROUND_SWDEV_383542 1
// workaround: compiler issue on gfx908
#define CK_WORKAROUND_SWDEV_388832 1
// workaround: Grouped Conv2d_bwd_data fails for already implemented instance
#define CK_WORKAROUND_SWDEV_3318619 0
// flag to enable (1) or disable (0) the debugging output in some kernels
#define DEBUG_LOG 0
// denorm test fix, required to work around dissue
#ifndef CK_WORKAROUND_DENORM_FIX
#define CK_WORKAROUND_DENORM_FIX 0
#elif
// enable only on MI200
#define CK_WORKAROUND_DENORM_FIX = CK_WORKAROUND_DENORM_FIX && defined(__gfx90a__)
#endif // CK_WORKAROUND_DENORM_FIX
namespace ck {
enum struct InMemoryDataOperationEnum
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment