diff --git a/.github/dependabot.yml b/.github/dependabot.yml new file mode 100644 index 0000000000000000000000000000000000000000..276690bd4f96f50eb6a5121d237c8c9bcb80224d --- /dev/null +++ b/.github/dependabot.yml @@ -0,0 +1,12 @@ +# To get started with Dependabot version updates, you'll need to specify which +# package ecosystems to update and where the package manifests are located. +# Please see the documentation for all configuration options: +# https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates + +version: 2 +updates: + - package-ecosystem: "pip" # See documentation for possible values + directory: "/docs/sphinx" # Location of package manifests + open-pull-requests-limit: 10 + schedule: + interval: "daily" diff --git a/.gitignore b/.gitignore index 71059ec4d948ed241b76ea7ebf9c79136cfcbf74..7af066c82dcef3cf4cc846168567e90e0a0c9db3 100644 --- a/.gitignore +++ b/.gitignore @@ -47,3 +47,12 @@ build* # GDB temporary files .gdb_history install.dir* + +# documentation artifacts +_build/ +_images/ +_static/ +_templates/ +_toc.yml +docBin/ +_doxygen/ diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml new file mode 100644 index 0000000000000000000000000000000000000000..3e1e8c0169fc7875a0795db3a9c9d0149b40eb87 --- /dev/null +++ b/.pre-commit-config.yaml @@ -0,0 +1,14 @@ +repos: +- repo: local + hooks: + - id: clang-format + name: clang-format + entry: clang-format-10 -i --style=file + language: system + types_or: [c++, inc] + - id: copyright-year-checker + name: copyright-year-checker + entry: script/check_copyright_year.sh + verbose: false + language: script + types: [c++] diff --git a/.readthedocs.yaml b/.readthedocs.yaml new file mode 100644 index 0000000000000000000000000000000000000000..5f50df2525d2948bbabe36184f23310d47339d8e --- /dev/null +++ b/.readthedocs.yaml @@ -0,0 +1,18 @@ +# Read the Docs configuration file +# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details + +version: 2 + +build: + os: ubuntu-22.04 + tools: + python: "3.8" + +sphinx: + configuration: docs/conf.py + +formats: [htmlzip, pdf, epub] + +python: + install: + - requirements: docs/sphinx/requirements.txt diff --git a/CHANGELOG.md b/CHANGELOG.md new file mode 100644 index 0000000000000000000000000000000000000000..3898b5ce2d9c1a4006209a1aa9fa6e48302ea30a --- /dev/null +++ b/CHANGELOG.md @@ -0,0 +1,27 @@ +# Change Log for Composable Kernel + +Full documentation for Composable Kernel is not yet available. + +## CK 0.2.0 for ROCm 5.5.0 + +### Fixed +- Fixed a bug in 6-dimensional kernels (#555). +- Fixed grouped ConvBwdWeight test case failure (#524). + +### Optimizations +- Improve proformance of normalization kernel + +### Added +- Added support on NAVI3x. +- Added user tutorial (#563). +- Added more instances for irregular GEMM sizes (#560). +- Added inter-wave consumer-producer programming model for GEMM kernels (#310). +- Added multi-D GEMM client APIs (#534). +- Added multi-embeddings support (#542). +- Added Navi3x blockwise GEMM and real GEMM support (#541). +- Added Navi grouped ConvBwdWeight support (#505). +- Added pool3d forward (#697). +- Added maxpool backward (#750). + +### Changed +- Changed ... diff --git a/CMakeLists.txt b/CMakeLists.txt index f861e302039de8e2c1ae17bf7cb39361aff8535f..c9fb6b4552c81ef29e77dcde807f552b42916572 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -22,6 +22,7 @@ include(TargetFlags) list(APPEND CMAKE_PREFIX_PATH ${CMAKE_INSTALL_PREFIX} ${CMAKE_INSTALL_PREFIX}/llvm ${CMAKE_INSTALL_PREFIX}/hip /opt/rocm /opt/rocm/llvm /opt/rocm/hip) option(USE_BITINT_EXTENSION_INT4, "Whether to enable clang's BitInt extension to provide int4 data type." OFF) +option(USE_OPT_NAVI3X, "Whether to enable LDS cumode and Wavefront32 mode for NAVI3X silicons." OFF) if(USE_BITINT_EXTENSION_INT4) add_compile_definitions(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4) @@ -29,6 +30,12 @@ if(USE_BITINT_EXTENSION_INT4) message("CK compiled with USE_BITINT_EXTENSION_INT4 set to ${USE_BITINT_EXTENSION_INT4}") endif() +if(USE_OPT_NAVI3X) + add_compile_options(-mcumode) + add_compile_options(-mno-wavefrontsize64) + message("CK compiled with USE_OPT_NAVI3X set to ${USE_OPT_NAVI3X}") +endif() + ## Threads set(THREADS_PREFER_PTHREAD_FLAG ON) find_package(Threads REQUIRED) diff --git a/CONTRIBUTORS.md b/CONTRIBUTORS.md index 8ccfe99c3cc73b643f8b92cb654005e54c0774bd..07d83688176bd771142a8698fda492c538c691b1 100644 --- a/CONTRIBUTORS.md +++ b/CONTRIBUTORS.md @@ -4,7 +4,7 @@ This is the list of developers and contributors to Composable Kernel library ## Developers -[Chao Liu](https://github.com/asroy), [Jing Zhang](https://github.com/zjing14), 2018-2022 +[Chao Liu](https://github.com/asroy), [Jing Zhang](https://github.com/zjing14), 2018-2023 [Letao Qin](https://github.com/ltqin), [Qianfeng Zhang](https://github.com/qianfengz), [Liang Huang](https://github.com/carlushuang), [Shaojie Wang](https://github.com/shaojiewang), 2019-2022 diff --git a/Dockerfile b/Dockerfile index d024f966c57fac8ced14abbb00db7cc8f20c7d63..3ff29c9a98a56cb1c26bb8e895f336d4fca6475b 100644 --- a/Dockerfile +++ b/Dockerfile @@ -1,28 +1,44 @@ FROM ubuntu:20.04 - -ARG ROCMVERSION=5.3 -ARG compiler_version="release" +ARG DEBIAN_FRONTEND=noninteractive +ARG ROCMVERSION=5.6 +ARG compiler_version="" ARG compiler_commit="" RUN set -xe ARG DEB_ROCM_REPO=http://repo.radeon.com/rocm/apt/.apt_$ROCMVERSION/ +RUN useradd -rm -d /home/jenkins -s /bin/bash -u 1004 jenkins # Add rocm repository +RUN chmod 1777 /tmp RUN apt-get update -RUN apt-get install -y wget gnupg -RUN wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add - -RUN sh -c "echo deb [arch=amd64] $DEB_ROCM_REPO ubuntu main > /etc/apt/sources.list.d/rocm.list" -RUN wget --no-check-certificate -qO - https://apt.kitware.com/keys/kitware-archive-latest.asc 2>/dev/null | apt-key add - +RUN apt-get install -y --allow-unauthenticated apt-utils wget gnupg2 curl + +ENV APT_KEY_DONT_WARN_ON_DANGEROUS_USAGE=DontWarn +RUN curl -fsSL https://repo.radeon.com/rocm/rocm.gpg.key | gpg --dearmor -o /etc/apt/trusted.gpg.d/rocm-keyring.gpg + +RUN wget https://repo.radeon.com/amdgpu-install/5.6/ubuntu/focal/amdgpu-install_5.6.50600-1_all.deb --no-check-certificate +RUN apt-get update && \ +DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated \ + ./amdgpu-install_5.6.50600-1_all.deb + +RUN if [ "$ROCMVERSION" != "5.7" ]; then \ + wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add - && \ + sh -c "echo deb [arch=amd64 signed-by=/etc/apt/trusted.gpg.d/rocm-keyring.gpg] $DEB_ROCM_REPO focal main > /etc/apt/sources.list.d/rocm.list" && \ + sh -c 'echo deb [arch=amd64 signed-by=/etc/apt/trusted.gpg.d/rocm-keyring.gpg] https://repo.radeon.com/amdgpu/$ROCMVERSION/ubuntu focal main > /etc/apt/sources.list.d/amdgpu.list'; \ + elif [ "$ROCMVERSION" = "5.7" ] && [ "$compiler_version" = "" ] || [ "$compiler_version" = "amd-stg-open" ]; then \ + sh -c "wget http://artifactory-cdn.amd.com/artifactory/list/amdgpu-deb/amdgpu-install-internal_5.7-20.04-1_all.deb" && \ + apt update && apt-get install -y ./amdgpu-install-internal_5.7-20.04-1_all.deb && \ + amdgpu-repo --amdgpu-build=1609671 --rocm-build=compute-rocm-npi-mi300/1354; \ + fi + RUN sh -c "echo deb http://mirrors.kernel.org/ubuntu focal main universe | tee -a /etc/apt/sources.list" +RUN amdgpu-install -y --usecase=rocm --no-dkms # Install dependencies RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated \ - apt-utils \ build-essential \ ccache \ - cmake-data \ cmake \ - curl \ git \ hip-rocclr \ jq \ @@ -32,16 +48,13 @@ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --allow- libpthread-stubs0-dev \ llvm-amdgpu \ pkg-config \ - python \ python3 \ - python-dev \ python3-dev \ python3-pip \ + sshpass \ software-properties-common \ - rocm-dev \ - rocm-device-libs \ - rocm-cmake \ vim \ + nano \ zlib1g-dev \ openssh-server \ clang-format-10 \ @@ -49,6 +62,17 @@ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --allow- apt-get clean && \ rm -rf /var/lib/apt/lists/* +#Install latest version of cmake +RUN apt purge --auto-remove -y cmake +RUN apt update +RUN apt install -y software-properties-common lsb-release +RUN apt clean all +RUN wget -O - https://apt.kitware.com/keys/kitware-archive-latest.asc 2>/dev/null | gpg --dearmor - | tee /etc/apt/trusted.gpg.d/kitware.gpg >/dev/null +RUN apt-add-repository "deb https://apt.kitware.com/ubuntu/ $(lsb_release -cs) main" +RUN apt install -y kitware-archive-keyring +RUN rm /etc/apt/trusted.gpg.d/kitware.gpg +RUN apt install -y cmake + # Setup ubsan environment to printstacktrace RUN ln -s /usr/bin/llvm-symbolizer-3.8 /usr/local/bin/llvm-symbolizer ENV UBSAN_OPTIONS=print_stacktrace=1 @@ -60,7 +84,7 @@ RUN dpkg -i dumb-init_*.deb && rm dumb-init_*.deb ARG PREFIX=/opt/rocm # Install packages for processing the performance results RUN pip3 install --upgrade pip -RUN pip3 install sqlalchemy +RUN pip3 install sqlalchemy==1.4.46 RUN pip3 install pymysql RUN pip3 install pandas RUN pip3 install setuptools-rust @@ -84,12 +108,7 @@ ENV compiler_commit=$compiler_commit RUN sh -c "echo compiler version = '$compiler_version'" RUN sh -c "echo compiler commit = '$compiler_commit'" -RUN --mount=type=ssh if [ "$compiler_version" = "amd-stg-open" ]; then \ - sed -i '/$HIP_CLANG_TARGET = chomp($HIP_CLANG_TARGET);/c\ chomp($HIP_CLANG_TARGET);' /opt/rocm/hip/bin/hipcc.pl && \ - sed -i '/$HIP_CLANG_TARGET = chomp($HIP_CLANG_TARGET);/c\ chomp($HIP_CLANG_TARGET);' /opt/rocm/bin/hipcc.pl; \ - fi - -RUN --mount=type=ssh if [ "$compiler_version" != "release" ] && [ "$compiler_commit" = "" ]; then \ +RUN if [ "$compiler_version" = "amd-stg-open" ] && [ "$compiler_commit" = "" ]; then \ git clone -b "$compiler_version" https://github.com/RadeonOpenCompute/llvm-project.git && \ cd llvm-project && mkdir build && cd build && \ cmake -DCMAKE_INSTALL_PREFIX=/opt/rocm/llvm -DCMAKE_BUILD_TYPE=Release -DLLVM_ENABLE_ASSERTIONS=1 -DLLVM_TARGETS_TO_BUILD="AMDGPU;X86" -DLLVM_ENABLE_PROJECTS="clang;lld;compiler-rt" ../llvm && \ @@ -97,7 +116,7 @@ RUN --mount=type=ssh if [ "$compiler_version" != "release" ] && [ "$compiler_com else echo "using the release compiler"; \ fi -RUN --mount=type=ssh if [ "$compiler_version" != "release" ] && [ "$compiler_commit" != "" ]; then \ +RUN if [ "$compiler_version" = "amd-stg-open" ] && [ "$compiler_commit" != "" ]; then \ git clone -b "$compiler_version" https://github.com/RadeonOpenCompute/llvm-project.git && \ cd llvm-project && git checkout "$compiler_commit" && echo "checking out commit $compiler_commit" && mkdir build && cd build && \ cmake -DCMAKE_INSTALL_PREFIX=/opt/rocm/llvm -DCMAKE_BUILD_TYPE=Release -DLLVM_ENABLE_ASSERTIONS=1 -DLLVM_TARGETS_TO_BUILD="AMDGPU;X86" -DLLVM_ENABLE_PROJECTS="clang;lld;compiler-rt" ../llvm && \ diff --git a/Jenkinsfile b/Jenkinsfile index 7b2e57c1403df3cd4574bf127b96163f1b736d17..df9d13167f56f69e77814979c3400ea3e03a1c5b 100644 --- a/Jenkinsfile +++ b/Jenkinsfile @@ -11,15 +11,56 @@ def show_node_info() { """ } +def nthreads() { + def nproc = sh(returnStdout: true, script: 'nproc') + echo "Number of cores: ${nproc}" + def n = nproc.toInteger() + if (n > 32){ + n /= 2 + } + if (n > 64){ + n = 64 + } + echo "Number of threads used for building: ${n}" + return n +} + def runShell(String command){ def responseCode = sh returnStatus: true, script: "${command} > tmp.txt" def output = readFile(file: "tmp.txt") - echo "tmp.txt contents: $output" return (output != "") } def getDockerImageName(){ - def img = "${env.CK_DOCKERHUB}:ck_ub20.04_rocm${params.ROCMVERSION}_${params.COMPILER_VERSION}" + def img + if (params.ROCMVERSION != "5.7"){ + if (params.COMPILER_VERSION == "") { + img = "${env.CK_DOCKERHUB}:ck_ub20.04_rocm${params.ROCMVERSION}" + } + else{ + if (params.COMPILER_COMMIT == ""){ + img = "${env.CK_DOCKERHUB}:ck_ub20.04_rocm${params.ROCMVERSION}_${params.COMPILER_VERSION}" + } + else{ + def commit = "${params.COMPILER_COMMIT}"[0..6] + img = "${env.CK_DOCKERHUB}:ck_ub20.04_rocm${params.ROCMVERSION}_${params.COMPILER_VERSION}_${commit}" + } + } + } + else{ + if (params.COMPILER_VERSION == "") { + img = "${env.CK_DOCKERHUB_PRIVATE}:ck_ub20.04_rocm${params.ROCMVERSION}" + } + else{ + if (params.COMPILER_COMMIT == ""){ + img = "${env.CK_DOCKERHUB_PRIVATE}:ck_ub20.04_rocm${params.ROCMVERSION}_${params.COMPILER_VERSION}" + } + else{ + def commit = "${params.COMPILER_COMMIT}"[0..6] + img = "${env.CK_DOCKERHUB_PRIVATE}:ck_ub20.04_rocm${params.ROCMVERSION}_${params.COMPILER_VERSION}_${commit}" + } + } + } return img } @@ -43,11 +84,11 @@ def build_compiler(){ compiler = '/opt/rocm/bin/hipcc' } else{ - if (params.COMPILER_VERSION == "release"){ - compiler = "/opt/rocm/llvm/bin/clang++" + if (params.COMPILER_VERSION == "amd-stg-open" || params.COMPILER_COMMIT != ""){ + compiler = "/llvm-project/build/bin/clang++" } else{ - compiler = "/llvm-project/build/bin/clang++" + compiler = "/opt/rocm/llvm/bin/clang++" } } return compiler @@ -165,7 +206,7 @@ def cmake_build(Map conf=[:]){ if(conf.get("build_install","") == "true") { config_targets = 'install ' + config_targets - setup_args = ' -DBUILD_DEV=Off -DCMAKE_INSTALL_PREFIX=../install' + setup_args + setup_args = ' -DBUILD_DEV=On -DCMAKE_INSTALL_PREFIX=../install' + setup_args } else{ setup_args = ' -DBUILD_DEV=On' + setup_args } @@ -192,7 +233,8 @@ def cmake_build(Map conf=[:]){ """ def setup_cmd = conf.get("setup_cmd", "${cmake_envs} cmake ${setup_args} .. ") // reduce parallelism when compiling, clang uses too much memory - def build_cmd = conf.get("build_cmd", "${build_envs} dumb-init make -j\$(( \$(nproc) / 2 )) ${config_targets}") + def nt = nthreads() + def build_cmd = conf.get("build_cmd", "${build_envs} dumb-init make -j${nt} ${config_targets}") def execute_cmd = conf.get("execute_cmd", "") def cmd = conf.get("cmd", """ @@ -226,7 +268,7 @@ def buildHipClangJob(Map conf=[:]){ dockerOpts = dockerOpts + " --env HSA_XNACK=1 " } def dockerArgs = "--build-arg PREFIX=${prefixpath} --build-arg compiler_version='${params.COMPILER_VERSION}' --build-arg compiler_commit='${params.COMPILER_COMMIT}' --build-arg ROCMVERSION='${params.ROCMVERSION}' " - if (params.COMPILER_VERSION != "release"){ + if (params.COMPILER_VERSION == "amd-stg-open" || params.COMPILER_COMMIT != ""){ dockerOpts = dockerOpts + " --env HIP_CLANG_PATH='/llvm-project/build/bin' " } @@ -281,7 +323,7 @@ def runCKProfiler(Map conf=[:]){ dockerOpts = dockerOpts + " --env HSA_XNACK=1 " } def dockerArgs = "--build-arg PREFIX=${prefixpath} --build-arg compiler_version='${params.COMPILER_VERSION}' --build-arg compiler_commit='${params.COMPILER_COMMIT}' --build-arg ROCMVERSION='${params.ROCMVERSION}' " - if (params.COMPILER_VERSION != "release"){ + if (params.COMPILER_VERSION == "amd-stg-open" || params.COMPILER_COMMIT != ""){ dockerOpts = dockerOpts + " --env HIP_CLANG_PATH='/llvm-project/build/bin' " } @@ -414,12 +456,13 @@ def Build_CK(Map conf=[:]){ dockerOpts = dockerOpts + " --env HSA_XNACK=1 " } def dockerArgs = "--build-arg PREFIX=${prefixpath} --build-arg compiler_version='${params.COMPILER_VERSION}' --build-arg compiler_commit='${params.COMPILER_COMMIT}' --build-arg ROCMVERSION='${params.ROCMVERSION}' " - if (params.COMPILER_VERSION != "release"){ + if (params.COMPILER_VERSION == "amd-stg-open" || params.COMPILER_COMMIT != ""){ dockerOpts = dockerOpts + " --env HIP_CLANG_PATH='/llvm-project/build/bin' " } def variant = env.STAGE_NAME def retimage + def navi_node = 0 gitStatusWrapper(credentialsId: "${status_wrapper_creds}", gitHubContext: "Jenkins - ${variant}", account: 'ROCmSoftwarePlatform', repo: 'composable_kernel') { try { @@ -433,6 +476,9 @@ def Build_CK(Map conf=[:]){ else{ echo "GPU is OK" } + if ( runShell('grep -n "gfx1030" clinfo.log') || runShell('grep -n "gfx1101" clinfo.log') ){ + navi_node = 1 + } } } } @@ -451,6 +497,9 @@ def Build_CK(Map conf=[:]){ else{ echo "GPU is OK" } + if ( runShell('grep -n "gfx1030" clinfo.log') || runShell('grep -n "gfx1101" clinfo.log') ){ + navi_node = 1 + } } } } @@ -460,10 +509,22 @@ def Build_CK(Map conf=[:]){ cmake_build(conf) dir("build"){ //run tests and examples - sh 'make -j check' - //we only need the ckProfiler to run the performance tests, so we pack and stash it - sh 'tar -zcvf ckProfiler.tar.gz bin/ckProfiler' - stash "ckProfiler.tar.gz" + def nt = nthreads() + sh 'make -j${nt} check' + if (navi_node == 0 ){ + //we only need the ckProfiler to run the performance tests, so we pack and stash it + //do not stash profiler on Navi nodes + sh 'tar -zcvf ckProfiler.tar.gz bin/ckProfiler' + stash "ckProfiler.tar.gz" + } + if (params.RUN_FULL_QA){ + // build deb packages + sh 'make -j package' + archiveArtifacts artifacts: 'composablekernel-ckprofiler_*.deb' + archiveArtifacts artifacts: 'composablekernel-tests_*.deb' + sh 'mv composablekernel-ckprofiler_*.deb ckprofiler_0.2.0_amd64.deb' + stash "ckprofiler_0.2.0_amd64.deb" + } } } } @@ -530,6 +591,8 @@ def process_results(Map conf=[:]){ unstash "perf_splitK_gemm.log" unstash "perf_onnx_gemm.log" sh "./process_qa_data.sh" + unstash "ckprofiler_0.2.0_amd64.deb" + sh "sshpass -p ${env.ck_deb_pw} scp -o StrictHostKeyChecking=no ckprofiler_0.2.0_amd64.deb ${env.ck_deb_user}@${env.ck_deb_ip}:/var/www/html/composable_kernel/" } else{ // unstash perf files to master @@ -550,8 +613,9 @@ def process_results(Map conf=[:]){ } //launch develop branch daily at 23:00 UT in FULL_QA mode and at 19:00 UT with latest staging compiler version -CRON_SETTINGS = BRANCH_NAME == "develop" ? '''0 23 * * * % RUN_FULL_QA=true;COMPILER_VERSION=release - 0 19 * * * % BUILD_DOCKER=true;COMPILER_VERSION=amd-stg-open''' : "" +CRON_SETTINGS = BRANCH_NAME == "develop" ? '''0 23 * * * % RUN_FULL_QA=true + 0 21 * * * % ROCMVERSION=5.6;COMPILER_VERSION=;COMPILER_COMMIT= + 0 19 * * * % BUILD_DOCKER=true;COMPILER_VERSION=amd-stg-open;COMPILER_COMMIT=''' : "" pipeline { agent none @@ -568,16 +632,16 @@ pipeline { description: "Force building docker image (default: false), set to true if docker image needs to be updated.") string( name: 'ROCMVERSION', - defaultValue: '5.3', - description: 'Specify which ROCM version to use: 5.2.3, or 5.3 (default), etc.') + defaultValue: '5.6', + description: 'Specify which ROCM version to use: 5.6 (default).') string( name: 'COMPILER_VERSION', - defaultValue: 'release', - description: 'Specify which version of compiler to use: ck-9110, release (default), or amd-stg-open.') + defaultValue: '', + description: 'Specify which version of compiler to use: release, amd-stg-open, or leave blank (default).') string( name: 'COMPILER_COMMIT', defaultValue: '', - description: 'Specify which commit of compiler branch to use: leave empty to use the latest commit (default), or use 8a82e4eb7ba28521ba9a9424a0315a8a16590424 commit of amd-stg-open branch.') + description: 'Specify which commit of compiler branch to use: leave blank to use the latest commit, or use 5541927df00eabd6a110180170eca7785d436ee3 (default) commit of amd-stg-open branch.') string( name: 'BUILD_COMPILER', defaultValue: 'hipcc', @@ -639,12 +703,47 @@ pipeline { { parallel { - stage("Build CK and run Tests") + stage("Build CK and run Tests on MI100/MI200/MI300") { + when { + beforeAgent true + expression { params.RUN_FULL_QA.toBoolean() } + } agent{ label rocmnode("gfx908 || gfx90a") } environment{ - setup_args = "${params.COMPILER_VERSION == "ck-9110" ? """ -DBUILD_DEV=Off -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a" -DCMAKE_CXX_FLAGS="-O3 -Xclang -mlink-builtin-bitcode -Xclang /opt/rocm/amdgcn/bitcode/oclc_abi_version_400.bc" """ : """ -DBUILD_DEV=Off -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a" -DCMAKE_CXX_FLAGS="-O3 " """ }" - execute_args = "${params.COMPILER_VERSION == "ck-9110" ? """ cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908;gfx90a" -DCMAKE_CXX_FLAGS="-O3 -Xclang -mlink-builtin-bitcode -Xclang /opt/rocm/amdgcn/bitcode/oclc_abi_version_400.bc" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """ : """ cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908,gfx90a" -DCMAKE_CXX_FLAGS="-O3" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """ }" + setup_args = """ -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a;gfx940" """ + execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908;gfx90a;gfx940" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """ + } + steps{ + Build_CK_and_Reboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local') + } + } + stage("Build CK and run Tests on MI100/MI200") + { + when { + beforeAgent true + expression { !params.RUN_FULL_QA.toBoolean() } + } + agent{ label rocmnode("gfx908 || gfx90a") } + environment{ + setup_args = """ -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a" """ + execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908;gfx90a" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """ + } + steps{ + Build_CK_and_Reboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local') + } + } + stage("Build CK and run Tests on Navi21") + { + when { + beforeAgent true + expression { !params.RUN_FULL_QA.toBoolean() } + } + agent{ label rocmnode("navi21") } + environment{ + setup_args = """ -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx1030" """ + execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx1030" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """ + } steps{ Build_CK_and_Reboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local') @@ -657,7 +756,7 @@ pipeline { { parallel { - stage("Run ckProfiler: gfx908 or gfx90a") + stage("Run ckProfiler: gfx90*") { when { beforeAgent true @@ -666,7 +765,7 @@ pipeline { options { retry(2) } agent{ label rocmnode("gfx908 || gfx90a")} environment{ - setup_args = "${params.COMPILER_VERSION == "ck-9110" ? """ -DGPU_TARGETS="gfx908;gfx90a" -DCMAKE_CXX_FLAGS=" -O3 -Xclang -mlink-builtin-bitcode -Xclang /opt/rocm/amdgcn/bitcode/oclc_abi_version_400.bc" -DBUILD_DEV=On """ : """ -DGPU_TARGETS="gfx908;gfx90a" -DCMAKE_CXX_FLAGS=" -O3 " -DBUILD_DEV=On """}" + setup_args = """ -DGPU_TARGETS="gfx908;gfx90a" -DBUILD_DEV=On """ } steps{ runPerfTest(setup_args:setup_args, config_targets: "ckProfiler", no_reboot:true, build_type: 'Release') @@ -681,7 +780,7 @@ pipeline { options { retry(2) } agent{ label rocmnode("gfx90a")} environment{ - setup_args = "${params.COMPILER_VERSION == "ck-9110" ? """ -DGPU_TARGETS="gfx90a" -DCMAKE_CXX_FLAGS=" -O3 -Xclang -mlink-builtin-bitcode -Xclang /opt/rocm/amdgcn/bitcode/oclc_abi_version_400.bc" -DBUILD_DEV=On """ : """ -DGPU_TARGETS="gfx90a" -DCMAKE_CXX_FLAGS=" -O3 " -DBUILD_DEV=On """}" + setup_args = """ -DGPU_TARGETS="gfx90a" -DBUILD_DEV=On """ } steps{ runPerfTest(setup_args:setup_args, config_targets: "ckProfiler", no_reboot:true, build_type: 'Release') diff --git a/LICENSE b/LICENSE index 2fe9a8455efaeda2eab474b2aa038ec2d9e76841..e03fddaf78080705d26ec277629cfb8010c077bf 100644 --- a/LICENSE +++ b/LICENSE @@ -7,7 +7,7 @@ Copyright (c) 2020 , Advanced Micro Devices, Inc. (Xiaoyan Zhou) Copyright (c) 2021-2022, Advanced Micro Devices, Inc. (Jianfeng Yan) SPDX-License-Identifier: MIT -Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. +Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal diff --git a/README.md b/README.md index 151da974a559bef2e52971034f607d4afe44f632..fd6f7e37c2d5cb667cfb20e899b12cc542351101 100644 --- a/README.md +++ b/README.md @@ -1,43 +1,60 @@ # Composable Kernel ## Methodology + Composable Kernel (CK) library aims to provide a programming model for writing performance critical kernels for machine learning workloads across multiple architectures including GPUs, CPUs, etc, through general purpose kernel languages, like HIP C++. CK utilizes two concepts to achieve performance portability and code maintainability: * A tile-based programming model * Algorithm complexity reduction for complex ML operators, using innovative technique we call "Tensor Coordinate Transformation". -![ALT](/doc/image/ck_component.png "CK Components") +![ALT](/docs/data/ck_component.png "CK Components") ## Code Structure + Current CK library are structured into 4 layers: * "Templated Tile Operators" layer * "Templated Kernel and Invoker" layer * "Instantiated Kernel and Invoker" layer * "Client API" layer -![ALT](/doc/image/ck_layer.png "CK Layers") +![ALT](/docs/data/ck_layer.png "CK Layers") + +## Documentation + +Run the steps below to build documentation locally. + +``` +cd docs +pip3 install -r sphinx/requirements.txt +python3 -m sphinx -T -E -b html -d _build/doctrees -D language=en . _build/html +``` ## Contributors + The list of developers and contributors is here: [Contributors](/CONTRIBUTORS.md) ## Citation + If you use CK, please use following citations: * CK paper will be freely available on arXiv soon: [Realizing Tensor Operators Using Coordinate Transformations and Tile Based Programming](???) * [CITATION.cff](/CITATION.cff) ## License + CK is released under the MIT license. [License File](/LICENSE) # Build CK ## Build docker image + ```bash DOCKER_BUILDKIT=1 docker build -t ck:latest -f Dockerfile . ``` ## Launch docker + ```bash docker run \ -it \ @@ -50,10 +67,12 @@ ck:latest \ ``` ## Build CK + ```bash mkdir build && cd build # Need to specify target ID, example below is for gfx908 and gfx90a + cmake \ -D CMAKE_PREFIX_PATH=/opt/rocm \ -D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \ @@ -64,6 +83,7 @@ cmake ``` ### Build examples and tests + ```bash make -j examples tests make test @@ -73,21 +93,43 @@ Instructions for running each individual examples are under [example](/example) ## Build ckProfiler + ```bash make -j ckProfiler ``` Instructions for running ckProfiler are under [profiler](/profiler) ## Install CK + ```bash make install ``` ## Using CK as pre-built kernel library + Instructions for using CK as a pre-built kernel library are under [client_example](/client_example) +## Contributing + +When you contribute to Composable Kernel, make sure to run `clang-format` on all the changed files. We highly recommend using git hooks that are managed by the `pre-commit` framework. To install hooks, run: + +```bash +sudo script/install_precommit.sh +``` + +This way, `pre-commit` will add the appropriate hooks to your local repository and automatically run `clang-format` (and possibly additional checks) before any commit is created. + +If you need to uninstall hooks from the repository, you can do so by running the following command: + +```bash +script/uninstall_precommit.sh +``` + +If for any reason, you need to temporarily disable precommit hooks, you can add the `--no-verify` option to the `git commit` command. + ## Caveat ### Kernel Timing and Verification + CK's own kernel timer will warn up kernel once, and then run it multiple times to get average kernel time. For some kernels that use atomic add, this will cause output buffer to be accumulated multiple times, causing verification failure. diff --git a/client_example/01_gemm/gemm.cpp b/client_example/01_gemm/gemm.cpp index a8a6bf16c2b09a3204b119be63258f9ca213336f..c37f208db1cee9bfff1fff469fd79d059fb179f0 100644 --- a/client_example/01_gemm/gemm.cpp +++ b/client_example/01_gemm/gemm.cpp @@ -1,5 +1,5 @@ // SPDX-License-Identifier: MIT -// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include @@ -83,7 +83,7 @@ int main(int argc, char* argv[]) [](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) { using Layout = decltype(layout); - if(std::is_same::value) + if constexpr(std::is_same::value) { return (nRow - 1) * stride + nCol; } diff --git a/client_example/02_gemm_add_add_fastgelu/CMakeLists.txt b/client_example/02_gemm_add_add_fastgelu/CMakeLists.txt index b7b724ccc484d6c9ea83e791aa5b8fcde420eef7..ba2952022233b3ffd21fc245b8fd199a5ec5b096 100644 --- a/client_example/02_gemm_add_add_fastgelu/CMakeLists.txt +++ b/client_example/02_gemm_add_add_fastgelu/CMakeLists.txt @@ -11,3 +11,17 @@ target_link_libraries(client_gemm_fastgelu PRIVATE composable_kernel::device_ope add_dependencies(client_gemm_fastgelu_examples client_gemm_add_add_fastgelu client_gemm_add_fastgelu client_gemm_fastgelu) + +add_custom_target(client_gemm_fastgelu_generic_examples) + +add_executable(client_gemm_add_add_fastgelu_generic gemm_add_add_fastgelu_generic.cpp) +target_link_libraries(client_gemm_add_add_fastgelu_generic PRIVATE composable_kernel::device_operations) + +add_executable(client_gemm_add_fastgelu_generic gemm_add_fastgelu_generic.cpp) +target_link_libraries(client_gemm_add_fastgelu_generic PRIVATE composable_kernel::device_operations) + +add_executable(client_gemm_fastgelu_generic gemm_fastgelu_generic.cpp) +target_link_libraries(client_gemm_fastgelu_generic PRIVATE composable_kernel::device_operations) + +add_dependencies(client_gemm_fastgelu_generic_examples client_gemm_add_add_fastgelu_generic + client_gemm_add_fastgelu_generic client_gemm_fastgelu_generic) diff --git a/client_example/02_gemm_add_add_fastgelu/gemm_add_add_fastgelu.cpp b/client_example/02_gemm_add_add_fastgelu/gemm_add_add_fastgelu.cpp index f88e72b62e4a20beeda8b1d5432a1055c32e2627..756889562e84c66efb5f972621bcb61edda3af82 100644 --- a/client_example/02_gemm_add_add_fastgelu/gemm_add_add_fastgelu.cpp +++ b/client_example/02_gemm_add_add_fastgelu/gemm_add_add_fastgelu.cpp @@ -1,5 +1,5 @@ // SPDX-License-Identifier: MIT -// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include @@ -92,7 +92,7 @@ int main(int argc, char* argv[]) [](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) { using Layout = decltype(layout); - if(std::is_same::value) + if constexpr(std::is_same::value) { return (nRow - 1) * stride + nCol; } diff --git a/client_example/02_gemm_add_add_fastgelu/gemm_add_add_fastgelu_generic.cpp b/client_example/02_gemm_add_add_fastgelu/gemm_add_add_fastgelu_generic.cpp new file mode 100644 index 0000000000000000000000000000000000000000..2ed942f0adf64df90ea1046d1de191ce2247d7c4 --- /dev/null +++ b/client_example/02_gemm_add_add_fastgelu/gemm_add_add_fastgelu_generic.cpp @@ -0,0 +1,176 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include +#include +#include +#include + +#include "ck/ck.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" +#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp" +#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" + +#include "ck/library/tensor_operation_instance/gpu/gemm_add_add_fastgelu.hpp" + +using F16 = ck::half_t; +using F32 = float; + +using Row = ck::tensor_layout::gemm::RowMajor; +using Col = ck::tensor_layout::gemm::ColumnMajor; + +using PassThrough = ck::tensor_operation::element_wise::PassThrough; +using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu; + +using AElementOp = PassThrough; +using BElementOp = PassThrough; +using CDEElementOp = AddAddFastGelu; + +using ADataType = F16; +using BDataType = F16; +using D0DataType = F16; +using D1DataType = F16; +using EDataType = F16; + +using ALayout = Row; +using BLayout = Col; +using D0Layout = Row; +using D1Layout = Row; +using ELayout = Row; + +struct SimpleDeviceMem +{ + SimpleDeviceMem() = delete; + + SimpleDeviceMem(std::size_t mem_size) : p_mem_{} + { + (void)hipMalloc(static_cast(&p_mem_), mem_size); + } + + void* GetDeviceBuffer() { return p_mem_; } + + ~SimpleDeviceMem() { (void)hipFree(p_mem_); } + + void* p_mem_; +}; + +int main(int argc, char* argv[]) +{ + // GEMM shape + ck::index_t M = 3840; + ck::index_t N = 4096; + ck::index_t K = 4096; + + ck::index_t StrideA = 4096; + ck::index_t StrideB = 4096; + ck::index_t StrideD0 = 0; + ck::index_t StrideD1 = 4096; + ck::index_t StrideE = 4096; + + if(argc == 1) + { + // use default case + } + else if(argc == 9) + { + M = std::stoi(argv[1]); + N = std::stoi(argv[2]); + K = std::stoi(argv[3]); + + StrideA = std::stoi(argv[4]); + StrideB = std::stoi(argv[5]); + StrideD0 = std::stoi(argv[6]); + StrideD1 = std::stoi(argv[7]); + StrideE = std::stoi(argv[8]); + } + else + { + printf("arg1 to 8: M, N, K, StrideA, StrideB, StrideD0, StrideD1, StrideE\n"); + exit(0); + } + + auto f_matrix_space_size = + [](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) { + using Layout = decltype(layout); + + if constexpr(std::is_same::value) + { + return (nRow - 1) * stride + nCol; + } + else + { + return (nCol - 1) * stride + nRow; + } + }; + + SimpleDeviceMem a_device_buf(sizeof(ADataType) * f_matrix_space_size(M, K, StrideA, ALayout{})); + SimpleDeviceMem b_device_buf(sizeof(BDataType) * f_matrix_space_size(K, N, StrideB, BLayout{})); + SimpleDeviceMem d0_m_n_device_buf(sizeof(D0DataType) * + f_matrix_space_size(M, N, StrideD0, D0Layout{})); + SimpleDeviceMem d1_m_n_device_buf(sizeof(D1DataType) * + f_matrix_space_size(M, N, StrideD1, D1Layout{})); + SimpleDeviceMem e_device_buf(sizeof(EDataType) * f_matrix_space_size(M, N, StrideE, ELayout{})); + + using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleD< + ALayout, + BLayout, + ck::Tuple, + ELayout, + ADataType, + BDataType, + ck::Tuple, + EDataType, + ck::tensor_operation::element_wise::PassThrough, + ck::tensor_operation::element_wise::PassThrough, + ck::tensor_operation::element_wise::AddAddFastGelu>; + + // get device op instances + const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + DeviceOp>::GetInstances(); + + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; + + const auto a_element_op = AElementOp{}; + const auto b_element_op = BElementOp{}; + const auto cde_element_op = CDEElementOp{}; + + // get generic instance + auto& op_ptr = op_ptrs[0]; + + std::cout << "Run the generic instance without timing: " << op_ptr->GetTypeString() + << std::endl; + + // run the generic instance + auto argument_ptr = + op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(), + b_device_buf.GetDeviceBuffer(), + std::array{d0_m_n_device_buf.GetDeviceBuffer(), + d1_m_n_device_buf.GetDeviceBuffer()}, + e_device_buf.GetDeviceBuffer(), + M, + N, + K, + StrideA, + StrideB, + std::array{StrideD0, StrideD1}, + StrideE, + a_element_op, + b_element_op, + cde_element_op); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); + } + else + { + throw std::runtime_error( + "Generic instance should be suitable for various input lengths/strides"); + } + + std::cout << "Done" << std::endl; + + return 0; +} diff --git a/client_example/02_gemm_add_add_fastgelu/gemm_add_fastgelu.cpp b/client_example/02_gemm_add_add_fastgelu/gemm_add_fastgelu.cpp index 512555f978efc6932e38ff31ec20ebf3aab4b063..8d2a8c234aae63a3566478b5aa9588389a247d4e 100644 --- a/client_example/02_gemm_add_add_fastgelu/gemm_add_fastgelu.cpp +++ b/client_example/02_gemm_add_add_fastgelu/gemm_add_fastgelu.cpp @@ -1,5 +1,5 @@ // SPDX-License-Identifier: MIT -// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include @@ -76,7 +76,7 @@ int main(int argc, char* argv[]) StrideA = std::stoi(argv[4]); StrideB = std::stoi(argv[5]); StrideD0 = std::stoi(argv[6]); - StrideE = std::stoi(argv[8]); + StrideE = std::stoi(argv[7]); } else { @@ -88,7 +88,7 @@ int main(int argc, char* argv[]) [](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) { using Layout = decltype(layout); - if(std::is_same::value) + if constexpr(std::is_same::value) { return (nRow - 1) * stride + nCol; } diff --git a/client_example/02_gemm_add_add_fastgelu/gemm_add_fastgelu_generic.cpp b/client_example/02_gemm_add_add_fastgelu/gemm_add_fastgelu_generic.cpp new file mode 100644 index 0000000000000000000000000000000000000000..644b428fc9f51b28a0f81ed7d79ac741ca6fbcbe --- /dev/null +++ b/client_example/02_gemm_add_add_fastgelu/gemm_add_fastgelu_generic.cpp @@ -0,0 +1,169 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include +#include +#include +#include + +#include "ck/ck.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" +#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp" +#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" + +#include "ck/library/tensor_operation_instance/gpu/gemm_add_fastgelu.hpp" + +using F16 = ck::half_t; +using F32 = float; + +using Row = ck::tensor_layout::gemm::RowMajor; +using Col = ck::tensor_layout::gemm::ColumnMajor; + +using PassThrough = ck::tensor_operation::element_wise::PassThrough; +using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu; + +using AElementOp = PassThrough; +using BElementOp = PassThrough; +using CDEElementOp = AddFastGelu; + +using ADataType = F16; +using BDataType = F16; +using D0DataType = F16; +using EDataType = F16; + +using ALayout = Row; +using BLayout = Col; +using D0Layout = Row; +using ELayout = Row; + +struct SimpleDeviceMem +{ + SimpleDeviceMem() = delete; + + SimpleDeviceMem(std::size_t mem_size) : p_mem_{} + { + (void)hipMalloc(static_cast(&p_mem_), mem_size); + } + + void* GetDeviceBuffer() { return p_mem_; } + + ~SimpleDeviceMem() { (void)hipFree(p_mem_); } + + void* p_mem_; +}; + +int main(int argc, char* argv[]) +{ + // GEMM shape + ck::index_t M = 3840; + ck::index_t N = 4096; + ck::index_t K = 4096; + + ck::index_t StrideA = 4096; + ck::index_t StrideB = 4096; + ck::index_t StrideD0 = 0; + ck::index_t StrideE = 4096; + + if(argc == 1) + { + // use default case + } + else if(argc == 8) + { + M = std::stoi(argv[1]); + N = std::stoi(argv[2]); + K = std::stoi(argv[3]); + + StrideA = std::stoi(argv[4]); + StrideB = std::stoi(argv[5]); + StrideD0 = std::stoi(argv[6]); + StrideE = std::stoi(argv[7]); + } + else + { + printf("arg1 to 7: M, N, K, StrideA, StrideB, StrideD0, StrideE\n"); + exit(0); + } + + auto f_matrix_space_size = + [](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) { + using Layout = decltype(layout); + + if constexpr(std::is_same::value) + { + return (nRow - 1) * stride + nCol; + } + else + { + return (nCol - 1) * stride + nRow; + } + }; + + SimpleDeviceMem a_device_buf(sizeof(ADataType) * f_matrix_space_size(M, K, StrideA, ALayout{})); + SimpleDeviceMem b_device_buf(sizeof(BDataType) * f_matrix_space_size(K, N, StrideB, BLayout{})); + SimpleDeviceMem d0_m_n_device_buf(sizeof(D0DataType) * + f_matrix_space_size(M, N, StrideD0, D0Layout{})); + SimpleDeviceMem e_device_buf(sizeof(EDataType) * f_matrix_space_size(M, N, StrideE, ELayout{})); + + using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleD< + ALayout, + BLayout, + ck::Tuple, + ELayout, + ADataType, + BDataType, + ck::Tuple, + EDataType, + ck::tensor_operation::element_wise::PassThrough, + ck::tensor_operation::element_wise::PassThrough, + ck::tensor_operation::element_wise::AddFastGelu>; + + // get device op instances + const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + DeviceOp>::GetInstances(); + + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; + + const auto a_element_op = AElementOp{}; + const auto b_element_op = BElementOp{}; + const auto cde_element_op = CDEElementOp{}; + + // get generic instance + auto& op_ptr = op_ptrs[0]; + + std::cout << "Run the generic instance without timing: " << op_ptr->GetTypeString() + << std::endl; + + // run the generic instance + auto argument_ptr = + op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(), + b_device_buf.GetDeviceBuffer(), + std::array{d0_m_n_device_buf.GetDeviceBuffer()}, + e_device_buf.GetDeviceBuffer(), + M, + N, + K, + StrideA, + StrideB, + std::array{StrideD0}, + StrideE, + a_element_op, + b_element_op, + cde_element_op); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); + } + else + { + throw std::runtime_error( + "Generic instance should be suitable for various input lengths/strides"); + } + + std::cout << "Done" << std::endl; + + return 0; +} diff --git a/client_example/02_gemm_add_add_fastgelu/gemm_fastgelu.cpp b/client_example/02_gemm_add_add_fastgelu/gemm_fastgelu.cpp index 72372310321e297b3a0d9101c808eda273675dde..c02df018fd35c6d37a2c6f9b9fded6390c9afb19 100644 --- a/client_example/02_gemm_add_add_fastgelu/gemm_fastgelu.cpp +++ b/client_example/02_gemm_add_add_fastgelu/gemm_fastgelu.cpp @@ -1,5 +1,5 @@ // SPDX-License-Identifier: MIT -// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include @@ -72,7 +72,7 @@ int main(int argc, char* argv[]) StrideA = std::stoi(argv[4]); StrideB = std::stoi(argv[5]); - StrideE = std::stoi(argv[8]); + StrideE = std::stoi(argv[6]); } else { @@ -84,7 +84,7 @@ int main(int argc, char* argv[]) [](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) { using Layout = decltype(layout); - if(std::is_same::value) + if constexpr(std::is_same::value) { return (nRow - 1) * stride + nCol; } diff --git a/client_example/02_gemm_add_add_fastgelu/gemm_fastgelu_generic.cpp b/client_example/02_gemm_add_add_fastgelu/gemm_fastgelu_generic.cpp new file mode 100644 index 0000000000000000000000000000000000000000..482e93b421f7700cdf37ee014cf407ca3c63555b --- /dev/null +++ b/client_example/02_gemm_add_add_fastgelu/gemm_fastgelu_generic.cpp @@ -0,0 +1,162 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include +#include +#include +#include + +#include "ck/ck.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" +#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp" +#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" + +#include "ck/library/tensor_operation_instance/gpu/gemm_fastgelu.hpp" + +using F16 = ck::half_t; +using F32 = float; + +using Row = ck::tensor_layout::gemm::RowMajor; +using Col = ck::tensor_layout::gemm::ColumnMajor; + +using PassThrough = ck::tensor_operation::element_wise::PassThrough; +using FastGelu = ck::tensor_operation::element_wise::FastGelu; + +using AElementOp = PassThrough; +using BElementOp = PassThrough; +using CDEElementOp = FastGelu; + +using ADataType = F16; +using BDataType = F16; +using EDataType = F16; + +using ALayout = Row; +using BLayout = Col; +using ELayout = Row; + +struct SimpleDeviceMem +{ + SimpleDeviceMem() = delete; + + SimpleDeviceMem(std::size_t mem_size) : p_mem_{} + { + (void)hipMalloc(static_cast(&p_mem_), mem_size); + } + + void* GetDeviceBuffer() { return p_mem_; } + + ~SimpleDeviceMem() { (void)hipFree(p_mem_); } + + void* p_mem_; +}; + +int main(int argc, char* argv[]) +{ + // GEMM shape + ck::index_t M = 3840; + ck::index_t N = 4096; + ck::index_t K = 4096; + + ck::index_t StrideA = 4096; + ck::index_t StrideB = 4096; + ck::index_t StrideE = 4096; + + if(argc == 1) + { + // use default case + } + else if(argc == 7) + { + M = std::stoi(argv[1]); + N = std::stoi(argv[2]); + K = std::stoi(argv[3]); + + StrideA = std::stoi(argv[4]); + StrideB = std::stoi(argv[5]); + StrideE = std::stoi(argv[6]); + } + else + { + printf("arg1 to 6: M, N, K, StrideA, StrideB, StrideE\n"); + exit(0); + } + + auto f_matrix_space_size = + [](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) { + using Layout = decltype(layout); + + if constexpr(std::is_same::value) + { + return (nRow - 1) * stride + nCol; + } + else + { + return (nCol - 1) * stride + nRow; + } + }; + + SimpleDeviceMem a_device_buf(sizeof(ADataType) * f_matrix_space_size(M, K, StrideA, ALayout{})); + SimpleDeviceMem b_device_buf(sizeof(BDataType) * f_matrix_space_size(K, N, StrideB, BLayout{})); + SimpleDeviceMem e_device_buf(sizeof(EDataType) * f_matrix_space_size(M, N, StrideE, ELayout{})); + + using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleD< + ALayout, + BLayout, + ck::Tuple<>, + ELayout, + ADataType, + BDataType, + ck::Tuple<>, + EDataType, + ck::tensor_operation::element_wise::PassThrough, + ck::tensor_operation::element_wise::PassThrough, + ck::tensor_operation::element_wise::FastGelu>; + + // get device op instances + const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + DeviceOp>::GetInstances(); + + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; + + const auto a_element_op = AElementOp{}; + const auto b_element_op = BElementOp{}; + const auto cde_element_op = CDEElementOp{}; + + // get generic instance + auto& op_ptr = op_ptrs[0]; + + std::cout << "Run the generic instance without timing: " << op_ptr->GetTypeString() + << std::endl; + + // run the generic instance + auto argument_ptr = op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(), + b_device_buf.GetDeviceBuffer(), + {}, + e_device_buf.GetDeviceBuffer(), + M, + N, + K, + StrideA, + StrideB, + {}, + StrideE, + a_element_op, + b_element_op, + cde_element_op); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); + } + else + { + throw std::runtime_error( + "Generic instance should be suitable for various input lengths/strides"); + } + + std::cout << "Done" << std::endl; + + return 0; +} diff --git a/client_example/03_gemm_layernorm/CMakeLists.txt b/client_example/03_gemm_layernorm/CMakeLists.txt index 3742e70844b96575e263b22a14b0bb8c4cde7a43..b38698d9064e6fa3cbd2e01c8818c0ebfe361cb3 100644 --- a/client_example/03_gemm_layernorm/CMakeLists.txt +++ b/client_example/03_gemm_layernorm/CMakeLists.txt @@ -1,2 +1,5 @@ -add_executable(client_gemm_add_add_reduce_normalize gemm_add_add_layernorm.cpp) -target_link_libraries(client_gemm_add_add_reduce_normalize PRIVATE composable_kernel::device_operations) +add_executable(client_gemm_add_add_layernorm_naive gemm_add_add_layernorm_naive.cpp) +target_link_libraries(client_gemm_add_add_layernorm_naive PRIVATE composable_kernel::device_operations) + +add_executable(client_gemm_add_relu_add_layernorm_welford gemm_add_relu_add_layernorm_welford.cpp) +target_link_libraries(client_gemm_add_relu_add_layernorm_welford PRIVATE composable_kernel::device_operations) diff --git a/client_example/03_gemm_layernorm/gemm_add_add_layernorm.cpp b/client_example/03_gemm_layernorm/gemm_add_add_layernorm_naive.cpp similarity index 94% rename from client_example/03_gemm_layernorm/gemm_add_add_layernorm.cpp rename to client_example/03_gemm_layernorm/gemm_add_add_layernorm_naive.cpp index 6c259407d4608f90bd331ee9a9686b56ad62de90..58c91f903bc7e2f3f296b06c746b1629513bc7f2 100644 --- a/client_example/03_gemm_layernorm/gemm_add_add_layernorm.cpp +++ b/client_example/03_gemm_layernorm/gemm_add_add_layernorm_naive.cpp @@ -1,5 +1,5 @@ // SPDX-License-Identifier: MIT -// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include @@ -8,7 +8,7 @@ #include "ck/ck.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/device_gemm_reduce.hpp" -#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp" +#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/library/tensor_operation_instance/gpu/device_elementwise_instance.hpp" @@ -172,25 +172,26 @@ int main() BLayout, CLayout>(); - const auto normalize_ptrs = - ck::tensor_operation::device::instance::get_device_normalize_from_mean_meansquare_instances< - CDataType, - ReduceDataType, - ReduceDataType, - GammaDataType, - BetaDataType, - LayerNormOutDataType>(); - std::cout << "found " << gemm_reduce_ptrs.size() << " gemm_reduceMean_reduceSquareMean instances" << std::endl; + using NormalizeDeviceOp = ck::tensor_operation::device::DeviceElementwise< + ck::Tuple, + ck::Tuple, + ck::tensor_operation::element_wise::Normalize, + 2>; + + const auto normalize_ptrs = + ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + NormalizeDeviceOp>::GetInstances(); + std::cout << "found " << normalize_ptrs.size() << " normalize instances" << std::endl; auto f_matrix_space_size = [](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) { using Layout = decltype(layout); - if(std::is_same::value) + if constexpr(std::is_same::value) { return (nRow - 1) * stride + nCol; } diff --git a/client_example/03_gemm_layernorm/gemm_add_relu_add_layernorm_welford.cpp b/client_example/03_gemm_layernorm/gemm_add_relu_add_layernorm_welford.cpp new file mode 100644 index 0000000000000000000000000000000000000000..3d5fb6004844af269f7786ae05de8c20cc720633 --- /dev/null +++ b/client_example/03_gemm_layernorm/gemm_add_relu_add_layernorm_welford.cpp @@ -0,0 +1,244 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include +#include +#include + +#include "ck/ck.hpp" +#include "ck/library/tensor_operation_instance/gpu/gemm_add_relu_add_layernorm.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" +#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_layernorm.hpp" +#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" + +using F16 = ck::half_t; + +using Row = ck::tensor_layout::gemm::RowMajor; +using Col = ck::tensor_layout::gemm::ColumnMajor; + +using PassThrough = ck::tensor_operation::element_wise::PassThrough; +using AddReluAdd = ck::tensor_operation::element_wise::AddReluAdd; + +// DataType +using ADataType = F16; +using BDataType = F16; +using D0DataType = F16; +using D1DataType = F16; +using GammaDataType = F16; +using BetaDataType = F16; +using HDataType = F16; + +// Layout +using ALayout = Row; +using BLayout = Col; +using D0Layout = Row; +using D1Layout = Row; +using HLayout = Row; + +using AElementOp = PassThrough; +using BElementOp = PassThrough; +using CDEElementOp = AddReluAdd; +using HElementOp = PassThrough; + +struct SimpleDeviceMem +{ + SimpleDeviceMem() = delete; + + SimpleDeviceMem(std::size_t mem_size) : p_mem_{}, mMemSize_(mem_size) + { + (void)hipMalloc(static_cast(&p_mem_), mem_size); + } + + void* GetDeviceBuffer() { return p_mem_; } + + void SetZero() const { (void)hipMemset(p_mem_, 0, mMemSize_); } + + ~SimpleDeviceMem() { (void)hipFree(p_mem_); } + + void* p_mem_; + std::size_t mMemSize_; +}; + +int main(int argc, char* argv[]) +{ + // GEMM shape + ck::index_t M = 1024; + ck::index_t N = 1024; + ck::index_t K = 1024; + + ck::index_t StrideA = K; + ck::index_t StrideB = K; + ck::index_t StrideD0 = 0; + ck::index_t StrideD1 = N; + ck::index_t StrideH = N; + + float epsilon = 1e-5; + + auto f_matrix_space_size = + [](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) { + using Layout = decltype(layout); + + if constexpr(std::is_same::value) + { + return (nRow - 1) * stride + nCol; + } + else + { + return (nCol - 1) * stride + nRow; + } + }; + + SimpleDeviceMem a_device_buf(sizeof(ADataType) * f_matrix_space_size(M, K, StrideA, ALayout{})); + SimpleDeviceMem b_device_buf(sizeof(BDataType) * f_matrix_space_size(K, N, StrideB, BLayout{})); + SimpleDeviceMem d0_device_buf(sizeof(D0DataType) * + f_matrix_space_size(M, N, StrideD0, D0Layout{})); + SimpleDeviceMem d1_device_buf(sizeof(D1DataType) * + f_matrix_space_size(M, N, StrideD1, D1Layout{})); + SimpleDeviceMem gamma_device_buf(sizeof(GammaDataType) * N); + SimpleDeviceMem beta_device_buf(sizeof(BetaDataType) * N); + SimpleDeviceMem h_device_buf(sizeof(HDataType) * f_matrix_space_size(M, N, StrideH, HLayout{})); + + using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleDLayernorm< + ALayout, + BLayout, + ck::Tuple, + HLayout, + ADataType, + BDataType, + ck::Tuple, + GammaDataType, + BetaDataType, + HDataType, + ck::tensor_operation::element_wise::PassThrough, + ck::tensor_operation::element_wise::PassThrough, + ck::tensor_operation::element_wise::AddReluAdd, + ck::tensor_operation::element_wise::PassThrough>; + + // get device op instances + const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + DeviceOp>::GetInstances(); + + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; + + const auto a_element_op = AElementOp{}; + const auto b_element_op = BElementOp{}; + const auto cde_element_op = CDEElementOp{}; + const auto h_element_op = HElementOp{}; + + std::string best_op_name; + bool found = false; + int best_op_id = -1; + float best_ave_time = std::numeric_limits::max(); + float best_gb_per_sec = 0; + + // profile device operation instances + std::cout << "Run all instances and do timing" << std::endl; + + for(int i = 0; i < op_ptrs.size(); ++i) + { + auto& op_ptr = op_ptrs[i]; + + auto argument_ptr = op_ptr->MakeArgumentPointer( + a_device_buf.GetDeviceBuffer(), + b_device_buf.GetDeviceBuffer(), + {d0_device_buf.GetDeviceBuffer(), d1_device_buf.GetDeviceBuffer()}, + gamma_device_buf.GetDeviceBuffer(), + beta_device_buf.GetDeviceBuffer(), + h_device_buf.GetDeviceBuffer(), + M, + N, + K, + StrideA, + StrideB, + {StrideD0, StrideD1}, + StrideH, + epsilon, + a_element_op, + b_element_op, + cde_element_op, + h_element_op); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + std::string op_name = op_ptr->GetTypeString(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + size_t workspace_sz = op_ptr->GetWorkSpaceSize(argument_ptr.get()); + SimpleDeviceMem workspace_dev(workspace_sz); + op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace_dev.GetDeviceBuffer()); + h_device_buf.SetZero(); + + float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); + + std::size_t num_byte = + sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + + (sizeof(D0DataType) + sizeof(D1DataType) + sizeof(HDataType)) * M * N + + (sizeof(GammaDataType) + sizeof(BetaDataType)) * N; + + float gb_per_sec = num_byte / 1.E6 / ave_time; + + std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, " + << op_name << std::endl; + + if(ave_time < best_ave_time) + { + found = true; + best_op_id = i; + best_op_name = op_name; + best_ave_time = ave_time; + best_gb_per_sec = gb_per_sec; + } + } + else + { + std::cout << op_name << " does not support this problem" << std::endl; + } + } + + std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, " + << best_op_name << std::endl; + + // run the best intance + { + auto& op_ptr = op_ptrs[best_op_id]; + + std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() + << std::endl; + auto argument_ptr = op_ptr->MakeArgumentPointer( + a_device_buf.GetDeviceBuffer(), + b_device_buf.GetDeviceBuffer(), + {d0_device_buf.GetDeviceBuffer(), d1_device_buf.GetDeviceBuffer()}, + gamma_device_buf.GetDeviceBuffer(), + beta_device_buf.GetDeviceBuffer(), + h_device_buf.GetDeviceBuffer(), + M, + N, + K, + StrideA, + StrideB, + {StrideD0, StrideD1}, + StrideH, + epsilon, + a_element_op, + b_element_op, + cde_element_op, + h_element_op); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + size_t workspace_sz = op_ptr->GetWorkSpaceSize(argument_ptr.get()); + SimpleDeviceMem workspace_dev(workspace_sz); + op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace_dev.GetDeviceBuffer()); + h_device_buf.SetZero(); + + invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); + } + + std::cout << "Done" << std::endl; + } + + return 0; +} \ No newline at end of file diff --git a/client_example/04_contraction/CMakeLists.txt b/client_example/04_contraction/CMakeLists.txt index 4bc6780f96d2fe4a4912e3c188b4b5155cc162dd..7ffedfeef36839c1c8bb942ffae11e5f6dcadf22 100644 --- a/client_example/04_contraction/CMakeLists.txt +++ b/client_example/04_contraction/CMakeLists.txt @@ -1,6 +1,15 @@ -add_executable(client_contraction_scale contraction_scale.cpp) -target_link_libraries(client_contraction_scale PRIVATE composable_kernel::device_operations) +add_executable(client_contraction_scale_fp32 contraction_scale_fp32.cpp) +target_link_libraries(client_contraction_scale_fp32 PRIVATE composable_kernel::device_operations) -add_executable(client_contraction_bilinear contraction_bilinear.cpp) -target_link_libraries(client_contraction_bilinear PRIVATE composable_kernel::device_operations) +add_executable(client_contraction_bilinear_fp32 contraction_bilinear_fp32.cpp) +target_link_libraries(client_contraction_bilinear_fp32 PRIVATE composable_kernel::device_operations) + +add_executable(client_contraction_scale_fp64 contraction_scale_fp64.cpp) +target_link_libraries(client_contraction_scale_fp64 PRIVATE composable_kernel::device_operations) + +add_executable(client_contraction_bilinear_fp64 contraction_bilinear_fp64.cpp) +target_link_libraries(client_contraction_bilinear_fp64 PRIVATE composable_kernel::device_operations) + +add_executable(contraction_g1m2n3k1_add_xdl_fp16 contraction_g1m2n3k1_add_xdl_fp16.cpp) +target_link_libraries(contraction_g1m2n3k1_add_xdl_fp16 PRIVATE composable_kernel::device_operations) diff --git a/client_example/04_contraction/contraction_bilinear.cpp b/client_example/04_contraction/contraction_bilinear_fp32.cpp similarity index 99% rename from client_example/04_contraction/contraction_bilinear.cpp rename to client_example/04_contraction/contraction_bilinear_fp32.cpp index 91dead41a4cac19db857b99a233839e9e6647c57..89f834b9824e134f8f0aeed8aa54f78a5c8824a3 100644 --- a/client_example/04_contraction/contraction_bilinear.cpp +++ b/client_example/04_contraction/contraction_bilinear_fp32.cpp @@ -1,5 +1,5 @@ // SPDX-License-Identifier: MIT -// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include diff --git a/client_example/04_contraction/contraction_bilinear_fp64.cpp b/client_example/04_contraction/contraction_bilinear_fp64.cpp new file mode 100644 index 0000000000000000000000000000000000000000..1aa3ba7de597a0b97a295b0f7ee7ad21b1e9cd80 --- /dev/null +++ b/client_example/04_contraction/contraction_bilinear_fp64.cpp @@ -0,0 +1,281 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include +#include +#include +#include + +#include "ck/ck.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" +#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp" +#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" + +#include "ck/library/tensor_operation_instance/gpu/contraction_bilinear.hpp" +#include "ck/library/utility/numeric.hpp" + +using F64 = double; + +using PassThrough = ck::tensor_operation::element_wise::PassThrough; +using Bilinear = ck::tensor_operation::element_wise::Bilinear; + +using AElementOp = PassThrough; +using BElementOp = PassThrough; +using CDEElementOp = Bilinear; + +using ADataType = F64; +using BDataType = F64; +using AccDataType = F64; +using CShuffleDataType = F64; +using DDataType = F64; +using DsDataType = ck::Tuple; +using EDataType = F64; + +static constexpr ck::index_t NumDimM = 2; +static constexpr ck::index_t NumDimN = 2; +static constexpr ck::index_t NumDimK = 2; + +struct SimpleDeviceMem +{ + SimpleDeviceMem() = delete; + + SimpleDeviceMem(std::size_t mem_size) : p_mem_{} + { + (void)hipMalloc(static_cast(&p_mem_), mem_size); + } + + void* GetDeviceBuffer() { return p_mem_; } + + ~SimpleDeviceMem() { (void)hipFree(p_mem_); } + + void* p_mem_; +}; + +int main(int argc, char* argv[]) +{ +// kknn +#if 1 + // A[M0, M1, K0, K1] + std::vector a_ms_ks_lengths{30, 128, 32, 64}; + std::vector a_ms_ks_strides{524288, 4096, 128, 1}; + // B[N0, N1, K0, K1] + std::vector b_ns_ks_lengths{32, 64, 32, 64}; + std::vector b_ns_ks_strides{524288, 4096, 128, 1}; + // D[M0, M1, N0, N1] + std::vector d_ms_ns_lengths{30, 128, 32, 64}; + std::vector d_ms_ns_strides{524288, 4096, 128, 1}; + // E[M0, M1, N0, N1] + std::vector e_ms_ns_lengths{30, 128, 32, 64}; + std::vector e_ms_ns_strides{524288, 4096, 128, 1}; +// knnn +#elif 0 + // A[M0, M1, K0, K1] + std::vector a_ms_ks_lengths{30, 128, 32, 64}; + std::vector a_ms_ks_strides{524288, 4096, 128, 1}; + // B[N0, N1, K0, K1] + std::vector b_ns_ks_lengths{32, 64, 32, 64}; + std::vector b_ns_ks_strides{64, 1, 131072, 2048}; + // D[M0, M1, N0, N1] + std::vector d_ms_ns_lengths{30, 128, 32, 64}; + std::vector d_ms_ns_strides{524288, 4096, 128, 1}; + // E[M0, M1, N0, N1] + std::vector e_ms_ns_lengths{30, 128, 32, 64}; + std::vector e_ms_ns_strides{524288, 4096, 128, 1}; +// mknn +#elif 0 + // A[M0, M1, K0, K1] + std::vector a_ms_ks_lengths{30, 128, 32, 64}; + std::vector a_ms_ks_strides{128, 1, 245760, 3840}; + // B[N0, N1, K0, K1] + std::vector b_ns_ks_lengths{32, 64, 32, 64}; + std::vector b_ns_ks_strides{524288, 4096, 128, 1}; + // D[M0, M1, N0, N1] + std::vector d_ms_ns_lengths{30, 128, 32, 64}; + std::vector d_ms_ns_strides{524288, 4096, 128, 1}; + // E[M0, M1, N0, N1] + std::vector e_ms_ns_lengths{30, 128, 32, 64}; + std::vector e_ms_ns_strides{524288, 4096, 128, 1}; +// mnnn +#elif 0 + // A[M0, M1, K0, K1] + std::vector a_ms_ks_lengths{30, 128, 32, 64}; + std::vector a_ms_ks_strides{128, 1, 245760, 3840}; + // B[N0, N1, K0, K1] + std::vector b_ns_ks_lengths{32, 64, 32, 64}; + std::vector b_ns_ks_strides{64, 1, 131072, 2048}; + // D[M0, M1, N0, N1] + std::vector d_ms_ns_lengths{30, 128, 32, 64}; + std::vector d_ms_ns_strides{524288, 4096, 128, 1}; + // E[M0, M1, N0, N1] + std::vector e_ms_ns_lengths{30, 128, 32, 64}; + std::vector e_ms_ns_strides{524288, 4096, 128, 1}; +#endif + + float alpha = 1.f; + float beta = 1.f; + + if(argc == 1) + { + // use default case + } + else if(argc == 25) + { + const ck::index_t M0 = std::stoi(argv[1]); + const ck::index_t M1 = std::stoi(argv[2]); + + const ck::index_t N0 = std::stoi(argv[3]); + const ck::index_t N1 = std::stoi(argv[4]); + + const ck::index_t K0 = std::stoi(argv[5]); + const ck::index_t K1 = std::stoi(argv[6]); + + a_ms_ks_lengths = {M0, M1, K0, K1}; + a_ms_ks_strides = { + std::stoi(argv[7]), std::stoi(argv[8]), std::stoi(argv[9]), std::stoi(argv[10])}; + + b_ns_ks_lengths = {N0, N1, K0, K1}; + b_ns_ks_strides = { + std::stoi(argv[11]), std::stoi(argv[12]), std::stoi(argv[13]), std::stoi(argv[14])}; + + d_ms_ns_lengths = {M0, M1, N0, N1}; + d_ms_ns_strides = { + std::stoi(argv[15]), std::stoi(argv[16]), std::stoi(argv[17]), std::stoi(argv[18])}; + + e_ms_ns_lengths = {M0, M1, N0, N1}; + e_ms_ns_strides = { + std::stoi(argv[19]), std::stoi(argv[20]), std::stoi(argv[21]), std::stoi(argv[22])}; + + alpha = std::stof(argv[23]); + beta = std::stof(argv[24]); + } + else + { + printf("arg1 to 6: M0, M1, N0, N1, K0, K1\n"); + printf("arg7 to 10: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1\n"); + printf("arg11 to 14: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1\n"); + printf("arg15 to 18: Stride_D_M0, Stride_D_M1, Stride_D_N0, Stride_D_N1\n"); + printf("arg19 to 22: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1\n"); + printf("arg23 to 24: alpha, beta\n"); + exit(0); + } + + auto f_tensor_space_size = [](auto lengths, auto strides) { + std::size_t space_size = 1; + for(std::size_t i = 0; i < lengths.size(); ++i) + { + space_size += (lengths[i] - 1) * strides[i]; + } + return space_size; + }; + + SimpleDeviceMem a_device_buf(sizeof(ADataType) * + f_tensor_space_size(a_ms_ks_lengths, a_ms_ks_strides)); + SimpleDeviceMem b_device_buf(sizeof(BDataType) * + f_tensor_space_size(b_ns_ks_lengths, b_ns_ks_strides)); + SimpleDeviceMem d_device_buf(sizeof(DDataType) * + f_tensor_space_size(d_ms_ns_lengths, d_ms_ns_strides)); + SimpleDeviceMem e_device_buf(sizeof(EDataType) * + f_tensor_space_size(e_ms_ns_lengths, e_ms_ns_strides)); + + using DeviceOp = ck::tensor_operation::device::DeviceContractionMultipleD< + NumDimM, + NumDimN, + NumDimK, + ADataType, + BDataType, + ck::Tuple, + EDataType, + ck::tensor_operation::element_wise::PassThrough, + ck::tensor_operation::element_wise::PassThrough, + ck::tensor_operation::element_wise::Bilinear>; + + // get device op instances + const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + DeviceOp>::GetInstances(); + + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; + + const auto a_element_op = AElementOp{}; + const auto b_element_op = BElementOp{}; + const auto cde_element_op = CDEElementOp{alpha, beta}; + + std::string best_op_name; + bool found = false; + int best_op_id = -1; + float best_ave_time = 0; + float best_tflops = 0; + float best_gb_per_sec = 0; + + // profile device operation instances + std::cout << "Run all instances and do timing" << std::endl; + + for(int i = 0; i < op_ptrs.size(); ++i) + { + auto& op_ptr = op_ptrs[i]; + + auto argument_ptr = + op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(), + b_device_buf.GetDeviceBuffer(), + std::array{d_device_buf.GetDeviceBuffer()}, + e_device_buf.GetDeviceBuffer(), + a_ms_ks_lengths, + a_ms_ks_strides, + b_ns_ks_lengths, + b_ns_ks_strides, + std::array, 1>{d_ms_ns_lengths}, + std::array, 1>{d_ms_ns_strides}, + e_ms_ns_lengths, + e_ms_ns_strides, + a_element_op, + b_element_op, + cde_element_op); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + std::string op_name = op_ptr->GetTypeString(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); + + ck::index_t M = ck::accumulate_n( + e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{}); + + ck::index_t N = ck::accumulate_n( + e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{}); + + ck::index_t K = ck::accumulate_n( + a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{}); + + std::size_t flop = std::size_t(2) * M * N * K; + std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + + sizeof(DDataType) * M * N + sizeof(EDataType) * M * N; + + float tflops = static_cast(flop) / 1.E9 / ave_time; + + float gb_per_sec = num_btype / 1.E6 / ave_time; + + std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, " + << gb_per_sec << " GB/s, " << op_name << std::endl; + + if(tflops > best_tflops) + { + found = true; + best_op_id = i; + best_op_name = op_name; + best_tflops = tflops; + best_ave_time = ave_time; + best_gb_per_sec = gb_per_sec; + } + } + else + { + std::cout << op_name << " does not support this problem" << std::endl; + } + } + + std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, " + << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; + + return 0; +} diff --git a/client_example/04_contraction/contraction_g1m2n3k1_add_xdl_fp16.cpp b/client_example/04_contraction/contraction_g1m2n3k1_add_xdl_fp16.cpp new file mode 100644 index 0000000000000000000000000000000000000000..f8ea2258c2ba262e9db42f1b4dc92ff16cdc6286 --- /dev/null +++ b/client_example/04_contraction/contraction_g1m2n3k1_add_xdl_fp16.cpp @@ -0,0 +1,204 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include +#include +#include +#include + +#include "ck/ck.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" +#include "ck/tensor_operation/gpu/device/device_batched_contraction_multiple_d.hpp" +#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" + +#include "ck/library/tensor_operation_instance/gpu/batched_gemm_bias_permute.hpp" +#include "ck/library/utility/numeric.hpp" + +using F16 = ck::half_t; +using F32 = float; + +using PassThrough = ck::tensor_operation::element_wise::PassThrough; +using Add = ck::tensor_operation::element_wise::Add; + +using AElementOp = PassThrough; +using BElementOp = PassThrough; +using CDEElementOp = Add; + +using ADataType = F16; +using BDataType = F16; +using AccDataType = F32; +using CShuffleDataType = F16; +using DDataType = F16; +using DsDataType = ck::Tuple; +using EDataType = F16; + +static constexpr ck::index_t NumDimG = 1; +static constexpr ck::index_t NumDimM = 2; +static constexpr ck::index_t NumDimN = 3; +static constexpr ck::index_t NumDimK = 1; + +struct SimpleDeviceMem +{ + SimpleDeviceMem() = delete; + + SimpleDeviceMem(std::size_t mem_size) : p_mem_{} + { + (void)hipMalloc(static_cast(&p_mem_), mem_size); + } + + void* GetDeviceBuffer() { return p_mem_; } + + ~SimpleDeviceMem() { (void)hipFree(p_mem_); } + + void* p_mem_; +}; + +int main(int argc, char* argv[]) +{ + ck::index_t G0 = 1; + + ck::index_t M0 = 64; + ck::index_t M1 = 256; + + ck::index_t N0 = 3; + ck::index_t N1 = 12; + ck::index_t N2 = 64; + + ck::index_t K0 = 768; + + // A[M0, M1, M2, K0] + std::vector a_gs_ms_ks_lengths{G0, M0, M1, K0}; + std::vector a_gs_ms_ks_strides{M0 * M1 * K0, M1 * K0, K0, 1}; + // B[N0, N1, N2, K0] + std::vector b_gs_ns_ks_lengths{G0, N0, N1, N2, K0}; + std::vector b_gs_ns_ks_strides{N0 * N1 * N2 * K0, N1 * N2 * K0, N2 * K0, K0, 1}; + + // D[N0, M0, N1, M1, N2] + std::vector d_gs_ms_ns_lengths{G0, M0, M1, N0, N1, N2}; + std::vector d_gs_ms_ns_strides{N0 * N1 * N2, 0, 0, N1 * N2, N2, 1}; + // E[N0 M0 N1 N2 M1] + std::vector e_gs_ms_ns_lengths{G0, M0, M1, N0, N1, N2}; + std::vector e_gs_ms_ns_strides{ + M0 * M1 * N0 * N1 * N2, N1 * N2 * M1, 1, M0 * N1 * N2 * M1, M1 * N2, M1}; + + auto f_tensor_space_size = [](auto lengths, auto strides) { + std::size_t space_size = 1; + for(std::size_t i = 0; i < lengths.size(); ++i) + { + space_size += (lengths[i] - 1) * strides[i]; + } + return space_size; + }; + + SimpleDeviceMem a_device_buf(sizeof(ADataType) * + f_tensor_space_size(a_gs_ms_ks_lengths, a_gs_ms_ks_strides)); + SimpleDeviceMem b_device_buf(sizeof(BDataType) * + f_tensor_space_size(b_gs_ns_ks_lengths, b_gs_ns_ks_strides)); + SimpleDeviceMem d_device_buf(sizeof(DDataType) * + f_tensor_space_size(d_gs_ms_ns_lengths, d_gs_ms_ns_strides)); + SimpleDeviceMem e_device_buf(sizeof(EDataType) * + f_tensor_space_size(e_gs_ms_ns_lengths, e_gs_ms_ns_strides)); + + using DeviceOp = ck::tensor_operation::device::DeviceBatchedContractionMultipleD< + NumDimG, + NumDimM, + NumDimN, + NumDimK, + ADataType, + BDataType, + DsDataType, + EDataType, + ck::tensor_operation::element_wise::PassThrough, + ck::tensor_operation::element_wise::PassThrough, + ck::tensor_operation::element_wise::Add>; + + // get device op instances + const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + DeviceOp>::GetInstances(); + + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; + + const auto a_element_op = AElementOp{}; + const auto b_element_op = BElementOp{}; + const auto cde_element_op = CDEElementOp{}; + + std::string best_op_name; + bool found = false; + int best_op_id = -1; + float best_ave_time = 0; + float best_tflops = 0; + float best_gb_per_sec = 0; + + // profile device operation instances + std::cout << "Run all instances and do timing" << std::endl; + + for(int i = 0; i < op_ptrs.size(); ++i) + { + auto& op_ptr = op_ptrs[i]; + + auto argument_ptr = + op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(), + b_device_buf.GetDeviceBuffer(), + std::array{d_device_buf.GetDeviceBuffer()}, + e_device_buf.GetDeviceBuffer(), + a_gs_ms_ks_lengths, + a_gs_ms_ks_strides, + b_gs_ns_ks_lengths, + b_gs_ns_ks_strides, + std::array, 1>{d_gs_ms_ns_lengths}, + std::array, 1>{d_gs_ms_ns_strides}, + e_gs_ms_ns_lengths, + e_gs_ms_ns_strides, + a_element_op, + b_element_op, + cde_element_op); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + std::string op_name = op_ptr->GetTypeString(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); + + ck::index_t M = ck::accumulate_n( + e_gs_ms_ns_lengths.begin() + NumDimG, NumDimM, 1, std::multiplies<>{}); + + ck::index_t N = ck::accumulate_n( + e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM, NumDimN, 1, std::multiplies<>{}); + + ck::index_t K = ck::accumulate_n( + a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM, NumDimK, 1, std::multiplies<>{}); + + std::size_t flop = std::size_t(2) * M * N * K; + std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + + sizeof(DDataType) * M * N + sizeof(EDataType) * M * N; + + float tflops = static_cast(flop) / 1.E9 / ave_time; + + float gb_per_sec = num_btype / 1.E6 / ave_time; + + std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, " + << gb_per_sec << " GB/s, " << op_name << std::endl; + + if(tflops > best_tflops) + { + found = true; + best_op_id = i; + best_op_name = op_name; + best_tflops = tflops; + best_ave_time = ave_time; + best_gb_per_sec = gb_per_sec; + } + } + else + { + std::cout << op_name << " does not support this problem" << std::endl; + } + } + + std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, " + << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; + + return 0; +} diff --git a/client_example/04_contraction/contraction_scale.cpp b/client_example/04_contraction/contraction_scale_fp32.cpp similarity index 99% rename from client_example/04_contraction/contraction_scale.cpp rename to client_example/04_contraction/contraction_scale_fp32.cpp index 4e08ee19cdb098b2dfb70a662d59c87008400123..ba7b0633c33aabeeb06547edfb08f506e637e599 100644 --- a/client_example/04_contraction/contraction_scale.cpp +++ b/client_example/04_contraction/contraction_scale_fp32.cpp @@ -1,5 +1,5 @@ // SPDX-License-Identifier: MIT -// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include diff --git a/client_example/04_contraction/contraction_scale_fp64.cpp b/client_example/04_contraction/contraction_scale_fp64.cpp new file mode 100644 index 0000000000000000000000000000000000000000..24e52eb5aa423339ff96ad0914dc479d715fe7b7 --- /dev/null +++ b/client_example/04_contraction/contraction_scale_fp64.cpp @@ -0,0 +1,270 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include +#include +#include +#include + +#include "ck/ck.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" +#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp" +#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" + +#include "ck/library/tensor_operation_instance/gpu/contraction_scale.hpp" +#include "ck/library/utility/numeric.hpp" + +using F64 = double; + +using PassThrough = ck::tensor_operation::element_wise::PassThrough; +using Scale = ck::tensor_operation::element_wise::Scale; + +using AElementOp = PassThrough; +using BElementOp = PassThrough; +using CDEElementOp = Scale; + +using ADataType = F64; +using BDataType = F64; +using AccDataType = F64; +using CShuffleDataType = F64; +using DsDataType = ck::Tuple<>; +using EDataType = F64; + +static constexpr ck::index_t NumDimM = 2; +static constexpr ck::index_t NumDimN = 2; +static constexpr ck::index_t NumDimK = 2; + +struct SimpleDeviceMem +{ + SimpleDeviceMem() = delete; + + SimpleDeviceMem(std::size_t mem_size) : p_mem_{} + { + (void)hipMalloc(static_cast(&p_mem_), mem_size); + } + + void* GetDeviceBuffer() { return p_mem_; } + + ~SimpleDeviceMem() { (void)hipFree(p_mem_); } + + void* p_mem_; +}; + +int main(int argc, char* argv[]) +{ +// kkn +#if 1 + // A[M0, M1, K0, K1] + std::vector a_ms_ks_lengths{30, 128, 32, 64}; + std::vector a_ms_ks_strides{524288, 4096, 128, 1}; + // B[N0, N1, K0, K1] + std::vector b_ns_ks_lengths{32, 64, 32, 64}; + std::vector b_ns_ks_strides{524288, 4096, 128, 1}; + // D[M0, M1, N0, N1] + std::vector d_ms_ns_lengths{30, 128, 32, 64}; + std::vector d_ms_ns_strides{524288, 4096, 128, 1}; + // E[M0, M1, N0, N1] + std::vector e_ms_ns_lengths{30, 128, 32, 64}; + std::vector e_ms_ns_strides{524288, 4096, 128, 1}; +// knn +#elif 0 + // A[M0, M1, K0, K1] + std::vector a_ms_ks_lengths{30, 128, 32, 64}; + std::vector a_ms_ks_strides{524288, 4096, 128, 1}; + // B[N0, N1, K0, K1] + std::vector b_ns_ks_lengths{32, 64, 32, 64}; + std::vector b_ns_ks_strides{64, 1, 131072, 2048}; + // D[M0, M1, N0, N1] + std::vector d_ms_ns_lengths{30, 128, 32, 64}; + std::vector d_ms_ns_strides{524288, 4096, 128, 1}; + // E[M0, M1, N0, N1] + std::vector e_ms_ns_lengths{30, 128, 32, 64}; + std::vector e_ms_ns_strides{524288, 4096, 128, 1}; +// mkn +#elif 0 + // A[M0, M1, K0, K1] + std::vector a_ms_ks_lengths{30, 128, 32, 64}; + std::vector a_ms_ks_strides{128, 1, 245760, 3840}; + // B[N0, N1, K0, K1] + std::vector b_ns_ks_lengths{32, 64, 32, 64}; + std::vector b_ns_ks_strides{524288, 4096, 128, 1}; + // D[M0, M1, N0, N1] + std::vector d_ms_ns_lengths{30, 128, 32, 64}; + std::vector d_ms_ns_strides{524288, 4096, 128, 1}; + // E[M0, M1, N0, N1] + std::vector e_ms_ns_lengths{30, 128, 32, 64}; + std::vector e_ms_ns_strides{524288, 4096, 128, 1}; +// mnn +#elif 0 + // A[M0, M1, K0, K1] + std::vector a_ms_ks_lengths{30, 128, 32, 64}; + std::vector a_ms_ks_strides{128, 1, 245760, 3840}; + // B[N0, N1, K0, K1] + std::vector b_ns_ks_lengths{32, 64, 32, 64}; + std::vector b_ns_ks_strides{64, 1, 131072, 2048}; + // D[M0, M1, N0, N1] + std::vector d_ms_ns_lengths{30, 128, 32, 64}; + std::vector d_ms_ns_strides{524288, 4096, 128, 1}; + // E[M0, M1, N0, N1] + std::vector e_ms_ns_lengths{30, 128, 32, 64}; + std::vector e_ms_ns_strides{524288, 4096, 128, 1}; +#endif + + float scale = 1.f; + + if(argc == 1) + { + // use default case + } + else if(argc == 20) + { + const ck::index_t M0 = std::stoi(argv[1]); + const ck::index_t M1 = std::stoi(argv[2]); + + const ck::index_t N0 = std::stoi(argv[3]); + const ck::index_t N1 = std::stoi(argv[4]); + + const ck::index_t K0 = std::stoi(argv[5]); + const ck::index_t K1 = std::stoi(argv[6]); + + a_ms_ks_lengths = {M0, M1, K0, K1}; + a_ms_ks_strides = { + std::stoi(argv[7]), std::stoi(argv[8]), std::stoi(argv[9]), std::stoi(argv[10])}; + + b_ns_ks_lengths = {N0, N1, K0, K1}; + b_ns_ks_strides = { + std::stoi(argv[11]), std::stoi(argv[12]), std::stoi(argv[13]), std::stoi(argv[14])}; + + e_ms_ns_lengths = {M0, M1, N0, N1}; + e_ms_ns_strides = { + std::stoi(argv[15]), std::stoi(argv[16]), std::stoi(argv[17]), std::stoi(argv[18])}; + + scale = std::stof(argv[19]); + } + else + { + printf("arg1 to 6: M0, M1, N0, N1, K0, K1\n"); + printf("arg7 to 10: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1\n"); + printf("arg11 to 14: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1\n"); + printf("arg15 to 18: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1\n"); + printf("arg19: scale\n"); + exit(0); + } + + auto f_tensor_space_size = [](auto lengths, auto strides) { + std::size_t space_size = 1; + for(std::size_t i = 0; i < lengths.size(); ++i) + { + space_size += (lengths[i] - 1) * strides[i]; + } + return space_size; + }; + + SimpleDeviceMem a_device_buf(sizeof(ADataType) * + f_tensor_space_size(a_ms_ks_lengths, a_ms_ks_strides)); + SimpleDeviceMem b_device_buf(sizeof(BDataType) * + f_tensor_space_size(b_ns_ks_lengths, b_ns_ks_strides)); + SimpleDeviceMem e_device_buf(sizeof(EDataType) * + f_tensor_space_size(e_ms_ns_lengths, e_ms_ns_strides)); + + using DeviceOp = ck::tensor_operation::device::DeviceContractionMultipleD< + NumDimM, + NumDimN, + NumDimK, + ADataType, + BDataType, + ck::Tuple<>, + EDataType, + ck::tensor_operation::element_wise::PassThrough, + ck::tensor_operation::element_wise::PassThrough, + ck::tensor_operation::element_wise::Scale>; + + // get device op instances + const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + DeviceOp>::GetInstances(); + + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; + + const auto a_element_op = AElementOp{}; + const auto b_element_op = BElementOp{}; + const auto cde_element_op = CDEElementOp{scale}; + + std::string best_op_name; + bool found = false; + int best_op_id = -1; + float best_ave_time = 0; + float best_tflops = 0; + float best_gb_per_sec = 0; + + // profile device operation instances + std::cout << "Run all instances and do timing" << std::endl; + + for(int i = 0; i < op_ptrs.size(); ++i) + { + auto& op_ptr = op_ptrs[i]; + + auto argument_ptr = op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(), + b_device_buf.GetDeviceBuffer(), + std::array{}, + e_device_buf.GetDeviceBuffer(), + a_ms_ks_lengths, + a_ms_ks_strides, + b_ns_ks_lengths, + b_ns_ks_strides, + std::array, 0>{}, + std::array, 0>{}, + e_ms_ns_lengths, + e_ms_ns_strides, + a_element_op, + b_element_op, + cde_element_op); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + std::string op_name = op_ptr->GetTypeString(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); + + ck::index_t M = ck::accumulate_n( + e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{}); + + ck::index_t N = ck::accumulate_n( + e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{}); + + ck::index_t K = ck::accumulate_n( + a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{}); + + std::size_t flop = std::size_t(2) * M * N * K; + std::size_t num_btype = + sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(EDataType) * M * N; + + float tflops = static_cast(flop) / 1.E9 / ave_time; + + float gb_per_sec = num_btype / 1.E6 / ave_time; + + std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, " + << gb_per_sec << " GB/s, " << op_name << std::endl; + + if(tflops > best_tflops) + { + found = true; + best_op_id = i; + best_op_name = op_name; + best_tflops = tflops; + best_ave_time = ave_time; + best_gb_per_sec = gb_per_sec; + } + } + else + { + std::cout << op_name << " does not support this problem" << std::endl; + } + } + + std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, " + << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; + + return 0; +} diff --git a/client_example/05_layernorm/layernorm2d.cpp b/client_example/05_layernorm/layernorm2d.cpp index adb41171e12a87ffafe42e4f112a3e89cfc7296e..4af4d7abe8ee6c5120f6060c78141021052cb619 100644 --- a/client_example/05_layernorm/layernorm2d.cpp +++ b/client_example/05_layernorm/layernorm2d.cpp @@ -1,5 +1,5 @@ // SPDX-License-Identifier: MIT -// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include @@ -12,12 +12,12 @@ #include "ck/library/tensor_operation_instance/gpu/normalization.hpp" -using XDataType = ck::half_t; -using GammaDataType = ck::half_t; -using BetaDataType = ck::half_t; -using YDataType = ck::half_t; -using AccDataType = float; -using PassThrough = ck::tensor_operation::element_wise::PassThrough; +using XDataType = ck::half_t; +using GammaDataType = ck::half_t; +using BetaDataType = ck::half_t; +using YDataType = ck::half_t; +using ComputeDataType = float; +using PassThrough = ck::tensor_operation::element_wise::PassThrough; constexpr int Rank = 2; constexpr int NumReduceDim = 1; @@ -54,7 +54,7 @@ int main(int argc, char* argv[]) using DeviceOp = ck::tensor_operation::device::DeviceNormalization #include @@ -47,18 +47,41 @@ int main(int argc, char* argv[]) ck::index_t num_elements = std::accumulate(in_lengths.begin(), in_lengths.end(), 1, std::multiplies()); - AccDataType alpha{2.0f}; - AccDataType beta{2.0f}; + double alpha{2.0}; + double beta{2.0}; SimpleDeviceMem in(sizeof(InDataType) * num_elements); SimpleDeviceMem out(sizeof(OutDataType) * num_elements); - using DeviceOp = ck::tensor_operation::device:: - DeviceSoftmax; + using DeviceOp = ck::tensor_operation::device::DeviceSoftmax; // get device op instances const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< DeviceOp>::GetInstances(); + auto& generic_op_ptr = op_ptrs[0]; + + auto generic_argument_ptr = generic_op_ptr->MakeArgumentPointer(in_lengths, + in_strides, + reduce_dims, + alpha, + beta, + in.GetDeviceBuffer(), + out.GetDeviceBuffer(), + PassThrough{}, + PassThrough{}); + + if(!generic_op_ptr->IsSupportedArgument(generic_argument_ptr.get())) + { + throw std::runtime_error( + "The generic kernel instance should be able to support any input shapes"); + }; + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; std::string best_op_name; @@ -74,16 +97,11 @@ int main(int argc, char* argv[]) { auto& op_ptr = op_ptrs[i]; - if(op_ptr->GetRank() != Rank || op_ptr->GetNumReduceDim() != NumReduceDim) - { - continue; - } - auto argument_ptr = op_ptr->MakeArgumentPointer(in_lengths, in_strides, reduce_dims, - &alpha, - &beta, + alpha, + beta, in.GetDeviceBuffer(), out.GetDeviceBuffer(), PassThrough{}, @@ -129,8 +147,8 @@ int main(int argc, char* argv[]) auto argument_ptr = op_ptr->MakeArgumentPointer(in_lengths, in_strides, reduce_dims, - &alpha, - &beta, + alpha, + beta, in.GetDeviceBuffer(), out.GetDeviceBuffer(), PassThrough{}, @@ -147,4 +165,4 @@ int main(int argc, char* argv[]) } return 0; -} \ No newline at end of file +} diff --git a/client_example/07_grouped_conv2d_fwd/CMakeLists.txt b/client_example/07_grouped_conv2d_fwd/CMakeLists.txt deleted file mode 100644 index ddc83168acfbbdf3d58b0909b761947c792a3c06..0000000000000000000000000000000000000000 --- a/client_example/07_grouped_conv2d_fwd/CMakeLists.txt +++ /dev/null @@ -1,2 +0,0 @@ -add_executable(client_grouped_conv2d_fwd grouped_conv2d_fwd.cpp) -target_link_libraries(client_grouped_conv2d_fwd PRIVATE composable_kernel::device_operations) diff --git a/client_example/07_grouped_convnd_fwd/CMakeLists.txt b/client_example/07_grouped_convnd_fwd/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..fce7e91c1ef5b23fcfecfe99cc49263a1d779d76 --- /dev/null +++ b/client_example/07_grouped_convnd_fwd/CMakeLists.txt @@ -0,0 +1,5 @@ +add_executable(client_grouped_conv2d_fwd grouped_conv2d_fwd.cpp) +target_link_libraries(client_grouped_conv2d_fwd PRIVATE composable_kernel::device_operations) + +add_executable(client_grouped_conv1d_fwd grouped_conv1d_fwd.cpp) +target_link_libraries(client_grouped_conv1d_fwd PRIVATE composable_kernel::device_operations) diff --git a/client_example/07_grouped_conv2d_fwd/grouped_conv2d_fwd.cpp b/client_example/07_grouped_convnd_fwd/grouped_conv1d_fwd.cpp similarity index 82% rename from client_example/07_grouped_conv2d_fwd/grouped_conv2d_fwd.cpp rename to client_example/07_grouped_convnd_fwd/grouped_conv1d_fwd.cpp index ece6e30c56004f58ff136502b4d8874e8269cd3a..70be0101c6d92512ab28a72797d2b8c46fb55281 100644 --- a/client_example/07_grouped_conv2d_fwd/grouped_conv2d_fwd.cpp +++ b/client_example/07_grouped_convnd_fwd/grouped_conv1d_fwd.cpp @@ -1,5 +1,5 @@ // SPDX-License-Identifier: MIT -// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include @@ -17,21 +17,18 @@ using InDataType = ck::half_t; using WeiDataType = ck::half_t; using OutDataType = ck::half_t; -using InLayout = ck::tensor_layout::convolution::GNHWC; -using WeiLayout = ck::tensor_layout::convolution::GKYXC; -using OutLayout = ck::tensor_layout::convolution::GNHWK; +using InLayout = ck::tensor_layout::convolution::GNWC; +using WeiLayout = ck::tensor_layout::convolution::GKXC; +using OutLayout = ck::tensor_layout::convolution::GNWK; using PassThrough = ck::tensor_operation::element_wise::PassThrough; -static constexpr ck::index_t NumDimSpatial = 2; +static constexpr ck::index_t NumDimSpatial = 1; static constexpr ck::index_t G = 32; static constexpr ck::index_t N = 256; static constexpr ck::index_t K = 192; static constexpr ck::index_t C = 192; -static constexpr ck::index_t Y = 3; static constexpr ck::index_t X = 3; -static constexpr ck::index_t Hi = 28; static constexpr ck::index_t Wi = 28; -static constexpr ck::index_t Ho = 28; static constexpr ck::index_t Wo = 28; struct SimpleDeviceMem @@ -52,14 +49,14 @@ struct SimpleDeviceMem int main() { - std::array in_lengths{G, N, Hi, Wi, C}; - std::array in_strides{0, 0, 0, 0, 1}; + std::array in_lengths{G, N, Wi, C}; + std::array in_strides{0, 0, 0, 1}; - std::array wei_lengths{G, K, Y, X, C}; - std::array wei_strides{0, 0, 0, 0, 1}; + std::array wei_lengths{G, K, X, C}; + std::array wei_strides{0, 0, 0, 1}; - std::array out_lengths{G, N, Ho, Wo, K}; - std::array out_strides{0, 0, 0, 0, 1}; + std::array out_lengths{G, N, Wo, K}; + std::array out_strides{0, 0, 0, 1}; std::partial_sum(rbegin(in_lengths), std::prev(rend(in_lengths)), @@ -74,28 +71,34 @@ int main() std::next(rbegin(out_strides)), std::multiplies<>{}); - // transpose GNHWC/GKYXC/GNHWK to GNCHW/GKCYX/GNCHW - std::rotate( - rbegin(in_lengths), std::next(rbegin(in_lengths)), std::next(rbegin(in_lengths), 3)); - std::rotate( - rbegin(in_strides), std::next(rbegin(in_strides)), std::next(rbegin(in_strides), 3)); - std::rotate( - rbegin(wei_lengths), std::next(rbegin(wei_lengths)), std::next(rbegin(wei_lengths), 3)); - std::rotate( - rbegin(wei_strides), std::next(rbegin(wei_strides)), std::next(rbegin(wei_strides), 3)); - std::rotate( - rbegin(out_lengths), std::next(rbegin(out_lengths)), std::next(rbegin(out_lengths), 3)); - std::rotate( - rbegin(out_strides), std::next(rbegin(out_strides)), std::next(rbegin(out_strides), 3)); - - std::array filter_strides{1, 1}; - std::array filter_dilations{1, 1}; - std::array input_left_pads{1, 1}; - std::array input_right_pads{1, 1}; - - SimpleDeviceMem in(sizeof(InDataType) * G * N * Hi * Wi * C); - SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Y * X * C); - SimpleDeviceMem out(sizeof(OutDataType) * G * N * Ho * Wo * K); + // transpose GNWC/GKXC/GNWK to GNCW/GKCX/GNCW + std::rotate(rbegin(in_lengths), + std::next(rbegin(in_lengths)), + std::next(rbegin(in_lengths), NumDimSpatial + 1)); + std::rotate(rbegin(in_strides), + std::next(rbegin(in_strides)), + std::next(rbegin(in_strides), NumDimSpatial + 1)); + std::rotate(rbegin(wei_lengths), + std::next(rbegin(wei_lengths)), + std::next(rbegin(wei_lengths), NumDimSpatial + 1)); + std::rotate(rbegin(wei_strides), + std::next(rbegin(wei_strides)), + std::next(rbegin(wei_strides), NumDimSpatial + 1)); + std::rotate(rbegin(out_lengths), + std::next(rbegin(out_lengths)), + std::next(rbegin(out_lengths), NumDimSpatial + 1)); + std::rotate(rbegin(out_strides), + std::next(rbegin(out_strides)), + std::next(rbegin(out_strides), NumDimSpatial + 1)); + + std::array filter_strides{1}; + std::array filter_dilations{1}; + std::array input_left_pads{1}; + std::array input_right_pads{1}; + + SimpleDeviceMem in(sizeof(InDataType) * G * N * Wi * C); + SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * X * C); + SimpleDeviceMem out(sizeof(OutDataType) * G * N * Wo * K); using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleDRun(argument_ptr.get(), StreamConfig{nullptr, true}); - std::size_t flop = std::size_t(2) * G * N * K * C * Ho * Wo * Y * X; - std::size_t num_bytes = sizeof(InDataType) * G * N * Hi * Wi * C + - sizeof(WeiDataType) * G * K * Y * X * C + - sizeof(OutDataType) * G * N * Ho * Wo * K; + std::size_t flop = std::size_t(2) * G * N * K * C * Wo * X; + std::size_t num_bytes = sizeof(InDataType) * G * N * Wi * C + + sizeof(WeiDataType) * G * K * X * C + + sizeof(OutDataType) * G * N * Wo * K; float tflops = static_cast(flop) / 1.E9 / avg_time; float gb_per_sec = num_bytes / 1.E6 / avg_time; diff --git a/client_example/11_grouped_conv_bwd_weight/grouped_conv2d_bwd_weight.cpp b/client_example/07_grouped_convnd_fwd/grouped_conv2d_fwd.cpp similarity index 60% rename from client_example/11_grouped_conv_bwd_weight/grouped_conv2d_bwd_weight.cpp rename to client_example/07_grouped_convnd_fwd/grouped_conv2d_fwd.cpp index 1ecc8568959555740e88892ff6233ca1a5cf7333..57a210fa1f5f0d3f0eca014e08ccd119d29e4fd6 100644 --- a/client_example/11_grouped_conv_bwd_weight/grouped_conv2d_bwd_weight.cpp +++ b/client_example/07_grouped_convnd_fwd/grouped_conv2d_fwd.cpp @@ -1,38 +1,38 @@ // SPDX-License-Identifier: MIT -// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include #include #include #include +#include #include "ck/ck.hpp" -#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_weight.hpp" +#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp" -#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" using InDataType = ck::half_t; using WeiDataType = ck::half_t; using OutDataType = ck::half_t; -using InLayout = ck::tensor_layout::convolution::GNHWC; +using InLayout = ck::tensor_layout::convolution::NHWGC; using WeiLayout = ck::tensor_layout::convolution::GKYXC; -using OutLayout = ck::tensor_layout::convolution::GNHWK; +using OutLayout = ck::tensor_layout::convolution::NHWGK; using PassThrough = ck::tensor_operation::element_wise::PassThrough; static constexpr ck::index_t NumDimSpatial = 2; static constexpr ck::index_t G = 32; -static constexpr ck::index_t N = 256; -static constexpr ck::index_t K = 192; -static constexpr ck::index_t C = 192; -static constexpr ck::index_t Y = 3; -static constexpr ck::index_t X = 3; -static constexpr ck::index_t Hi = 28; -static constexpr ck::index_t Wi = 28; -static constexpr ck::index_t Ho = 28; -static constexpr ck::index_t Wo = 28; +static constexpr ck::index_t N = 256; // batch size +static constexpr ck::index_t K = 64; // output channel +static constexpr ck::index_t C = 32; // input channel (per group) +static constexpr ck::index_t Y = 3; // filter H +static constexpr ck::index_t X = 3; // filter W +static constexpr ck::index_t Hi = 28; // input H +static constexpr ck::index_t Wi = 28; // input W +static constexpr ck::index_t Ho = 28; // output H +static constexpr ck::index_t Wo = 28; // output W struct SimpleDeviceMem { @@ -52,31 +52,38 @@ struct SimpleDeviceMem int main() { - std::array input_spatial_lengths{Hi, Wi}; - std::array filter_spatial_lengths{Y, X}; - std::array output_spatial_lengths{Ho, Wo}; - - std::array conv_filter_strides{1, 1}; - std::array conv_filter_dilations{1, 1}; + // We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space + // However, CK's API only accept length and stride with order of GNCHW/GKCYX/GNCHW + // Hence, we need to adjust the order of stride + std::array in_lengths{G, N, C, Hi, Wi}; + std::array in_strides{C, Hi * Wi * G * C, 1, Wi * G * C, G * C}; + std::array wei_lengths{G, K, C, Y, X}; + std::array wei_strides{K * Y * X * C, Y * X * C, 1, X * C, C}; + std::array out_lengths{G, N, K, Ho, Wo}; + std::array out_strides{C, Ho * Wo * G * C, 1, Wo * G * C, G * C}; + + std::array filter_strides{1, 1}; + std::array filter_dilations{1, 1}; std::array input_left_pads{1, 1}; std::array input_right_pads{1, 1}; - ck::index_t split_k = 2; - - SimpleDeviceMem in(sizeof(InDataType) * G * N * Hi * Wi * C); + SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * G * C); SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Y * X * C); - SimpleDeviceMem out(sizeof(OutDataType) * G * N * Ho * Wo * K); - - using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvBwdWeight; + SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K); + + using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD, + OutLayout, + InDataType, + WeiDataType, + ck::Tuple<>, + OutDataType, + PassThrough, + PassThrough, + PassThrough>; + // get device op instances const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< DeviceOp>::GetInstances(); @@ -97,22 +104,23 @@ int main() auto& op_ptr = op_ptrs[i]; auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(), wei.GetDeviceBuffer(), + {}, out.GetDeviceBuffer(), - G, - N, - K, - C, - input_spatial_lengths, - filter_spatial_lengths, - output_spatial_lengths, - conv_filter_strides, - conv_filter_dilations, + in_lengths, + in_strides, + wei_lengths, + wei_strides, + {}, + {}, + out_lengths, + out_strides, + filter_strides, + filter_dilations, input_left_pads, input_right_pads, PassThrough{}, PassThrough{}, - PassThrough{}, - split_k); + PassThrough{}); auto invoker_ptr = op_ptr->MakeInvokerPointer(); std::string op_name = op_ptr->GetTypeString(); @@ -121,9 +129,9 @@ int main() float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); std::size_t flop = std::size_t(2) * G * N * K * C * Ho * Wo * Y * X; - std::size_t num_bytes = sizeof(InDataType) * G * N * Hi * Wi * C + + std::size_t num_bytes = sizeof(InDataType) * N * Hi * Wi * G * C + sizeof(WeiDataType) * G * K * Y * X * C + - sizeof(OutDataType) * G * N * Ho * Wo * K; + sizeof(OutDataType) * N * Ho * Wo * G * K; float tflops = static_cast(flop) / 1.E9 / avg_time; float gb_per_sec = num_bytes / 1.E6 / avg_time; @@ -162,23 +170,25 @@ int main() << std::endl; auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(), wei.GetDeviceBuffer(), + {}, out.GetDeviceBuffer(), - G, - N, - K, - C, - input_spatial_lengths, - filter_spatial_lengths, - output_spatial_lengths, - conv_filter_strides, - conv_filter_dilations, + in_lengths, + in_strides, + wei_lengths, + wei_strides, + {}, + {}, + out_lengths, + out_strides, + filter_strides, + filter_dilations, input_left_pads, input_right_pads, PassThrough{}, PassThrough{}, - PassThrough{}, - split_k); - auto invoker_ptr = op_ptr->MakeInvokerPointer(); + PassThrough{}); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); if(op_ptr->IsSupportedArgument(argument_ptr.get())) { diff --git a/client_example/08_fused_attention/CMakeLists.txt b/client_example/08_fused_attention/CMakeLists.txt index 5cdea72fd996fefbc8eac3781199ada4e3ce1fb0..862b9ed5b70ee8a35c4ba44e2ccf1441e1532bd3 100644 --- a/client_example/08_fused_attention/CMakeLists.txt +++ b/client_example/08_fused_attention/CMakeLists.txt @@ -1,2 +1,5 @@ add_executable(client_fused_attention fused_attention.cpp) target_link_libraries(client_fused_attention PRIVATE composable_kernel::device_operations) + +add_executable(client_fused_attention_bias fused_attention_bias.cpp) +target_link_libraries(client_fused_attention_bias PRIVATE composable_kernel::device_operations) diff --git a/client_example/08_fused_attention/fused_attention.cpp b/client_example/08_fused_attention/fused_attention.cpp index fe927da1248786a4b943f610ce38b75f0d88defd..df6bc11a70d32df221612466a8af0fbcd9cafb1c 100644 --- a/client_example/08_fused_attention/fused_attention.cpp +++ b/client_example/08_fused_attention/fused_attention.cpp @@ -1,5 +1,5 @@ // SPDX-License-Identifier: MIT -// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include diff --git a/client_example/08_fused_attention/fused_attention_bias.cpp b/client_example/08_fused_attention/fused_attention_bias.cpp new file mode 100644 index 0000000000000000000000000000000000000000..6c9f3bc8f6f5a3c06f339f1246b5b3985e11d2d8 --- /dev/null +++ b/client_example/08_fused_attention/fused_attention_bias.cpp @@ -0,0 +1,226 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include +#include + +#include "ck/ck.hpp" +#include "ck/library/tensor_operation_instance/gpu/batched_gemm_bias_softmax_gemm_permute.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" +#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp" +#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" + +using AElementOp = ck::tensor_operation::element_wise::PassThrough; +using B0ElementOp = ck::tensor_operation::element_wise::PassThrough; +using Acc0ElementOp = ck::tensor_operation::element_wise::ScaleAdd; +using B1ElementOp = ck::tensor_operation::element_wise::PassThrough; +using CElementOp = ck::tensor_operation::element_wise::PassThrough; + +constexpr static auto MaskingSpec = + ck::tensor_operation::device::MaskingSpecialization::MaskDisabled; + +using ADataType = ck::half_t; +using B0DataType = ck::half_t; +using B1DataType = ck::half_t; +using CDataType = ck::half_t; +using D0DataType = ck::half_t; +using AccDataType = float; + +struct SimpleDeviceMem +{ + SimpleDeviceMem() = delete; + + SimpleDeviceMem(std::size_t mem_size) : p_mem_{} + { + (void)hipMalloc(static_cast(&p_mem_), mem_size); + } + + void* GetDeviceBuffer() { return p_mem_; } + + ~SimpleDeviceMem() { (void)hipFree(p_mem_); } + + void* p_mem_; +}; + +int main(int argc, char* argv[]) +{ + int G0 = 48; + int G1 = 16; + int M = 1024; + int N = 1024; + int K = 64; + int O = 64; + + // A layout [G0, M, G1, K] + std::vector a_gs_ms_ks_lengths{G0, G1, M, K}; + std::vector a_gs_ms_ks_strides{M * G1 * K, K, G1 * K, 1}; + + // B0 layout [G0, N, G1, K] + std::vector b0_gs_ns_ks_lengths{G0, G1, N, K}; + std::vector b0_gs_ns_ks_strides{N * G1 * K, K, G1 * K, 1}; + + // B1 layout [G0, N, G1, O] + std::vector b1_gs_os_ns_lengths{G0, G1, O, N}; + std::vector b1_gs_os_ns_strides{N * G1 * O, O, 1, G1 * O}; + + // C layout [G0, M, G1, O] + std::vector c_gs_ms_os_lengths{G0, G1, M, O}; + std::vector c_gs_ms_os_strides{M * G1 * O, O, G1 * O, 1}; + + // D layout [G0, M, G1, N] + std::vector d0_gs_ms_ns_lengths{G0, G1, M, N}; + std::vector d0_gs_ms_ns_strides{M * G1 * N, N, G1 * N, 1}; + + SimpleDeviceMem a_device_buf(sizeof(ADataType) * G0 * G1 * M * K); + SimpleDeviceMem b0_device_buf(sizeof(B0DataType) * G0 * G1 * N * K); + SimpleDeviceMem d0_device_buf(sizeof(D0DataType) * G0 * G1 * M * N); + SimpleDeviceMem b1_device_buf(sizeof(B1DataType) * G0 * G1 * O * N); + SimpleDeviceMem c_device_buf(sizeof(CDataType) * G0 * G1 * M * O); + + using DeviceOp = + ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute<2, + 1, + 1, + 1, + 1, + ADataType, + B0DataType, + B1DataType, + CDataType, + ck::Tuple, + ck::Tuple<>, + AElementOp, + B0ElementOp, + Acc0ElementOp, + B1ElementOp, + CElementOp, + MaskingSpec>; + + // get device op instances + const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + DeviceOp>::GetInstances(); + + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; + + std::string best_op_name; + int best_op_id = -1; + float best_ave_time = 0; + float best_tflops = 0; + float best_gb_per_sec = 0; + + // profile device op instances + std::cout << "Run all instances and do timing" << std::endl; + + for(int i = 0; i < op_ptrs.size(); ++i) + { + auto& op_ptr = op_ptrs[i]; + auto argument_ptr = op_ptr->MakeArgumentPointer( + a_device_buf.GetDeviceBuffer(), + b0_device_buf.GetDeviceBuffer(), + b1_device_buf.GetDeviceBuffer(), + c_device_buf.GetDeviceBuffer(), + std::array{d0_device_buf.GetDeviceBuffer()}, // p_acc0_biases + {}, // p_acc1_biases + a_gs_ms_ks_lengths, + a_gs_ms_ks_strides, + b0_gs_ns_ks_lengths, + b0_gs_ns_ks_strides, + b1_gs_os_ns_lengths, + b1_gs_os_ns_strides, + c_gs_ms_os_lengths, + c_gs_ms_os_strides, + std::array, 1>{ + d0_gs_ms_ns_lengths}, // acc0_biases_gs_ms_ns_lengths + std::array, 1>{ + d0_gs_ms_ns_strides}, // acc0_biases_gs_ms_ns_strides + {}, // acc1_biases_gs_ms_os_lengths + {}, // acc1_biases_gs_ms_os_strides + AElementOp{}, + B0ElementOp{}, + Acc0ElementOp{1 / sqrtf(K)}, + B1ElementOp{}, + CElementOp{}); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + std::string op_name = op_ptr->GetTypeString(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + + float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); + + std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * G0 * G1; + std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N + + sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O + + sizeof(D0DataType) * M * N) * + G0 * G1; + + float tflops = static_cast(flop) / 1.E9 / ave_time; + + float gb_per_sec = num_btype / 1.E6 / ave_time; + + std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec + << " GB/s, " << op_name << std::endl; + + if(tflops > best_tflops) + { + best_op_id = i; + best_op_name = op_name; + best_tflops = tflops; + best_ave_time = ave_time; + best_gb_per_sec = gb_per_sec; + } + } + else + { + std::cout << op_name << " does not support this problem" << std::endl; + } + } + + std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, " + << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; + + // run the best instance + { + auto& op_ptr = op_ptrs[best_op_id]; + std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() + << std::endl; + auto argument_ptr = op_ptr->MakeArgumentPointer( + a_device_buf.GetDeviceBuffer(), + b0_device_buf.GetDeviceBuffer(), + b1_device_buf.GetDeviceBuffer(), + c_device_buf.GetDeviceBuffer(), + std::array{d0_device_buf.GetDeviceBuffer()}, // p_acc0_biases + {}, // p_acc1_biases + a_gs_ms_ks_lengths, + a_gs_ms_ks_strides, + b0_gs_ns_ks_lengths, + b0_gs_ns_ks_strides, + b1_gs_os_ns_lengths, + b1_gs_os_ns_strides, + c_gs_ms_os_lengths, + c_gs_ms_os_strides, + std::array, 1>{ + d0_gs_ms_ns_lengths}, // acc0_biases_gs_ms_ns_lengths + std::array, 1>{ + d0_gs_ms_ns_strides}, // acc0_biases_gs_ms_ns_strides + {}, // acc1_biases_gs_ms_os_lengths + {}, // acc1_biases_gs_ms_os_strides + AElementOp{}, + B0ElementOp{}, + Acc0ElementOp{1 / sqrtf(K)}, + B1ElementOp{}, + CElementOp{}); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); + } + + std::cout << "Done" << std::endl; + } + + return 0; +} diff --git a/client_example/09_quantization/CMakeLists.txt b/client_example/09_quantization/CMakeLists.txt index 7dc9b860c0c427a21e6127fcce5556dbb06089e9..2b7d6fc806ad48f650c3e1f72ef3190cb9f342f4 100644 --- a/client_example/09_quantization/CMakeLists.txt +++ b/client_example/09_quantization/CMakeLists.txt @@ -1,6 +1,12 @@ +add_executable(client_conv2d_fwd_bias_tanh_perchannel_quantization conv2d_fwd_bias_tanh_perchannel_quantization.cpp) +target_link_libraries(client_conv2d_fwd_bias_tanh_perchannel_quantization PRIVATE composable_kernel::device_operations) + add_executable(client_conv2d_fwd_bias_relu_perchannel_quantization conv2d_fwd_bias_relu_perchannel_quantization.cpp) target_link_libraries(client_conv2d_fwd_bias_relu_perchannel_quantization PRIVATE composable_kernel::device_operations) +add_executable(client_conv2d_fwd_bias_tanh_perlayer_quantization conv2d_fwd_bias_tanh_perlayer_quantization.cpp) +target_link_libraries(client_conv2d_fwd_bias_tanh_perlayer_quantization PRIVATE composable_kernel::device_operations) + add_executable(client_conv2d_fwd_bias_relu_perlayer_quantization conv2d_fwd_bias_relu_perlayer_quantization.cpp) target_link_libraries(client_conv2d_fwd_bias_relu_perlayer_quantization PRIVATE composable_kernel::device_operations) @@ -9,3 +15,6 @@ target_link_libraries(client_conv2d_fwd_perchannel_quantization PRIVATE composab add_executable(client_conv2d_fwd_perlayer_quantization conv2d_fwd_perlayer_quantization.cpp) target_link_libraries(client_conv2d_fwd_perlayer_quantization PRIVATE composable_kernel::device_operations) + +add_executable(client_gemm_quantization gemm_quantization.cpp) +target_link_libraries(client_gemm_quantization PRIVATE composable_kernel::device_operations) diff --git a/client_example/09_quantization/conv2d_fwd_bias_relu_perchannel_quantization.cpp b/client_example/09_quantization/conv2d_fwd_bias_relu_perchannel_quantization.cpp index bcb0cefa712cf144edf1916adf0c0f97515d56f0..cd504e942e943b8f174442554eca379cd908ba6e 100644 --- a/client_example/09_quantization/conv2d_fwd_bias_relu_perchannel_quantization.cpp +++ b/client_example/09_quantization/conv2d_fwd_bias_relu_perchannel_quantization.cpp @@ -1,5 +1,5 @@ // SPDX-License-Identifier: MIT -// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include @@ -17,27 +17,26 @@ using BiasDataType = int32_t; using RequantScaleDataType = float; using OutDataType = int8_t; -using InLayout = ck::tensor_layout::convolution::GNHWC; +using InLayout = ck::tensor_layout::convolution::NHWGC; using WeiLayout = ck::tensor_layout::convolution::GKYXC; using BiasLayout = ck::tensor_layout::convolution::G_K; using RequantScaleLayout = ck::tensor_layout::convolution::G_K; -using OutLayout = ck::tensor_layout::convolution::GNHWK; +using OutLayout = ck::tensor_layout::convolution::NHWGK; using PassThrough = ck::tensor_operation::element_wise::PassThrough; using ActivationOp = ck::tensor_operation::element_wise::Relu; using OutElementOp = ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp; static constexpr ck::index_t NumDimSpatial = 2; -static constexpr ck::index_t G = 1; -static constexpr ck::index_t N = 4; -static constexpr ck::index_t K = 64; -static constexpr ck::index_t C = 32; -static constexpr ck::index_t Y = 3; -static constexpr ck::index_t X = 3; -static constexpr ck::index_t Hi = 71; -static constexpr ck::index_t Wi = 71; -static constexpr ck::index_t Ho = 36; -static constexpr ck::index_t Wo = 36; - +static constexpr ck::index_t G = 4; +static constexpr ck::index_t N = 4; // batch size +static constexpr ck::index_t K = 32; // output channel +static constexpr ck::index_t C = 64; // input channel (per group) +static constexpr ck::index_t Y = 3; // filter H +static constexpr ck::index_t X = 3; // filter W +static constexpr ck::index_t Hi = 71; // input H +static constexpr ck::index_t Wi = 71; // input W +static constexpr ck::index_t Ho = 36; // output H +static constexpr ck::index_t Wo = 36; // output W struct SimpleDeviceMem { SimpleDeviceMem() = delete; @@ -56,26 +55,30 @@ struct SimpleDeviceMem int main(int argc, char* argv[]) { + // We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space + // However, CK's API only accept length and stride with order of GNCHW/GKCYX/GNCHW + // Hence, we need to adjust the order of stride std::array in_lengths{G, N, C, Hi, Wi}; - std::array in_strides{N * Hi * Wi * C, Hi * Wi * C, 1, Wi * C, C}; + std::array in_strides{C, Hi * Wi * G * C, 1, Wi * G * C, G * C}; std::array weight_lengths{G, K, C, Y, X}; std::array weight_strides{K * Y * X * C, Y * X * C, 1, X * C, C}; std::array bias_lengths{G, N, K, Ho, Wo}; std::array bias_strides{K, 0, 1, 0, 0}; std::array requant_scale_lengths{G, N, K, Ho, Wo}; std::array requant_scale_strides{K, 0, 1, 0, 0}; - std::array out_lengths{G, N, C, Ho, Wo}; - std::array out_strides{N * Ho * Wo * C, Ho * Wo * C, 1, Wo * C, C}; + std::array out_lengths{G, N, K, Ho, Wo}; + std::array out_strides{C, Ho * Wo * G * C, 1, Wo * G * C, G * C}; + std::array in_left_pad{1, 1}; std::array in_right_pad{1, 1}; std::array conv_strides{2, 2}; std::array conv_dilations{1, 1}; - SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * C); - SimpleDeviceMem wei(sizeof(WeiDataType) * K * Y * X * C); - SimpleDeviceMem bias(sizeof(BiasDataType) * K * Y * X * C); - SimpleDeviceMem requant_scale(sizeof(RequantScaleDataType) * K * Y * X * C); - SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * K); + SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * G * C); + SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Y * X * C); + SimpleDeviceMem bias(sizeof(BiasDataType) * G * K); + SimpleDeviceMem requant_scale(sizeof(RequantScaleDataType) * G * K); + SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K); using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD< NumDimSpatial, @@ -136,10 +139,11 @@ int main(int argc, char* argv[]) { float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); - std::size_t flop = G * 2 * N * K * C * Ho * Wo * Y * X; - std::size_t num_bytes = G * sizeof(InDataType) * N * Hi * Wi * C + - G * sizeof(WeiDataType) * K * Y * X * C + - G * sizeof(OutDataType) * N * Ho * Wo * K; + std::size_t flop = G * 2 * N * K * C * Ho * Wo * Y * X; + std::size_t num_bytes = + G * sizeof(InDataType) * N * Hi * Wi * C + G * sizeof(WeiDataType) * K * Y * X * C + + G * sizeof(BiasDataType) * K + G * sizeof(RequantScaleDataType) * K + + G * sizeof(OutDataType) * N * Ho * Wo * K; float tflops = static_cast(flop) / 1.E9 / avg_time; float gb_per_sec = num_bytes / 1.E6 / avg_time; @@ -162,11 +166,12 @@ int main(int argc, char* argv[]) } } - std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops - << " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; - // run the best intance + if(best_op_id != -1) { + std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops + << " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; + auto& op_ptr = op_ptrs[best_op_id]; std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() << std::endl; @@ -202,4 +207,4 @@ int main(int argc, char* argv[]) } return 0; -} \ No newline at end of file +} diff --git a/client_example/09_quantization/conv2d_fwd_bias_relu_perlayer_quantization.cpp b/client_example/09_quantization/conv2d_fwd_bias_relu_perlayer_quantization.cpp index 26c7aa15e2be0814b20b17f9c2c91fe21e70d961..f4aa3666b1c15eccd37bdef549f8402bcd1b252b 100644 --- a/client_example/09_quantization/conv2d_fwd_bias_relu_perlayer_quantization.cpp +++ b/client_example/09_quantization/conv2d_fwd_bias_relu_perlayer_quantization.cpp @@ -1,5 +1,5 @@ // SPDX-License-Identifier: MIT -// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include @@ -16,25 +16,26 @@ using WeiDataType = int8_t; using BiasDataType = int32_t; using OutDataType = int8_t; -using InLayout = ck::tensor_layout::convolution::GNHWC; +using InLayout = ck::tensor_layout::convolution::NHWGC; using WeiLayout = ck::tensor_layout::convolution::GKYXC; using BiasLayout = ck::tensor_layout::convolution::G_K; -using OutLayout = ck::tensor_layout::convolution::GNHWK; +using OutLayout = ck::tensor_layout::convolution::NHWGK; using PassThrough = ck::tensor_operation::element_wise::PassThrough; using ActivationOp = ck::tensor_operation::element_wise::Relu; using OutElementOp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp; static constexpr ck::index_t NumDimSpatial = 2; -static constexpr ck::index_t G = 1; -static constexpr ck::index_t N = 4; -static constexpr ck::index_t K = 64; -static constexpr ck::index_t C = 32; -static constexpr ck::index_t Y = 3; -static constexpr ck::index_t X = 3; -static constexpr ck::index_t Hi = 71; -static constexpr ck::index_t Wi = 71; -static constexpr ck::index_t Ho = 36; -static constexpr ck::index_t Wo = 36; +static constexpr ck::index_t G = 4; +static constexpr ck::index_t N = 4; // batch size +static constexpr ck::index_t K = 32; // output channel +static constexpr ck::index_t C = 64; // input channel (per group) +static constexpr ck::index_t Y = 3; // filter H +static constexpr ck::index_t X = 3; // filter W +static constexpr ck::index_t Hi = 71; // input H +static constexpr ck::index_t Wi = 71; // input W +static constexpr ck::index_t Ho = 36; // output H +static constexpr ck::index_t Wo = 36; // output W +static constexpr float requant_scale = 0.5f; // requantize qAcc to qz struct SimpleDeviceMem { @@ -54,23 +55,27 @@ struct SimpleDeviceMem int main(int argc, char* argv[]) { + // We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space + // However, CK's API only accept length and stride with order of GNCHW/GKCYX/GNCHW + // Hence, we need to adjust the order of stride std::array in_lengths{G, N, C, Hi, Wi}; - std::array in_strides{N * Hi * Wi * C, Hi * Wi * C, 1, Wi * C, C}; + std::array in_strides{C, Hi * Wi * G * C, 1, Wi * G * C, G * C}; std::array weight_lengths{G, K, C, Y, X}; std::array weight_strides{K * Y * X * C, Y * X * C, 1, X * C, C}; std::array bias_lengths{G, N, K, Ho, Wo}; std::array bias_strides{K, 0, 1, 0, 0}; - std::array out_lengths{G, N, C, Ho, Wo}; - std::array out_strides{N * Ho * Wo * C, Ho * Wo * C, 1, Wo * C, C}; + std::array out_lengths{G, N, K, Ho, Wo}; + std::array out_strides{C, Ho * Wo * G * C, 1, Wo * G * C, G * C}; + std::array in_left_pad{1, 1}; std::array in_right_pad{1, 1}; std::array conv_strides{2, 2}; std::array conv_dilations{1, 1}; - SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * C); - SimpleDeviceMem wei(sizeof(WeiDataType) * K * Y * X * C); - SimpleDeviceMem bias(sizeof(BiasDataType) * K * Y * X * C); - SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * K); + SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * G * C); + SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Y * X * C); + SimpleDeviceMem bias(sizeof(BiasDataType) * G * K); + SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K); using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleDMakeArgumentPointer(in.GetDeviceBuffer(), - wei.GetDeviceBuffer(), - {bias.GetDeviceBuffer()}, - out.GetDeviceBuffer(), - in_lengths, - in_strides, - weight_lengths, - weight_strides, - {bias_lengths}, - {bias_strides}, - out_lengths, - out_strides, - conv_strides, - conv_dilations, - in_left_pad, - in_right_pad, - PassThrough{}, - PassThrough{}, - OutElementOp{0.5f, ActivationOp{}}); + auto& op_ptr = op_ptrs[i]; + auto argument_ptr = + op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(), + wei.GetDeviceBuffer(), + {bias.GetDeviceBuffer()}, + out.GetDeviceBuffer(), + in_lengths, + in_strides, + weight_lengths, + weight_strides, + {bias_lengths}, + {bias_strides}, + out_lengths, + out_strides, + conv_strides, + conv_dilations, + in_left_pad, + in_right_pad, + PassThrough{}, + PassThrough{}, + OutElementOp{requant_scale, ActivationOp{}}); auto invoker_ptr = op_ptr->MakeInvokerPointer(); std::string op_name = op_ptr->GetTypeString(); @@ -130,10 +136,10 @@ int main(int argc, char* argv[]) { float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); - std::size_t flop = G * 2 * N * K * C * Ho * Wo * Y * X; - std::size_t num_bytes = G * sizeof(InDataType) * N * Hi * Wi * C + - G * sizeof(WeiDataType) * K * Y * X * C + - G * sizeof(OutDataType) * N * Ho * Wo * K; + std::size_t flop = G * 2 * N * K * C * Ho * Wo * Y * X; + std::size_t num_bytes = + G * sizeof(InDataType) * N * Hi * Wi * C + G * sizeof(WeiDataType) * K * Y * X * C + + G * sizeof(BiasDataType) * K + G * sizeof(OutDataType) * N * Ho * Wo * K; float tflops = static_cast(flop) / 1.E9 / avg_time; float gb_per_sec = num_bytes / 1.E6 / avg_time; @@ -156,33 +162,35 @@ int main(int argc, char* argv[]) } } - std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops - << " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; - // run the best intance + if(best_op_id != -1) { + std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops + << " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; + auto& op_ptr = op_ptrs[best_op_id]; std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() << std::endl; - auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(), - wei.GetDeviceBuffer(), - {bias.GetDeviceBuffer()}, - out.GetDeviceBuffer(), - in_lengths, - in_strides, - weight_lengths, - weight_strides, - {bias_lengths}, - {bias_strides}, - out_lengths, - out_strides, - conv_strides, - conv_dilations, - in_left_pad, - in_right_pad, - PassThrough{}, - PassThrough{}, - OutElementOp{0.5f, ActivationOp{}}); + auto argument_ptr = + op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(), + wei.GetDeviceBuffer(), + {bias.GetDeviceBuffer()}, + out.GetDeviceBuffer(), + in_lengths, + in_strides, + weight_lengths, + weight_strides, + {bias_lengths}, + {bias_strides}, + out_lengths, + out_strides, + conv_strides, + conv_dilations, + in_left_pad, + in_right_pad, + PassThrough{}, + PassThrough{}, + OutElementOp{requant_scale, ActivationOp{}}); auto invoker_ptr = op_ptr->MakeInvokerPointer(); diff --git a/client_example/09_quantization/conv2d_fwd_bias_tanh_perchannel_quantization.cpp b/client_example/09_quantization/conv2d_fwd_bias_tanh_perchannel_quantization.cpp new file mode 100644 index 0000000000000000000000000000000000000000..ebdbbf52c0ca257dd8f672a48b32f80fa5bb8816 --- /dev/null +++ b/client_example/09_quantization/conv2d_fwd_bias_tanh_perchannel_quantization.cpp @@ -0,0 +1,213 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include +#include +#include + +#include "ck/ck.hpp" +#include "ck/library/tensor_operation_instance/gpu/quantization/grouped_convolution_bias_forward_perchannel_quantization.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" +#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp" +#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" + +using InDataType = int8_t; +using WeiDataType = int8_t; +using BiasDataType = int32_t; +using RequantScaleDataType = float; +using OutDataType = int8_t; + +using InLayout = ck::tensor_layout::convolution::NHWGC; +using WeiLayout = ck::tensor_layout::convolution::GKYXC; +using BiasLayout = ck::tensor_layout::convolution::G_K; +using RequantScaleLayout = ck::tensor_layout::convolution::G_K; +using OutLayout = ck::tensor_layout::convolution::NHWGK; +using PassThrough = ck::tensor_operation::element_wise::PassThrough; +using ActivationOp = ck::tensor_operation::element_wise::TanH; +using OutElementOp = + ck::tensor_operation::element_wise::Add_Mul2_Activation_Mul_Clamp; + +static constexpr ck::index_t NumDimSpatial = 2; +static constexpr ck::index_t G = 4; +static constexpr ck::index_t N = 4; // batch size +static constexpr ck::index_t K = 32; // output channel +static constexpr ck::index_t C = 64; // input channel (per group) +static constexpr ck::index_t Y = 3; // filter H +static constexpr ck::index_t X = 3; // filter W +static constexpr ck::index_t Hi = 71; // input H +static constexpr ck::index_t Wi = 71; // input W +static constexpr ck::index_t Ho = 36; // output H +static constexpr ck::index_t Wo = 36; // output W +static constexpr float sz_inv = 0.5f; // inverse of scale_z + +struct SimpleDeviceMem +{ + SimpleDeviceMem() = delete; + + SimpleDeviceMem(std::size_t mem_size) : p_mem_{} + { + (void)hipMalloc(static_cast(&p_mem_), mem_size); + } + + void* GetDeviceBuffer() { return p_mem_; } + + ~SimpleDeviceMem() { (void)hipFree(p_mem_); } + + void* p_mem_; +}; + +int main(int argc, char* argv[]) +{ + // We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space + // However, CK's API only accept length and stride with order of GNCHW/GKCYX/GNCHW + // Hence, we need to adjust the order of stride + std::array in_lengths{G, N, C, Hi, Wi}; + std::array in_strides{C, Hi * Wi * G * C, 1, Wi * G * C, G * C}; + std::array weight_lengths{G, K, C, Y, X}; + std::array weight_strides{K * Y * X * C, Y * X * C, 1, X * C, C}; + std::array bias_lengths{G, N, K, Ho, Wo}; + std::array bias_strides{K, 0, 1, 0, 0}; + std::array requant_scale_lengths{G, N, K, Ho, Wo}; + std::array requant_scale_strides{K, 0, 1, 0, 0}; + std::array out_lengths{G, N, K, Ho, Wo}; + std::array out_strides{C, Ho * Wo * G * C, 1, Wo * G * C, G * C}; + + std::array in_left_pad{1, 1}; + std::array in_right_pad{1, 1}; + std::array conv_strides{2, 2}; + std::array conv_dilations{1, 1}; + + SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * G * C); + SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Y * X * C); + SimpleDeviceMem bias(sizeof(BiasDataType) * G * K); + SimpleDeviceMem requant_scale(sizeof(RequantScaleDataType) * G * K); + SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K); + + using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD< + NumDimSpatial, + InLayout, + WeiLayout, + ck::Tuple, + OutLayout, + InDataType, + WeiDataType, + ck::Tuple, + OutDataType, + PassThrough, + PassThrough, + OutElementOp>; + // get device op instances + const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + DeviceOp>::GetInstances(); + + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; + + std::string best_op_name; + int best_op_id = -1; + float best_avg_time = std::numeric_limits::max(); + float best_gb_per_sec = 0; + float best_tflops = 0; + + // profile device operation instances + std::cout << "Run all instances and do timing" << std::endl; + + for(int i = 0; i < op_ptrs.size(); ++i) + { + auto& op_ptr = op_ptrs[i]; + auto argument_ptr = + op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(), + wei.GetDeviceBuffer(), + {bias.GetDeviceBuffer(), requant_scale.GetDeviceBuffer()}, + out.GetDeviceBuffer(), + in_lengths, + in_strides, + weight_lengths, + weight_strides, + {bias_lengths, requant_scale_lengths}, + {bias_strides, requant_scale_strides}, + out_lengths, + out_strides, + conv_strides, + conv_dilations, + in_left_pad, + in_right_pad, + PassThrough{}, + PassThrough{}, + OutElementOp{sz_inv, ActivationOp{}}); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + std::string op_name = op_ptr->GetTypeString(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); + + std::size_t flop = G * 2 * N * K * C * Ho * Wo * Y * X; + std::size_t num_bytes = + G * sizeof(InDataType) * N * Hi * Wi * C + G * sizeof(WeiDataType) * K * Y * X * C + + G * sizeof(BiasDataType) * K + G * sizeof(RequantScaleDataType) * K + + G * sizeof(OutDataType) * N * Ho * Wo * K; + + float tflops = static_cast(flop) / 1.E9 / avg_time; + float gb_per_sec = num_bytes / 1.E6 / avg_time; + + std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, " + << gb_per_sec << " GB/s, " << op_name << std::endl; + + if(tflops > best_tflops) + { + best_op_id = i; + best_op_name = op_name; + best_avg_time = avg_time; + best_gb_per_sec = gb_per_sec; + best_tflops = tflops; + } + } + else + { + std::cout << op_name << " does not support this problem" << std::endl; + } + } + + // run the best intance + if(best_op_id != -1) + { + std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops + << " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; + + auto& op_ptr = op_ptrs[best_op_id]; + std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() + << std::endl; + auto argument_ptr = + op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(), + wei.GetDeviceBuffer(), + {bias.GetDeviceBuffer(), requant_scale.GetDeviceBuffer()}, + out.GetDeviceBuffer(), + in_lengths, + in_strides, + weight_lengths, + weight_strides, + {bias_lengths, requant_scale_lengths}, + {bias_strides, requant_scale_strides}, + out_lengths, + out_strides, + conv_strides, + conv_dilations, + in_left_pad, + in_right_pad, + PassThrough{}, + PassThrough{}, + OutElementOp{sz_inv, ActivationOp{}}); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); + } + + std::cout << "Done" << std::endl; + } + + return 0; +} diff --git a/client_example/09_quantization/conv2d_fwd_bias_tanh_perlayer_quantization.cpp b/client_example/09_quantization/conv2d_fwd_bias_tanh_perlayer_quantization.cpp new file mode 100644 index 0000000000000000000000000000000000000000..9d60baee06fddb27451f1f51642bad738739c4bb --- /dev/null +++ b/client_example/09_quantization/conv2d_fwd_bias_tanh_perlayer_quantization.cpp @@ -0,0 +1,205 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include +#include +#include + +#include "ck/ck.hpp" +#include "ck/library/tensor_operation_instance/gpu/quantization/grouped_convolution_bias_forward_perlayer_quantization.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" +#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp" +#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" + +using InDataType = int8_t; +using WeiDataType = int8_t; +using BiasDataType = int32_t; +using OutDataType = int8_t; + +using InLayout = ck::tensor_layout::convolution::NHWGC; +using WeiLayout = ck::tensor_layout::convolution::GKYXC; +using BiasLayout = ck::tensor_layout::convolution::G_K; +using OutLayout = ck::tensor_layout::convolution::NHWGK; +using PassThrough = ck::tensor_operation::element_wise::PassThrough; +using ActivationOp = ck::tensor_operation::element_wise::TanH; +using OutElementOp = ck::tensor_operation::element_wise::Add_Mul_Activation_Mul_Clamp; + +static constexpr ck::index_t NumDimSpatial = 2; +static constexpr ck::index_t G = 4; +static constexpr ck::index_t N = 4; // batch size +static constexpr ck::index_t K = 32; // output channel +static constexpr ck::index_t C = 64; // input channel (per group) +static constexpr ck::index_t Y = 3; // filter H +static constexpr ck::index_t X = 3; // filter W +static constexpr ck::index_t Hi = 71; // input H +static constexpr ck::index_t Wi = 71; // input W +static constexpr ck::index_t Ho = 36; // output H +static constexpr ck::index_t Wo = 36; // output W +static constexpr float sacc = 0.5f; // scale of acc +static constexpr float sz_inv = 0.5f; // inverse of scale_z + +struct SimpleDeviceMem +{ + SimpleDeviceMem() = delete; + + SimpleDeviceMem(std::size_t mem_size) : p_mem_{} + { + (void)hipMalloc(static_cast(&p_mem_), mem_size); + } + + void* GetDeviceBuffer() { return p_mem_; } + + ~SimpleDeviceMem() { (void)hipFree(p_mem_); } + + void* p_mem_; +}; + +int main(int argc, char* argv[]) +{ + // We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space + // However, CK's API only accept length and stride with order of GNCHW/GKCYX/GNCHW + // Hence, we need to adjust the order of stride + std::array in_lengths{G, N, C, Hi, Wi}; + std::array in_strides{C, Hi * Wi * G * C, 1, Wi * G * C, G * C}; + std::array weight_lengths{G, K, C, Y, X}; + std::array weight_strides{K * Y * X * C, Y * X * C, 1, X * C, C}; + std::array bias_lengths{G, N, K, Ho, Wo}; + std::array bias_strides{K, 0, 1, 0, 0}; + std::array out_lengths{G, N, K, Ho, Wo}; + std::array out_strides{C, Ho * Wo * G * C, 1, Wo * G * C, G * C}; + + std::array in_left_pad{1, 1}; + std::array in_right_pad{1, 1}; + std::array conv_strides{2, 2}; + std::array conv_dilations{1, 1}; + + SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * G * C); + SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Y * X * C); + SimpleDeviceMem bias(sizeof(BiasDataType) * G * K); + SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K); + + using DeviceOp = + ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD, + OutLayout, + InDataType, + WeiDataType, + ck::Tuple, + OutDataType, + PassThrough, + PassThrough, + OutElementOp>; + // get device op instances + const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + DeviceOp>::GetInstances(); + + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; + + std::string best_op_name; + int best_op_id = -1; + float best_avg_time = std::numeric_limits::max(); + float best_gb_per_sec = 0; + float best_tflops = 0; + + // profile device operation instances + std::cout << "Run all instances and do timing" << std::endl; + + for(int i = 0; i < op_ptrs.size(); ++i) + { + auto& op_ptr = op_ptrs[i]; + auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(), + wei.GetDeviceBuffer(), + {bias.GetDeviceBuffer()}, + out.GetDeviceBuffer(), + in_lengths, + in_strides, + weight_lengths, + weight_strides, + {bias_lengths}, + {bias_strides}, + out_lengths, + out_strides, + conv_strides, + conv_dilations, + in_left_pad, + in_right_pad, + PassThrough{}, + PassThrough{}, + OutElementOp{sacc, sz_inv, ActivationOp{}}); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + std::string op_name = op_ptr->GetTypeString(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); + + std::size_t flop = G * 2 * N * K * C * Ho * Wo * Y * X; + std::size_t num_bytes = + G * sizeof(InDataType) * N * Hi * Wi * C + G * sizeof(WeiDataType) * K * Y * X * C + + G * sizeof(BiasDataType) * K + G * sizeof(OutDataType) * N * Ho * Wo * K; + + float tflops = static_cast(flop) / 1.E9 / avg_time; + float gb_per_sec = num_bytes / 1.E6 / avg_time; + + std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, " + << gb_per_sec << " GB/s, " << op_name << std::endl; + + if(tflops > best_tflops) + { + best_op_id = i; + best_op_name = op_name; + best_avg_time = avg_time; + best_gb_per_sec = gb_per_sec; + best_tflops = tflops; + } + } + else + { + std::cout << op_name << " does not support this problem" << std::endl; + } + } + + // run the best intance + if(best_op_id != -1) + { + std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops + << " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; + + auto& op_ptr = op_ptrs[best_op_id]; + std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() + << std::endl; + auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(), + wei.GetDeviceBuffer(), + {bias.GetDeviceBuffer()}, + out.GetDeviceBuffer(), + in_lengths, + in_strides, + weight_lengths, + weight_strides, + {bias_lengths}, + {bias_strides}, + out_lengths, + out_strides, + conv_strides, + conv_dilations, + in_left_pad, + in_right_pad, + PassThrough{}, + PassThrough{}, + OutElementOp{sacc, sz_inv, ActivationOp{}}); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); + } + + std::cout << "Done" << std::endl; + } + + return 0; +} \ No newline at end of file diff --git a/client_example/09_quantization/conv2d_fwd_perchannel_quantization.cpp b/client_example/09_quantization/conv2d_fwd_perchannel_quantization.cpp index 475b2f03b4f558ad4bc319393472b926ebbfee2d..dd81d9ee6b6dc0ee453cac61d7e795c79ba3c9fa 100644 --- a/client_example/09_quantization/conv2d_fwd_perchannel_quantization.cpp +++ b/client_example/09_quantization/conv2d_fwd_perchannel_quantization.cpp @@ -1,5 +1,5 @@ // SPDX-License-Identifier: MIT -// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include @@ -16,25 +16,25 @@ using WeiDataType = int8_t; using RequantScaleDataType = float; using OutDataType = int8_t; -using InLayout = ck::tensor_layout::convolution::GNHWC; +using InLayout = ck::tensor_layout::convolution::NHWGC; using WeiLayout = ck::tensor_layout::convolution::GKYXC; using RequantScaleLayout = ck::tensor_layout::convolution::G_K; -using OutLayout = ck::tensor_layout::convolution::GNHWK; +using OutLayout = ck::tensor_layout::convolution::NHWGK; using PassThrough = ck::tensor_operation::element_wise::PassThrough; using ActivationOp = PassThrough; using OutElementOp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp; static constexpr ck::index_t NumDimSpatial = 2; -static constexpr ck::index_t G = 1; -static constexpr ck::index_t N = 4; -static constexpr ck::index_t K = 64; -static constexpr ck::index_t C = 32; -static constexpr ck::index_t Y = 3; -static constexpr ck::index_t X = 3; -static constexpr ck::index_t Hi = 71; -static constexpr ck::index_t Wi = 71; -static constexpr ck::index_t Ho = 36; -static constexpr ck::index_t Wo = 36; +static constexpr ck::index_t G = 4; +static constexpr ck::index_t N = 4; // batch size +static constexpr ck::index_t K = 32; // output channel +static constexpr ck::index_t C = 64; // input channel (per group) +static constexpr ck::index_t Y = 3; // filter H +static constexpr ck::index_t X = 3; // filter W +static constexpr ck::index_t Hi = 71; // input H +static constexpr ck::index_t Wi = 71; // input W +static constexpr ck::index_t Ho = 36; // output H +static constexpr ck::index_t Wo = 36; // output W struct SimpleDeviceMem { @@ -54,23 +54,27 @@ struct SimpleDeviceMem int main(int argc, char* argv[]) { + // We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space + // However, CK's API only accept length and stride with order of GNCHW/GKCYX/GNCHW + // Hence, we need to adjust the order of stride std::array in_lengths{G, N, C, Hi, Wi}; - std::array in_strides{N * Hi * Wi * C, Hi * Wi * C, 1, Wi * C, C}; + std::array in_strides{C, Hi * Wi * G * C, 1, Wi * G * C, G * C}; std::array weight_lengths{G, K, C, Y, X}; std::array weight_strides{K * Y * X * C, Y * X * C, 1, X * C, C}; std::array requant_scale_lengths{G, N, K, Ho, Wo}; std::array requant_scale_strides{K, 0, 1, 0, 0}; - std::array out_lengths{G, N, C, Ho, Wo}; - std::array out_strides{N * Ho * Wo * C, Ho * Wo * C, 1, Wo * C, C}; + std::array out_lengths{G, N, K, Ho, Wo}; + std::array out_strides{C, Ho * Wo * G * C, 1, Wo * G * C, G * C}; + std::array in_left_pad{1, 1}; std::array in_right_pad{1, 1}; std::array conv_strides{2, 2}; std::array conv_dilations{1, 1}; - SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * C); - SimpleDeviceMem wei(sizeof(WeiDataType) * K * Y * X * C); - SimpleDeviceMem requant_scale(sizeof(RequantScaleDataType) * K * Y * X * C); - SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * K); + SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * G * C); + SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Y * X * C); + SimpleDeviceMem requant_scale(sizeof(RequantScaleDataType) * G * K); + SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K); using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleDRun(argument_ptr.get(), StreamConfig{nullptr, true}); - std::size_t flop = G * 2 * N * K * C * Ho * Wo * Y * X; - std::size_t num_bytes = G * sizeof(InDataType) * N * Hi * Wi * C + - G * sizeof(WeiDataType) * K * Y * X * C + - G * sizeof(OutDataType) * N * Ho * Wo * K; + std::size_t flop = G * 2 * N * K * C * Ho * Wo * Y * X; + std::size_t num_bytes = + G * sizeof(InDataType) * N * Hi * Wi * C + G * sizeof(WeiDataType) * K * Y * X * C + + G * sizeof(RequantScaleDataType) * K + G * sizeof(OutDataType) * N * Ho * Wo * K; float tflops = static_cast(flop) / 1.E9 / avg_time; float gb_per_sec = num_bytes / 1.E6 / avg_time; @@ -156,11 +160,12 @@ int main(int argc, char* argv[]) } } - std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops - << " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; - // run the best intance + if(best_op_id != -1) { + std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops + << " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; + auto& op_ptr = op_ptrs[best_op_id]; std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() << std::endl; @@ -195,4 +200,4 @@ int main(int argc, char* argv[]) } return 0; -} \ No newline at end of file +} diff --git a/client_example/09_quantization/conv2d_fwd_perlayer_quantization.cpp b/client_example/09_quantization/conv2d_fwd_perlayer_quantization.cpp index da7b7e6abffd1f5033e4a02700a1a939a950dc0e..9c088a21d38e7f62c8eee35bf4c557a0bb2209bd 100644 --- a/client_example/09_quantization/conv2d_fwd_perlayer_quantization.cpp +++ b/client_example/09_quantization/conv2d_fwd_perlayer_quantization.cpp @@ -1,5 +1,5 @@ // SPDX-License-Identifier: MIT -// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include @@ -15,24 +15,25 @@ using InDataType = int8_t; using WeiDataType = int8_t; using OutDataType = int8_t; -using InLayout = ck::tensor_layout::convolution::GNHWC; +using InLayout = ck::tensor_layout::convolution::NHWGC; using WeiLayout = ck::tensor_layout::convolution::GKYXC; -using OutLayout = ck::tensor_layout::convolution::GNHWK; +using OutLayout = ck::tensor_layout::convolution::NHWGK; using PassThrough = ck::tensor_operation::element_wise::PassThrough; using ActivationOp = PassThrough; using OutElementOp = ck::tensor_operation::element_wise::Activation_Mul_Clamp; static constexpr ck::index_t NumDimSpatial = 2; -static constexpr ck::index_t G = 1; -static constexpr ck::index_t N = 4; -static constexpr ck::index_t K = 64; -static constexpr ck::index_t C = 32; -static constexpr ck::index_t Y = 3; -static constexpr ck::index_t X = 3; -static constexpr ck::index_t Hi = 71; -static constexpr ck::index_t Wi = 71; -static constexpr ck::index_t Ho = 36; -static constexpr ck::index_t Wo = 36; +static constexpr ck::index_t G = 4; +static constexpr ck::index_t N = 4; // batch size +static constexpr ck::index_t K = 32; // output channel +static constexpr ck::index_t C = 64; // input channel (per group) +static constexpr ck::index_t Y = 3; // filter H +static constexpr ck::index_t X = 3; // filter W +static constexpr ck::index_t Hi = 71; // input H +static constexpr ck::index_t Wi = 71; // input W +static constexpr ck::index_t Ho = 36; // output H +static constexpr ck::index_t Wo = 36; // output W +static constexpr float requant_scale = 0.5f; // requantize qAcc to qY struct SimpleDeviceMem { @@ -52,20 +53,24 @@ struct SimpleDeviceMem int main(int argc, char* argv[]) { + // We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space + // However, CK's API only accept length and stride with order of GNCHW/GKCYX/GNCHW + // Hence, we need to adjust the order of stride std::array in_lengths{G, N, C, Hi, Wi}; - std::array in_strides{N * Hi * Wi * C, Hi * Wi * C, 1, Wi * C, C}; + std::array in_strides{C, Hi * Wi * G * C, 1, Wi * G * C, G * C}; std::array weight_lengths{G, K, C, Y, X}; std::array weight_strides{K * Y * X * C, Y * X * C, 1, X * C, C}; - std::array out_lengths{G, N, C, Ho, Wo}; - std::array out_strides{N * Ho * Wo * C, Ho * Wo * C, 1, Wo * C, C}; + std::array out_lengths{G, N, K, Ho, Wo}; + std::array out_strides{C, Ho * Wo * G * C, 1, Wo * G * C, G * C}; + std::array in_left_pad{1, 1}; std::array in_right_pad{1, 1}; std::array conv_strides{2, 2}; std::array conv_dilations{1, 1}; - SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * C); - SimpleDeviceMem wei(sizeof(WeiDataType) * K * Y * X * C); - SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * K); + SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * G * C); + SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Y * X * C); + SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K); using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleDMakeArgumentPointer(in.GetDeviceBuffer(), - wei.GetDeviceBuffer(), - {}, - out.GetDeviceBuffer(), - in_lengths, - in_strides, - weight_lengths, - weight_strides, - {}, - {}, - out_lengths, - out_strides, - conv_strides, - conv_dilations, - in_left_pad, - in_right_pad, - PassThrough{}, - PassThrough{}, - OutElementOp{0.5f, ActivationOp{}}); + auto& op_ptr = op_ptrs[i]; + auto argument_ptr = + op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(), + wei.GetDeviceBuffer(), + {}, + out.GetDeviceBuffer(), + in_lengths, + in_strides, + weight_lengths, + weight_strides, + {}, + {}, + out_lengths, + out_strides, + conv_strides, + conv_dilations, + in_left_pad, + in_right_pad, + PassThrough{}, + PassThrough{}, + OutElementOp{requant_scale, ActivationOp{}}); auto invoker_ptr = op_ptr->MakeInvokerPointer(); std::string op_name = op_ptr->GetTypeString(); @@ -150,33 +156,34 @@ int main(int argc, char* argv[]) } } - std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops - << " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; - - // run the best intance + if(best_op_id != -1) { + std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops + << " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; + auto& op_ptr = op_ptrs[best_op_id]; std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() << std::endl; - auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(), - wei.GetDeviceBuffer(), - {}, - out.GetDeviceBuffer(), - in_lengths, - in_strides, - weight_lengths, - weight_strides, - {}, - {}, - out_lengths, - out_strides, - conv_strides, - conv_dilations, - in_left_pad, - in_right_pad, - PassThrough{}, - PassThrough{}, - OutElementOp{0.5f, ActivationOp{}}); + auto argument_ptr = + op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(), + wei.GetDeviceBuffer(), + {}, + out.GetDeviceBuffer(), + in_lengths, + in_strides, + weight_lengths, + weight_strides, + {}, + {}, + out_lengths, + out_strides, + conv_strides, + conv_dilations, + in_left_pad, + in_right_pad, + PassThrough{}, + PassThrough{}, + OutElementOp{requant_scale, ActivationOp{}}); auto invoker_ptr = op_ptr->MakeInvokerPointer(); diff --git a/client_example/09_quantization/gemm_quantization.cpp b/client_example/09_quantization/gemm_quantization.cpp new file mode 100644 index 0000000000000000000000000000000000000000..b14e68fa082f8f9d05ab5f00471a2fa82d1d113b --- /dev/null +++ b/client_example/09_quantization/gemm_quantization.cpp @@ -0,0 +1,193 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include +#include +#include + +#include "ck/ck.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" +#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp" +#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" + +#include "ck/library/tensor_operation_instance/gpu/quantization/gemm_quantization.hpp" + +using Row = ck::tensor_layout::gemm::RowMajor; +using Col = ck::tensor_layout::gemm::ColumnMajor; + +using PassThrough = ck::tensor_operation::element_wise::PassThrough; +using AElementOp = PassThrough; +using BElementOp = PassThrough; +using ActivationOp = PassThrough; +using CDEElementOp = ck::tensor_operation::element_wise::Activation_Mul_Clamp; + +using ADataType = int8_t; +using BDataType = int8_t; +using EDataType = int8_t; + +using ALayout = Row; +using BLayout = Col; +using ELayout = Row; + +struct SimpleDeviceMem +{ + SimpleDeviceMem() = delete; + + SimpleDeviceMem(std::size_t mem_size) : p_mem_{} + { + (void)hipMalloc(static_cast(&p_mem_), mem_size); + } + + void* GetDeviceBuffer() { return p_mem_; } + + ~SimpleDeviceMem() { (void)hipFree(p_mem_); } + + void* p_mem_; +}; + +int main(int argc, char* argv[]) +{ + ck::index_t M = 1024; + ck::index_t N = 1024; + ck::index_t K = 1024; + + ck::index_t StrideA = 1024; + ck::index_t StrideB = 1024; + ck::index_t StrideE = 1024; + + float requant_scale = 0.03; + + auto f_matrix_space_size = + [](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) { + using Layout = decltype(layout); + + if constexpr(std::is_same::value) + { + return (nRow - 1) * stride + nCol; + } + else + { + return (nCol - 1) * stride + nRow; + } + }; + + SimpleDeviceMem a_device_buf(sizeof(ADataType) * f_matrix_space_size(M, K, StrideA, ALayout{})); + SimpleDeviceMem b_device_buf(sizeof(BDataType) * f_matrix_space_size(K, N, StrideB, BLayout{})); + SimpleDeviceMem e_device_buf(sizeof(EDataType) * f_matrix_space_size(M, N, StrideE, ELayout{})); + + using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleD, + ELayout, + ADataType, + BDataType, + ck::Tuple<>, + EDataType, + AElementOp, + BElementOp, + CDEElementOp>; + + // get device op instances + const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + DeviceOp>::GetInstances(); + + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; + + const auto a_element_op = AElementOp{}; + const auto b_element_op = BElementOp{}; + const auto cde_element_op = CDEElementOp{requant_scale, ActivationOp{}}; + + std::string best_op_name; + int best_op_id = -1; + float best_avg_time = std::numeric_limits::max(); + float best_gb_per_sec = 0; + float best_tflops = 0; + + // profile device operation instances + std::cout << "Run all instances and do timing" << std::endl; + + for(int i = 0; i < op_ptrs.size(); ++i) + { + auto& op_ptr = op_ptrs[i]; + auto argument_ptr = op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(), + b_device_buf.GetDeviceBuffer(), + {}, + e_device_buf.GetDeviceBuffer(), + M, + N, + K, + StrideA, + StrideB, + {}, + StrideE, + a_element_op, + b_element_op, + cde_element_op); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + std::string op_name = op_ptr->GetTypeString(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); + + std::size_t flop = std::size_t(2) * M * N * K; + std::size_t num_bytes = + sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(EDataType) * M * N; + + float tflops = static_cast(flop) / 1.E9 / avg_time; + float gb_per_sec = num_bytes / 1.E6 / avg_time; + + std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, " + << gb_per_sec << " GB/s, " << op_name << std::endl; + + if(tflops > best_tflops) + { + best_op_id = i; + best_op_name = op_name; + best_avg_time = avg_time; + best_gb_per_sec = gb_per_sec; + best_tflops = tflops; + } + } + else + { + std::cout << op_name << " does not support this problem" << std::endl; + } + } + + if(best_op_id != -1) + { + std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops + << " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; + + auto& op_ptr = op_ptrs[best_op_id]; + std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() + << std::endl; + auto argument_ptr = op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(), + b_device_buf.GetDeviceBuffer(), + {}, + e_device_buf.GetDeviceBuffer(), + M, + N, + K, + StrideA, + StrideB, + {}, + StrideE, + a_element_op, + b_element_op, + cde_element_op); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); + } + + std::cout << "Done" << std::endl; + } + + return 0; +} \ No newline at end of file diff --git a/client_example/10_grouped_conv2d_bwd_data/grouped_conv2d_bwd_data.cpp b/client_example/10_grouped_conv2d_bwd_data/grouped_conv2d_bwd_data.cpp index 55c789804230ccccf66d68be9244c5c4111451e6..1b2e8abc201c2aed2cd2eebccb68405a25033a43 100644 --- a/client_example/10_grouped_conv2d_bwd_data/grouped_conv2d_bwd_data.cpp +++ b/client_example/10_grouped_conv2d_bwd_data/grouped_conv2d_bwd_data.cpp @@ -1,5 +1,5 @@ // SPDX-License-Identifier: MIT -// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include diff --git a/client_example/11_grouped_conv_bwd_weight/CMakeLists.txt b/client_example/11_grouped_conv_bwd_weight/CMakeLists.txt index 3e3f6677666545a616a5664080c7fd20ac8ae4e0..82162b606a6ee055cb985b960366a93fa4dd21e3 100644 --- a/client_example/11_grouped_conv_bwd_weight/CMakeLists.txt +++ b/client_example/11_grouped_conv_bwd_weight/CMakeLists.txt @@ -1,2 +1,9 @@ -add_executable(client_grouped_conv2d_bwd_weight grouped_conv2d_bwd_weight.cpp) -target_link_libraries(client_grouped_conv2d_bwd_weight PRIVATE composable_kernel::device_operations) +add_executable(client_grouped_conv1d_bwd_weight_fp16 grouped_conv1d_bwd_weight_fp16.cpp) +add_executable(client_grouped_conv2d_bwd_weight_fp16 grouped_conv2d_bwd_weight_fp16.cpp) +add_executable(client_grouped_conv3d_bwd_weight_fp16 grouped_conv3d_bwd_weight_fp16.cpp) +add_executable(client_grouped_conv3d_bwd_weight_fp32 grouped_conv3d_bwd_weight_fp32.cpp) + +target_link_libraries(client_grouped_conv1d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations) +target_link_libraries(client_grouped_conv2d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations) +target_link_libraries(client_grouped_conv3d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations) +target_link_libraries(client_grouped_conv3d_bwd_weight_fp32 PRIVATE composable_kernel::device_operations) diff --git a/client_example/11_grouped_conv_bwd_weight/common.hpp b/client_example/11_grouped_conv_bwd_weight/common.hpp new file mode 100644 index 0000000000000000000000000000000000000000..f63e5f2157646ad2003fbe3bbdcc10f4a96e1d7e --- /dev/null +++ b/client_example/11_grouped_conv_bwd_weight/common.hpp @@ -0,0 +1,252 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include +#include +#include +#include +#include + +#include "ck/ck.hpp" +#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_weight.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" +#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp" +#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" + +using PassThrough = ck::tensor_operation::element_wise::PassThrough; + +struct SimpleDeviceMem +{ + SimpleDeviceMem() = delete; + + SimpleDeviceMem(std::size_t mem_size) : p_mem_{} + { + (void)hipMalloc(static_cast(&p_mem_), mem_size); + } + + void* GetDeviceBuffer() { return p_mem_; } + + ~SimpleDeviceMem() { (void)hipFree(p_mem_); } + + void* p_mem_; +}; + +template +std::size_t GetFlops(ck::index_t G, + ck::index_t N, + ck::index_t K, + ck::index_t C, + const std::array& output_spatial_lengths, + const std::array& filter_spatial_lengths) +{ + // 2 * G * N * K * C * * + return static_cast(2) * G * N * K * C * + std::accumulate(std::begin(output_spatial_lengths), + std::end(output_spatial_lengths), + static_cast(1), + std::multiplies<>()) * + std::accumulate(std::begin(filter_spatial_lengths), + std::end(filter_spatial_lengths), + static_cast(1), + std::multiplies<>()); +} + +template +std::size_t GetInputByte(ck::index_t G, + ck::index_t N, + ck::index_t C, + const std::array& input_spatial_lengths) +{ + // sizeof(InDataType) * (G * N * C * ) + + return sizeof(InDataType) * (G * N * C * + std::accumulate(std::begin(input_spatial_lengths), + std::end(input_spatial_lengths), + static_cast(1), + std::multiplies<>())); +} + +template +std::size_t GetWeightByte(ck::index_t G, + ck::index_t K, + ck::index_t C, + const std::array& filter_spatial_lengths) +{ + // sizeof(WeiDataType) * (G * K * C * ) + + return sizeof(WeiDataType) * (G * K * C * + std::accumulate(std::begin(filter_spatial_lengths), + std::end(filter_spatial_lengths), + static_cast(1), + std::multiplies<>())); +} + +template +std::size_t GetOutputByte(ck::index_t G, + ck::index_t N, + ck::index_t K, + const std::array& output_spatial_lengths) +{ + // sizeof(OutDataType) * (G * N * K * ); + return sizeof(OutDataType) * (G * N * K * + std::accumulate(std::begin(output_spatial_lengths), + std::end(output_spatial_lengths), + static_cast(1), + std::multiplies())); +} + +template +bool run_grouped_conv_bwd_weight( + const ck::index_t G, + const ck::index_t N, + const ck::index_t K, + const ck::index_t C, + const std::array& input_spatial_lengths, + const std::array& filter_spatial_lengths, + const std::array& output_spatial_lengths, + const std::array& input_strides, + const std::array& output_strides, + const std::array& conv_filter_strides, + const std::array& conv_filter_dilations, + const std::array& input_left_pads, + const std::array& input_right_pads) +{ + + ck::index_t split_k = 2; + SimpleDeviceMem in(GetInputByte(G, N, C, input_spatial_lengths)); + SimpleDeviceMem wei(GetWeightByte(G, K, C, filter_spatial_lengths)); + SimpleDeviceMem out(GetOutputByte(G, N, K, output_spatial_lengths)); + + using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvBwdWeight; + // get device op instances + const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + DeviceOp>::GetInstances(); + + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; + + std::string best_op_name; + int best_op_id = -1; + float best_avg_time = std::numeric_limits::max(); + float best_gb_per_sec = 0; + float best_tflops = 0; + + // profile device operation instances + std::cout << "Run all instances and do timing" << std::endl; + + for(int i = 0; i < op_ptrs.size(); ++i) + { + auto& op_ptr = op_ptrs[i]; + auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(), + wei.GetDeviceBuffer(), + out.GetDeviceBuffer(), + G, + N, + K, + C, + input_spatial_lengths, + filter_spatial_lengths, + output_spatial_lengths, + input_strides, + output_strides, + conv_filter_strides, + conv_filter_dilations, + input_left_pads, + input_right_pads, + PassThrough{}, + PassThrough{}, + PassThrough{}, + split_k); + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + std::string op_name = op_ptr->GetTypeString(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); + + std::size_t flop = + GetFlops(G, N, K, C, output_spatial_lengths, filter_spatial_lengths); + std::size_t num_bytes = + GetInputByte(G, N, C, input_spatial_lengths) + + GetWeightByte(G, K, C, filter_spatial_lengths) + + GetOutputByte(G, N, K, output_spatial_lengths); + + float tflops = static_cast(flop) / 1.E9 / avg_time; + float gb_per_sec = num_bytes / 1.E6 / avg_time; + + std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, " + << gb_per_sec << " GB/s, " << op_name << std::endl; + + if(tflops > best_tflops) + { + best_op_id = i; + best_op_name = op_name; + best_avg_time = avg_time; + best_gb_per_sec = gb_per_sec; + best_tflops = tflops; + } + } + else + { + std::cerr << op_name << " does not support this problem" << std::endl; + } + } + + if(best_op_id < 0) + { + std::cerr << "no suitable instance" << std::endl; + return false; + } + + std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops + << " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; + + // run the best intance + { + auto& op_ptr = op_ptrs[best_op_id]; + std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() + << std::endl; + auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(), + wei.GetDeviceBuffer(), + out.GetDeviceBuffer(), + G, + N, + K, + C, + input_spatial_lengths, + filter_spatial_lengths, + output_spatial_lengths, + input_strides, + output_strides, + conv_filter_strides, + conv_filter_dilations, + input_left_pads, + input_right_pads, + PassThrough{}, + PassThrough{}, + PassThrough{}, + split_k); + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); + } + + std::cout << "Done" << std::endl; + } + + return true; +} diff --git a/client_example/11_grouped_conv_bwd_weight/grouped_conv1d_bwd_weight_fp16.cpp b/client_example/11_grouped_conv_bwd_weight/grouped_conv1d_bwd_weight_fp16.cpp new file mode 100644 index 0000000000000000000000000000000000000000..1c6f485da2100982c9e8f2d66b63a0c3794a49c5 --- /dev/null +++ b/client_example/11_grouped_conv_bwd_weight/grouped_conv1d_bwd_weight_fp16.cpp @@ -0,0 +1,58 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include "common.hpp" + +#include "ck/ck.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" + +using InDataType = ck::half_t; +using WeiDataType = ck::half_t; +using OutDataType = ck::half_t; + +using InLayout = ck::tensor_layout::convolution::GNWC; +using WeiLayout = ck::tensor_layout::convolution::GKXC; +using OutLayout = ck::tensor_layout::convolution::GNWK; + +static constexpr ck::index_t NumDimSpatial = 1; +static constexpr ck::index_t G = 32; +static constexpr ck::index_t N = 256; +static constexpr ck::index_t K = 192; +static constexpr ck::index_t C = 192; +static constexpr ck::index_t X = 3; +static constexpr ck::index_t Wi = 28; +static constexpr ck::index_t Wo = 28; +static constexpr std::array input_spatial_lengths{Wi}; +static constexpr std::array filter_spatial_lengths{X}; +static constexpr std::array output_spatial_lengths{Wo}; +static constexpr std::array input_strides{N * Wi * C, Wi* C, C, 1}; +static constexpr std::array output_strides{N * Wo * K, Wo* K, K, 1}; +static constexpr std::array conv_filter_strides{1}; +static constexpr std::array conv_filter_dilations{1}; +static constexpr std::array input_left_pads{1}; +static constexpr std::array input_right_pads{1}; + +int main() +{ + return run_grouped_conv_bwd_weight(G, + N, + K, + C, + input_spatial_lengths, + filter_spatial_lengths, + output_spatial_lengths, + input_strides, + output_strides, + conv_filter_strides, + conv_filter_dilations, + input_left_pads, + input_right_pads) + ? EXIT_SUCCESS + : EXIT_FAILURE; +} diff --git a/client_example/11_grouped_conv_bwd_weight/grouped_conv2d_bwd_weight_fp16.cpp b/client_example/11_grouped_conv_bwd_weight/grouped_conv2d_bwd_weight_fp16.cpp new file mode 100644 index 0000000000000000000000000000000000000000..25e82f389688415fc2d86b896bc41b149e26b88a --- /dev/null +++ b/client_example/11_grouped_conv_bwd_weight/grouped_conv2d_bwd_weight_fp16.cpp @@ -0,0 +1,63 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include "common.hpp" + +#include "ck/ck.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" + +using InDataType = ck::half_t; +using WeiDataType = ck::half_t; +using OutDataType = ck::half_t; + +using InLayout = ck::tensor_layout::convolution::GNHWC; +using WeiLayout = ck::tensor_layout::convolution::GKYXC; +using OutLayout = ck::tensor_layout::convolution::GNHWK; + +static constexpr ck::index_t NumDimSpatial = 2; +static constexpr ck::index_t G = 32; +static constexpr ck::index_t N = 256; +static constexpr ck::index_t K = 192; +static constexpr ck::index_t C = 192; +static constexpr ck::index_t Y = 3; +static constexpr ck::index_t X = 3; +static constexpr ck::index_t Hi = 28; +static constexpr ck::index_t Wi = 28; +static constexpr ck::index_t Ho = 28; +static constexpr ck::index_t Wo = 28; +static constexpr std::array input_spatial_lengths{Hi, Wi}; +static constexpr std::array filter_spatial_lengths{Y, X}; +static constexpr std::array output_spatial_lengths{Ho, Wo}; +static constexpr std::array input_strides{ + N * Hi * Wi * C, Hi* Wi* C, Wi* C, C, 1}; +static constexpr std::array output_strides{ + N * Ho * Wo * K, Ho* Wo* K, Wo* K, K, 1}; +static constexpr std::array conv_filter_strides{1, 1}; +static constexpr std::array conv_filter_dilations{1, 1}; +static constexpr std::array input_left_pads{1, 1}; +static constexpr std::array input_right_pads{1, 1}; + +int main() +{ + return run_grouped_conv_bwd_weight(G, + N, + K, + C, + input_spatial_lengths, + filter_spatial_lengths, + output_spatial_lengths, + input_strides, + output_strides, + conv_filter_strides, + conv_filter_dilations, + input_left_pads, + input_right_pads) + ? EXIT_SUCCESS + : EXIT_FAILURE; +} diff --git a/client_example/11_grouped_conv_bwd_weight/grouped_conv3d_bwd_weight_fp16.cpp b/client_example/11_grouped_conv_bwd_weight/grouped_conv3d_bwd_weight_fp16.cpp new file mode 100644 index 0000000000000000000000000000000000000000..a5f5e628ff2d40b55a9bccd81a743b7b0f026fc9 --- /dev/null +++ b/client_example/11_grouped_conv_bwd_weight/grouped_conv3d_bwd_weight_fp16.cpp @@ -0,0 +1,66 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include "common.hpp" + +#include "ck/ck.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" + +using InDataType = ck::half_t; +using WeiDataType = ck::half_t; +using OutDataType = ck::half_t; + +using InLayout = ck::tensor_layout::convolution::GNDHWC; +using WeiLayout = ck::tensor_layout::convolution::GKZYXC; +using OutLayout = ck::tensor_layout::convolution::GNDHWK; + +static constexpr ck::index_t NumDimSpatial = 3; +static constexpr ck::index_t G = 8; +static constexpr ck::index_t N = 64; +static constexpr ck::index_t K = 128; +static constexpr ck::index_t C = 128; +static constexpr ck::index_t Z = 3; +static constexpr ck::index_t Y = 3; +static constexpr ck::index_t X = 3; +static constexpr ck::index_t Di = 28; +static constexpr ck::index_t Hi = 28; +static constexpr ck::index_t Wi = 3; +static constexpr ck::index_t Do = 28; +static constexpr ck::index_t Ho = 28; +static constexpr ck::index_t Wo = 3; +static constexpr std::array input_spatial_lengths{Di, Hi, Wi}; +static constexpr std::array filter_spatial_lengths{Z, Y, X}; +static constexpr std::array output_spatial_lengths{Do, Ho, Wo}; +static constexpr std::array input_strides{ + N * Di * Hi * Wi * C, Di* Hi* Wi* C, Hi* Wi* C, Wi* C, C, 1}; +static constexpr std::array output_strides{ + N * Do * Ho * Wo * K, Do* Ho* Wo* K, Ho* Wo* K, Wo* K, K, 1}; +static constexpr std::array conv_filter_strides{1, 1, 1}; +static constexpr std::array conv_filter_dilations{1, 1, 1}; +static constexpr std::array input_left_pads{1, 1, 1}; +static constexpr std::array input_right_pads{1, 1, 1}; + +int main() +{ + return run_grouped_conv_bwd_weight(G, + N, + K, + C, + input_spatial_lengths, + filter_spatial_lengths, + output_spatial_lengths, + input_strides, + output_strides, + conv_filter_strides, + conv_filter_dilations, + input_left_pads, + input_right_pads) + ? EXIT_SUCCESS + : EXIT_FAILURE; +} diff --git a/client_example/11_grouped_conv_bwd_weight/grouped_conv3d_bwd_weight_fp32.cpp b/client_example/11_grouped_conv_bwd_weight/grouped_conv3d_bwd_weight_fp32.cpp new file mode 100644 index 0000000000000000000000000000000000000000..d95e8a205e6fb203beccb9691615c14bfb49c1fb --- /dev/null +++ b/client_example/11_grouped_conv_bwd_weight/grouped_conv3d_bwd_weight_fp32.cpp @@ -0,0 +1,67 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include "common.hpp" + +#include "ck/ck.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" + +using InDataType = float; +using WeiDataType = float; +using OutDataType = float; + +using InLayout = ck::tensor_layout::convolution::GNDHWC; +using WeiLayout = ck::tensor_layout::convolution::GKZYXC; +using OutLayout = ck::tensor_layout::convolution::GNDHWK; + +static constexpr ck::index_t NumDimSpatial = 3; +static constexpr ck::index_t G = 8; +static constexpr ck::index_t N = 64; +static constexpr ck::index_t K = 128; +static constexpr ck::index_t C = 128; +static constexpr ck::index_t Z = 3; +static constexpr ck::index_t Y = 3; +static constexpr ck::index_t X = 3; +static constexpr ck::index_t Di = 28; +static constexpr ck::index_t Hi = 28; +static constexpr ck::index_t Wi = 3; +static constexpr ck::index_t Do = 28; +static constexpr ck::index_t Ho = 28; +static constexpr ck::index_t Wo = 3; +static constexpr std::array input_spatial_lengths{Di, Hi, Wi}; +static constexpr std::array filter_spatial_lengths{Z, Y, X}; +static constexpr std::array output_spatial_lengths{Do, Ho, Wo}; +static constexpr std::array input_strides{ + N * Di * Hi * Wi * C, Di* Hi* Wi* C, Hi* Wi* C, Wi* C, C, 1}; +static constexpr std::array output_strides{ + N * Do * Ho * Wo * K, Do* Ho* Wo* K, Ho* Wo* K, Wo* K, K, 1}; +static constexpr std::array conv_filter_strides{1, 1, 1}; +static constexpr std::array conv_filter_dilations{1, 1, 1}; +static constexpr std::array input_left_pads{1, 1, 1}; +static constexpr std::array input_right_pads{1, 1, 1}; + +int main() +{ + return run_grouped_conv_bwd_weight( + G, + N, + K, + C, + {Di, Hi, Wi}, + {Z, Y, X}, + {Do, Ho, Wo}, + {N * Di * Hi * Wi * C, Di * Hi * Wi * C, Hi * Wi * C, Wi * C, C, 1}, + {N * Do * Ho * Wo * K, Do * Ho * Wo * K, Ho * Wo * K, Wo * K, K, 1}, + {1, 1, 1}, + {1, 1, 1}, + {1, 1, 1}, + {1, 1, 1}) + ? EXIT_SUCCESS + : EXIT_FAILURE; +} diff --git a/client_example/12_elementwise_normalization/elementwise_layernorm2d.cpp b/client_example/12_elementwise_normalization/elementwise_layernorm2d.cpp index de68f46d398958917e49bf14178f66414590ed86..bc4a6fe0bfa9e118bbd6ba32ecc7dd68f3b8b2c3 100644 --- a/client_example/12_elementwise_normalization/elementwise_layernorm2d.cpp +++ b/client_example/12_elementwise_normalization/elementwise_layernorm2d.cpp @@ -1,5 +1,5 @@ // SPDX-License-Identifier: MIT -// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include diff --git a/client_example/13_batchnorm/CMakeLists.txt b/client_example/13_batchnorm/CMakeLists.txt index 54669678ae6f107d87eb6b979a3da7761d9b25d5..fc4f9d395c4a8b45e34db2ad0c5622484d379dba 100644 --- a/client_example/13_batchnorm/CMakeLists.txt +++ b/client_example/13_batchnorm/CMakeLists.txt @@ -1,4 +1,6 @@ add_executable(client_batchnorm_fwd_nhwc batchnorm_fwd_nhwc.cpp) add_executable(client_batchnorm_bwd_nhwc batchnorm_bwd_nhwc.cpp) +add_executable(client_batchnorm_infer_nhwc batchnorm_infer_nhwc.cpp) target_link_libraries(client_batchnorm_fwd_nhwc PRIVATE composable_kernel::device_operations) target_link_libraries(client_batchnorm_bwd_nhwc PRIVATE composable_kernel::device_operations) +target_link_libraries(client_batchnorm_infer_nhwc PRIVATE composable_kernel::device_operations) diff --git a/client_example/13_batchnorm/batchnorm_bwd_nhwc.cpp b/client_example/13_batchnorm/batchnorm_bwd_nhwc.cpp index 8ef21986a4d9a5f1eb25e21a1073c4cc341da88d..c0140f71c15993da2e0d4b629321a355c74f004a 100644 --- a/client_example/13_batchnorm/batchnorm_bwd_nhwc.cpp +++ b/client_example/13_batchnorm/batchnorm_bwd_nhwc.cpp @@ -1,5 +1,5 @@ // SPDX-License-Identifier: MIT -// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include diff --git a/client_example/13_batchnorm/batchnorm_fwd_nhwc.cpp b/client_example/13_batchnorm/batchnorm_fwd_nhwc.cpp index 322667a46bacae8d0c681939c3890ef9ff476b0e..365373343668409f130f642d8e217cfd48a9afac 100644 --- a/client_example/13_batchnorm/batchnorm_fwd_nhwc.cpp +++ b/client_example/13_batchnorm/batchnorm_fwd_nhwc.cpp @@ -1,5 +1,5 @@ // SPDX-License-Identifier: MIT -// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include diff --git a/client_example/13_batchnorm/batchnorm_infer_nhwc.cpp b/client_example/13_batchnorm/batchnorm_infer_nhwc.cpp new file mode 100644 index 0000000000000000000000000000000000000000..5e6627ce14d113224c7b0acb4fea69cb36c1f369 --- /dev/null +++ b/client_example/13_batchnorm/batchnorm_infer_nhwc.cpp @@ -0,0 +1,189 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include +#include +#include +#include +#include + +#include "ck/ck.hpp" +#include "ck/utility/tuple.hpp" +#include "ck/library/tensor_operation_instance/gpu/batchnorm_infer.hpp" + +using XDataType = float; +using YDataType = float; +using ScaleDataType = float; +using BiasDataType = float; +using MeanVarDataType = float; + +constexpr int Rank = 4; +constexpr int NumBatchNormReduceDim = 3; + +using Normalize = ck::tensor_operation::element_wise::NormalizeInInfer; + +const double epsilon = std::numeric_limits::epsilon(); + +struct SimpleDeviceMem +{ + SimpleDeviceMem() = delete; + + SimpleDeviceMem(std::size_t mem_size) : p_mem_{} + { + (void)hipMalloc(static_cast(&p_mem_), mem_size); + } + + void* GetDeviceBuffer() { return p_mem_; } + + ~SimpleDeviceMem() { (void)hipFree(p_mem_); } + + void* p_mem_; +}; + +int main(int argc, char* argv[]) +{ + std::array xyLengths{16, 8, 128, 256}; + std::array xyStrides{8 * 128 * 256, 128 * 256, 256, 1}; + std::array scaleBiasMeanVarLengths{256}; + std::array scaleBiasMeanVarStrides{1}; + std::array reduceDims{0, 1, 2}; + std::array invariantDims{3}; + + ck::index_t numXYElement = + std::accumulate(xyLengths.begin(), xyLengths.end(), 1, std::multiplies()); + + ck::index_t numScaleBiasMeanVarElement = std::accumulate(scaleBiasMeanVarLengths.begin(), + scaleBiasMeanVarLengths.end(), + 1, + std::multiplies()); + + SimpleDeviceMem x(sizeof(XDataType) * numXYElement); + SimpleDeviceMem y(sizeof(YDataType) * numXYElement); + SimpleDeviceMem scale(sizeof(ScaleDataType) * numScaleBiasMeanVarElement); + SimpleDeviceMem bias(sizeof(BiasDataType) * numScaleBiasMeanVarElement); + SimpleDeviceMem mean(sizeof(MeanVarDataType) * numScaleBiasMeanVarElement); + SimpleDeviceMem variance(sizeof(MeanVarDataType) * numScaleBiasMeanVarElement); + + // values in variance need be non-negative + (void)hipMemset( + variance.GetDeviceBuffer(), 0, sizeof(MeanVarDataType) * numScaleBiasMeanVarElement); + + std::array aligned_scaleBiasMeanVarStrides{0}; + + int i = 0; + for(auto dim : invariantDims) + { + assert(xyLengths[dim] == scaleBiasMeanVarLengths[i]); + + aligned_scaleBiasMeanVarStrides[dim] = scaleBiasMeanVarStrides[i]; + i++; + }; + + using DeviceOp = ck::tensor_operation::device::DeviceElementwise< + ck::Tuple, + ck::Tuple, + Normalize, + Rank>; + + const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + DeviceOp>::GetInstances(); + + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; + + std::string best_op_name; + bool found = false; + int best_op_id = -1; + float best_ave_time = std::numeric_limits::max(); + float best_gb_per_sec = 0; + + // profile device operation instances + std::cout << "Run all instances and do timing" << std::endl; + + for(int i = 0; i < op_ptrs.size(); ++i) + { + auto& op_ptr = op_ptrs[i]; + + auto argument_ptr = op_ptr->MakeArgumentPointer(xyLengths, + {xyStrides, + aligned_scaleBiasMeanVarStrides, + aligned_scaleBiasMeanVarStrides, + aligned_scaleBiasMeanVarStrides, + aligned_scaleBiasMeanVarStrides}, + {xyStrides}, + {x.GetDeviceBuffer(), + mean.GetDeviceBuffer(), + variance.GetDeviceBuffer(), + scale.GetDeviceBuffer(), + bias.GetDeviceBuffer()}, + {y.GetDeviceBuffer()}, + Normalize{epsilon}); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + std::string op_name = op_ptr->GetTypeString(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); + + std::size_t num_bytes = + numXYElement * (sizeof(XDataType) + sizeof(YDataType)) + + numScaleBiasMeanVarElement * (sizeof(ScaleDataType) + sizeof(BiasDataType) + + sizeof(MeanVarDataType) + sizeof(MeanVarDataType)); + + float gb_per_sec = num_bytes / 1.E6 / ave_time; + + std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, " + << op_name << std::endl; + + if(ave_time < best_ave_time) + { + found = true; + best_op_id = i; + best_op_name = op_name; + best_ave_time = ave_time; + best_gb_per_sec = gb_per_sec; + } + } + else + { + std::cout << op_name << " does not support this problem" << std::endl; + } + } + + if(found) + { + std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, " + << best_op_name << std::endl; + + // run the best intance + auto& op_ptr = op_ptrs[best_op_id]; + std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() + << std::endl; + + auto argument_ptr = op_ptr->MakeArgumentPointer(xyLengths, + {xyStrides, + aligned_scaleBiasMeanVarStrides, + aligned_scaleBiasMeanVarStrides, + aligned_scaleBiasMeanVarStrides, + aligned_scaleBiasMeanVarStrides}, + {xyStrides}, + {x.GetDeviceBuffer(), + mean.GetDeviceBuffer(), + variance.GetDeviceBuffer(), + scale.GetDeviceBuffer(), + bias.GetDeviceBuffer()}, + {y.GetDeviceBuffer()}, + Normalize{epsilon}); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); + } + + std::cout << "Done" << std::endl; + } + + return 0; +} diff --git a/client_example/14_instance_id/batchnorm_fwd_instance_id.cpp b/client_example/14_instance_id/batchnorm_fwd_instance_id.cpp index 9cfeee1cfe106e69f83dc0184f3956d6751a2947..d45782d8e0ff37027a204c6820447286581f1138 100644 --- a/client_example/14_instance_id/batchnorm_fwd_instance_id.cpp +++ b/client_example/14_instance_id/batchnorm_fwd_instance_id.cpp @@ -1,5 +1,5 @@ // SPDX-License-Identifier: MIT -// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include diff --git a/client_example/15_convnd_bwd_data/CMakeLists.txt b/client_example/15_convnd_bwd_data/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..8a60a71674f84f6005deadf3744b7df346c0ac3c --- /dev/null +++ b/client_example/15_convnd_bwd_data/CMakeLists.txt @@ -0,0 +1,5 @@ +add_executable(client_conv3d_bwd_data_fp16 conv3d_bwd_data_fp16.cpp) +add_executable(client_conv3d_bwd_data_fp32 conv3d_bwd_data_fp32.cpp) + +target_link_libraries(client_conv3d_bwd_data_fp16 PRIVATE composable_kernel::device_operations) +target_link_libraries(client_conv3d_bwd_data_fp32 PRIVATE composable_kernel::device_operations) diff --git a/client_example/15_convnd_bwd_data/common.hpp b/client_example/15_convnd_bwd_data/common.hpp new file mode 100644 index 0000000000000000000000000000000000000000..9799fb73a5a05225f053de3305de736c485acf3a --- /dev/null +++ b/client_example/15_convnd_bwd_data/common.hpp @@ -0,0 +1,233 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include +#include +#include +#include +#include +#include +#include + +#include "ck/ck.hpp" +#include "ck/library/tensor_operation_instance/gpu/convolution_backward_data.hpp" +#include "ck/tensor_operation/gpu/device/device_conv_bwd_data.hpp" +#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" + +using PassThrough = ck::tensor_operation::element_wise::PassThrough; + +struct SimpleDeviceMem +{ + SimpleDeviceMem() = delete; + + SimpleDeviceMem(std::size_t mem_size) : p_mem_{} + { + (void)hipMalloc(static_cast(&p_mem_), mem_size); + } + + void* GetDeviceBuffer() { return p_mem_; } + + ~SimpleDeviceMem() { (void)hipFree(p_mem_); } + + void* p_mem_; +}; + +std::size_t GetFlops(ck::index_t N, + ck::index_t K, + ck::index_t C, + const std::vector& output_spatial_lengths, + const std::vector& weights_spatial_lengths) +{ + // 2 * N * K * C * * + + return static_cast(2) * N * K * C * + std::accumulate(std::begin(output_spatial_lengths), + std::end(output_spatial_lengths), + static_cast(1), + std::multiplies<>()) * + std::accumulate(std::begin(weights_spatial_lengths), + std::end(weights_spatial_lengths), + static_cast(1), + std::multiplies<>()); +} + +template +std::size_t +GetInputByte(ck::index_t N, ck::index_t C, const std::vector& input_spatial_lengths) +{ + // sizeof(InDataType) * (N * C * ) + + return sizeof(InDataType) * N * C * + std::accumulate(std::begin(input_spatial_lengths), + std::end(input_spatial_lengths), + static_cast(1), + std::multiplies<>()); +} + +template +std::size_t +GetWeightByte(ck::index_t K, ck::index_t C, const std::vector& weights_spatial_lengths) +{ + // sizeof(WeiDataType) * (K * C * ) + + return sizeof(WeiDataType) * K * C * + std::accumulate(std::begin(weights_spatial_lengths), + std::end(weights_spatial_lengths), + static_cast(1), + std::multiplies<>()); +} + +template +std::size_t +GetOutputByte(ck::index_t N, ck::index_t K, const std::vector& output_spatial_lengths) +{ + // sizeof(OutDataType) * (N * K * ); + return sizeof(OutDataType) * N * K * + std::accumulate(std::begin(output_spatial_lengths), + std::end(output_spatial_lengths), + static_cast(1), + std::multiplies()); +} + +template +bool run_conv_bwd_data(ck::index_t N, + ck::index_t K, + ck::index_t C, + const std::vector& in_spatial_lengths, + const std::vector& wei_spatial_lengths, + const std::vector& out_spatial_lengths) +{ + std::size_t in_mem_size = GetInputByte(N, C, in_spatial_lengths); + std::size_t wei_mem_size = GetWeightByte(K, C, wei_spatial_lengths); + std::size_t out_mem_size = GetOutputByte(N, K, out_spatial_lengths); + + SimpleDeviceMem in(in_mem_size); + SimpleDeviceMem wei(wei_mem_size); + SimpleDeviceMem out(out_mem_size); + + std::vector filter_strides(NumDimSpatial, 1); + std::vector filter_dilations(NumDimSpatial, 1); + std::vector input_left_pads(NumDimSpatial, 1); + std::vector input_right_pads(NumDimSpatial, 1); + + using DeviceOp = ck::tensor_operation::device::DeviceConvBwdData; + // get device op instances + const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + DeviceOp>::GetInstances(); + + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; + + std::string best_op_name; + int best_op_id = -1; + float best_avg_time = std::numeric_limits::max(); + float best_gb_per_sec = 0; + float best_tflops = 0; + + std::size_t flop = GetFlops(N, K, C, out_spatial_lengths, wei_spatial_lengths); + std::size_t num_bytes = in_mem_size + wei_mem_size + out_mem_size; + + // profile device operation instances + std::cout << "Run all instances and do timing" << std::endl; + + for(int i = 0; i < op_ptrs.size(); ++i) + { + auto& op_ptr = op_ptrs[i]; + auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(), + wei.GetDeviceBuffer(), + out.GetDeviceBuffer(), + N, + K, + C, + in_spatial_lengths, + wei_spatial_lengths, + out_spatial_lengths, + filter_strides, + filter_dilations, + input_left_pads, + input_right_pads, + PassThrough{}, + PassThrough{}, + PassThrough{}); + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + std::string op_name = op_ptr->GetTypeString(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); + + float tflops = static_cast(flop) / 1.E9 / avg_time; + float gb_per_sec = num_bytes / 1.E6 / avg_time; + + std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, " + << gb_per_sec << " GB/s, " << op_name << std::endl; + + if(tflops > best_tflops) + { + best_op_id = i; + best_op_name = op_name; + best_avg_time = avg_time; + best_gb_per_sec = gb_per_sec; + best_tflops = tflops; + } + } + else + { + std::cerr << op_name << " does not support this problem" << std::endl; + } + } + + if(best_op_id < 0) + { + std::cerr << "no suitable instance" << std::endl; + return false; + } + + std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops + << " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; + + // run the best intance + { + auto& op_ptr = op_ptrs[best_op_id]; + std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() + << std::endl; + auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(), + wei.GetDeviceBuffer(), + out.GetDeviceBuffer(), + N, + K, + C, + in_spatial_lengths, + wei_spatial_lengths, + out_spatial_lengths, + filter_strides, + filter_dilations, + input_left_pads, + input_right_pads, + PassThrough{}, + PassThrough{}, + PassThrough{}); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); + } + + std::cout << "Done" << std::endl; + } + return true; +} diff --git a/client_example/15_convnd_bwd_data/conv3d_bwd_data_fp16.cpp b/client_example/15_convnd_bwd_data/conv3d_bwd_data_fp16.cpp new file mode 100644 index 0000000000000000000000000000000000000000..5210567241ebd9ce84b8b0b576b295594bf8578b --- /dev/null +++ b/client_example/15_convnd_bwd_data/conv3d_bwd_data_fp16.cpp @@ -0,0 +1,42 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include "common.hpp" + +#include "ck/ck.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" + +using InDataType = ck::half_t; +using WeiDataType = ck::half_t; +using OutDataType = ck::half_t; + +using InLayout = ck::tensor_layout::convolution::NDHWC; +using WeiLayout = ck::tensor_layout::convolution::KZYXC; +using OutLayout = ck::tensor_layout::convolution::NDHWK; + +static constexpr ck::index_t NumDimSpatial = 3; +static constexpr ck::index_t N = 64; +static constexpr ck::index_t K = 128; +static constexpr ck::index_t C = 64; +static constexpr ck::index_t Z = 3; +static constexpr ck::index_t Y = 3; +static constexpr ck::index_t X = 3; +static constexpr ck::index_t Di = 28; +static constexpr ck::index_t Hi = 28; +static constexpr ck::index_t Wi = 28; +static constexpr ck::index_t Do = 28; +static constexpr ck::index_t Ho = 28; +static constexpr ck::index_t Wo = 28; + +int main() +{ + return run_conv_bwd_data(N, K, C, {Di, Hi, Wi}, {Z, Y, X}, {Do, Ho, Wo}) + ? EXIT_SUCCESS + : EXIT_FAILURE; +} diff --git a/client_example/15_convnd_bwd_data/conv3d_bwd_data_fp32.cpp b/client_example/15_convnd_bwd_data/conv3d_bwd_data_fp32.cpp new file mode 100644 index 0000000000000000000000000000000000000000..441bdfe7bec3bd12fe948c2efc892ad5cc4d0184 --- /dev/null +++ b/client_example/15_convnd_bwd_data/conv3d_bwd_data_fp32.cpp @@ -0,0 +1,42 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include "common.hpp" + +#include "ck/ck.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" + +using InDataType = float; +using WeiDataType = float; +using OutDataType = float; + +using InLayout = ck::tensor_layout::convolution::NDHWC; +using WeiLayout = ck::tensor_layout::convolution::KZYXC; +using OutLayout = ck::tensor_layout::convolution::NDHWK; + +static constexpr ck::index_t NumDimSpatial = 3; +static constexpr ck::index_t N = 64; +static constexpr ck::index_t K = 128; +static constexpr ck::index_t C = 64; +static constexpr ck::index_t Z = 3; +static constexpr ck::index_t Y = 3; +static constexpr ck::index_t X = 3; +static constexpr ck::index_t Di = 28; +static constexpr ck::index_t Hi = 28; +static constexpr ck::index_t Wi = 28; +static constexpr ck::index_t Do = 28; +static constexpr ck::index_t Ho = 28; +static constexpr ck::index_t Wo = 28; + +int main() +{ + return run_conv_bwd_data(N, K, C, {Di, Hi, Wi}, {Z, Y, X}, {Do, Ho, Wo}) + ? EXIT_SUCCESS + : EXIT_FAILURE; +} diff --git a/client_example/15_gemm_add_multiply/CMakeLists.txt b/client_example/15_gemm_add_multiply/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..fd2dcf9614016b93b43a52c2940d1701ee623584 --- /dev/null +++ b/client_example/15_gemm_add_multiply/CMakeLists.txt @@ -0,0 +1,3 @@ + +add_executable(client_gemm_add_multiply gemm_add_multiply.cpp) +target_link_libraries(client_gemm_add_multiply PRIVATE composable_kernel::device_operations) \ No newline at end of file diff --git a/client_example/15_gemm_add_multiply/gemm_add_multiply.cpp b/client_example/15_gemm_add_multiply/gemm_add_multiply.cpp new file mode 100644 index 0000000000000000000000000000000000000000..c74d7c6bd8cf9cec54168792a8718768827d7b33 --- /dev/null +++ b/client_example/15_gemm_add_multiply/gemm_add_multiply.cpp @@ -0,0 +1,241 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include +#include +#include + +#include "ck/ck.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" +#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp" +#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" + +#include "ck/library/tensor_operation_instance/gpu/gemm_add_multiply.hpp" + +using F16 = ck::half_t; +using F32 = float; + +using Row = ck::tensor_layout::gemm::RowMajor; +using Col = ck::tensor_layout::gemm::ColumnMajor; + +using PassThrough = ck::tensor_operation::element_wise::PassThrough; +using AddMultiply = ck::tensor_operation::element_wise::AddMultiply; + +using AElementOp = PassThrough; +using BElementOp = PassThrough; +using CDEElementOp = AddMultiply; + +using ADataType = F16; +using BDataType = F16; +using D0DataType = F16; +using D1DataType = F16; +using EDataType = F16; + +using ALayout = Row; +using BLayout = Col; +using D0Layout = Row; +using D1Layout = Row; +using ELayout = Row; + +struct SimpleDeviceMem +{ + SimpleDeviceMem() = delete; + + SimpleDeviceMem(std::size_t mem_size) : p_mem_{} + { + (void)hipMalloc(static_cast(&p_mem_), mem_size); + } + + void* GetDeviceBuffer() { return p_mem_; } + + ~SimpleDeviceMem() { (void)hipFree(p_mem_); } + + void* p_mem_; +}; + +int main(int argc, char* argv[]) +{ + // GEMM shape + ck::index_t M = 3840; + ck::index_t N = 4096; + ck::index_t K = 4096; + + ck::index_t StrideA = 4096; + ck::index_t StrideB = 4096; + ck::index_t StrideD0 = 0; + ck::index_t StrideD1 = 4096; + ck::index_t StrideE = 4096; + + if(argc == 1) + { + // use default case + } + else if(argc == 9) + { + M = std::stoi(argv[1]); + N = std::stoi(argv[2]); + K = std::stoi(argv[3]); + + StrideA = std::stoi(argv[4]); + StrideB = std::stoi(argv[5]); + StrideD0 = std::stoi(argv[6]); + StrideD1 = std::stoi(argv[7]); + StrideE = std::stoi(argv[8]); + } + else + { + printf("arg1 to 8: M, N, K, StrideA, StrideB, StrideD0, StrideD1, StrideE\n"); + exit(0); + } + + auto f_matrix_space_size = + [](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) { + using Layout = decltype(layout); + + if constexpr(std::is_same::value) + { + return (nRow - 1) * stride + nCol; + } + else + { + return (nCol - 1) * stride + nRow; + } + }; + + SimpleDeviceMem a_device_buf(sizeof(ADataType) * f_matrix_space_size(M, K, StrideA, ALayout{})); + SimpleDeviceMem b_device_buf(sizeof(BDataType) * f_matrix_space_size(K, N, StrideB, BLayout{})); + SimpleDeviceMem d0_m_n_device_buf(sizeof(D0DataType) * + f_matrix_space_size(M, N, StrideD0, D0Layout{})); + SimpleDeviceMem d1_m_n_device_buf(sizeof(D1DataType) * + f_matrix_space_size(M, N, StrideD1, D1Layout{})); + SimpleDeviceMem e_device_buf(sizeof(EDataType) * f_matrix_space_size(M, N, StrideE, ELayout{})); + + using DeviceOp = + ck::tensor_operation::device::DeviceGemmMultipleD, + ELayout, + ADataType, + BDataType, + ck::Tuple, + EDataType, + AElementOp, + BElementOp, + CDEElementOp>; + + // get device op instances + const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + DeviceOp>::GetInstances(); + + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; + + const auto a_element_op = AElementOp{}; + const auto b_element_op = BElementOp{}; + const auto cde_element_op = CDEElementOp{}; + + std::string best_op_name; + bool found = false; + int best_op_id = -1; + float best_ave_time = 0; + float best_tflops = 0; + float best_gb_per_sec = 0; + + // profile device operation instances + std::cout << "Run all instances and do timing" << std::endl; + + for(int i = 0; i < op_ptrs.size(); ++i) + { + auto& op_ptr = op_ptrs[i]; + + auto argument_ptr = op_ptr->MakeArgumentPointer( + a_device_buf.GetDeviceBuffer(), + b_device_buf.GetDeviceBuffer(), + std::array{d0_m_n_device_buf.GetDeviceBuffer(), + d1_m_n_device_buf.GetDeviceBuffer()}, + e_device_buf.GetDeviceBuffer(), + M, + N, + K, + StrideA, + StrideB, + std::array{StrideD0, StrideD1}, + StrideE, + a_element_op, + b_element_op, + cde_element_op); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + std::string op_name = op_ptr->GetTypeString(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); + + std::size_t flop = std::size_t(2) * M * N * K; + + std::size_t num_btype = + sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(EDataType) * M * N; + + float tflops = static_cast(flop) / 1.E9 / ave_time; + + float gb_per_sec = num_btype / 1.E6 / ave_time; + + std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, " + << gb_per_sec << " GB/s, " << op_name << std::endl; + + if(tflops > best_tflops) + { + found = true; + best_op_id = i; + best_op_name = op_name; + best_tflops = tflops; + best_ave_time = ave_time; + best_gb_per_sec = gb_per_sec; + } + } + else + { + std::cout << op_name << " does not support this problem" << std::endl; + } + } + + std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, " + << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; + + // run the best intance + { + auto& op_ptr = op_ptrs[best_op_id]; + + std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() + << std::endl; + + auto argument_ptr = op_ptr->MakeArgumentPointer( + a_device_buf.GetDeviceBuffer(), + b_device_buf.GetDeviceBuffer(), + std::array{d0_m_n_device_buf.GetDeviceBuffer(), + d1_m_n_device_buf.GetDeviceBuffer()}, + e_device_buf.GetDeviceBuffer(), + M, + N, + K, + StrideA, + StrideB, + std::array{StrideD0, StrideD1}, + StrideE, + a_element_op, + b_element_op, + cde_element_op); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); + } + + std::cout << "Done" << std::endl; + } + + return 0; +} diff --git a/client_example/15_reduce/CMakeLists.txt b/client_example/15_reduce/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..d52675ba834e666d0a480d5c778baeacb223a24a --- /dev/null +++ b/client_example/15_reduce/CMakeLists.txt @@ -0,0 +1,2 @@ +add_executable(client_reduce_nhwc_c reduce_nhwc_c.cpp) +target_link_libraries(client_reduce_nhwc_c PRIVATE composable_kernel::device_operations) diff --git a/client_example/15_reduce/reduce_nhwc_c.cpp b/client_example/15_reduce/reduce_nhwc_c.cpp new file mode 100644 index 0000000000000000000000000000000000000000..b45b72f0de0199daa88e9e42be320e2669398dfe --- /dev/null +++ b/client_example/15_reduce/reduce_nhwc_c.cpp @@ -0,0 +1,175 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include +#include +#include +#include +#include + +#include "ck/ck.hpp" +#include "ck/tensor_operation/gpu/device/device_reduce.hpp" +#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" + +#include "ck/library/tensor_operation_instance/gpu/reduce/reduce.hpp" + +using InDataType = float; +using OutDataType = float; +using AccDataType = float; +using ReduceAdd = ck::reduce::Add; +using PassThrough = ck::tensor_operation::element_wise::PassThrough; +using UnaryDivide = ck::tensor_operation::element_wise::UnaryDivide; + +constexpr bool PropagateNan = false; +constexpr bool OutputIndex = false; + +constexpr int Rank = 4; +constexpr int NumReduceDim = 3; + +struct SimpleDeviceMem +{ + SimpleDeviceMem() = delete; + + SimpleDeviceMem(std::size_t mem_size) : p_mem_{} + { + (void)hipMalloc(static_cast(&p_mem_), mem_size); + } + + void* GetDeviceBuffer() { return p_mem_; } + + ~SimpleDeviceMem() { (void)hipFree(p_mem_); } + + void* p_mem_; +}; + +int main(int argc, char* argv[]) +{ + std::array in_lengths{16, 8, 128, 256}; + std::array in_strides{8 * 128 * 256, 128 * 256, 256, 1}; + std::array out_lengths{256}; + std::array out_strides{1}; + std::array reduce_dims{0, 1, 2}; + + ck::index_t num_in_elements = + std::accumulate(in_lengths.begin(), in_lengths.end(), 1, std::multiplies()); + + ck::index_t num_out_elements = + std::accumulate(out_lengths.begin(), out_lengths.end(), 1, std::multiplies()); + + ck::index_t reduce_length = 1; + + for(auto dim : reduce_dims) + reduce_length *= in_lengths[dim]; + + double alpha{1.0}; + double beta{0.0}; + + SimpleDeviceMem in(sizeof(InDataType) * num_in_elements); + SimpleDeviceMem out(sizeof(OutDataType) * num_out_elements); + + using DeviceOp = ck::tensor_operation::device::DeviceReduce; + const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + DeviceOp>::GetInstances(); + + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; + + std::string best_op_name; + bool found = false; + int best_op_id = -1; + float best_ave_time = std::numeric_limits::max(); + float best_gb_per_sec = 0; + + // profile device operation instances + std::cout << "Run all instances and do timing" << std::endl; + + for(int i = 0; i < op_ptrs.size(); ++i) + { + auto& op_ptr = op_ptrs[i]; + + auto argument_ptr = op_ptr->MakeArgumentPointer(in_lengths, + in_strides, + out_lengths, + out_strides, + reduce_dims, + alpha, + beta, + in.GetDeviceBuffer(), + nullptr, + out.GetDeviceBuffer(), + nullptr, + PassThrough{}, + UnaryDivide{reduce_length}); + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + std::string op_name = op_ptr->GetTypeString(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); + + std::size_t num_bytes = num_in_elements * sizeof(InDataType) + + (beta == 0.0f ? 1 : 2) * num_out_elements * sizeof(OutDataType); + + float gb_per_sec = num_bytes / 1.E6 / ave_time; + + std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, " + << op_name << std::endl; + + if(ave_time < best_ave_time) + { + found = true; + best_op_id = i; + best_op_name = op_name; + best_ave_time = ave_time; + best_gb_per_sec = gb_per_sec; + } + } + else + { + std::cout << op_name << " does not support this problem" << std::endl; + } + } + + std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, " + << best_op_name << std::endl; + + // run the best intance + if(found) + { + auto& op_ptr = op_ptrs[best_op_id]; + std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() + << std::endl; + auto argument_ptr = op_ptr->MakeArgumentPointer(in_lengths, + in_strides, + out_lengths, + out_strides, + reduce_dims, + alpha, + beta, + in.GetDeviceBuffer(), + nullptr, + out.GetDeviceBuffer(), + nullptr, + PassThrough{}, + UnaryDivide{reduce_length}); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); + } + + std::cout << "Done" << std::endl; + } + + return 0; +} diff --git a/client_example/16_convnd_fwd/CMakeLists.txt b/client_example/16_convnd_fwd/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..e2580a370ca480e0b9ec101e5715ac9a631a72f6 --- /dev/null +++ b/client_example/16_convnd_fwd/CMakeLists.txt @@ -0,0 +1,5 @@ +add_executable(client_conv3d_fwd_fp16 conv3d_fwd_fp16.cpp) +add_executable(client_conv3d_fwd_fp32 conv3d_fwd_fp32.cpp) + +target_link_libraries(client_conv3d_fwd_fp16 PRIVATE composable_kernel::device_operations) +target_link_libraries(client_conv3d_fwd_fp32 PRIVATE composable_kernel::device_operations) diff --git a/client_example/16_convnd_fwd/common.hpp b/client_example/16_convnd_fwd/common.hpp new file mode 100644 index 0000000000000000000000000000000000000000..449c9466e829baa8658f17fe8e9ae86c5a297238 --- /dev/null +++ b/client_example/16_convnd_fwd/common.hpp @@ -0,0 +1,300 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include +#include +#include +#include +#include +#include +#include + +#include "ck/ck.hpp" +#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp" +#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp" +#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" + +using PassThrough = ck::tensor_operation::element_wise::PassThrough; + +struct SimpleDeviceMem +{ + SimpleDeviceMem() = delete; + + SimpleDeviceMem(std::size_t mem_size) : p_mem_{} + { + (void)hipMalloc(static_cast(&p_mem_), mem_size); + } + + void* GetDeviceBuffer() { return p_mem_; } + + ~SimpleDeviceMem() { (void)hipFree(p_mem_); } + + void* p_mem_; +}; + +template +std::size_t +GetFlops(const std::array& output_lengths, + const std::array& weights_lengths) +{ + // 2 * G * N * K * C * * + ck::index_t G = weights_lengths[0]; + ck::index_t N = output_lengths[1]; + ck::index_t K = weights_lengths[1]; + ck::index_t C = weights_lengths[2]; + + return static_cast(2) * G * N * K * C * + std::accumulate(std::next(std::begin(output_lengths), NumNonSpatialDim), + std::end(output_lengths), + static_cast(1), + std::multiplies<>()) * + std::accumulate(std::next(std::begin(weights_lengths), NumNonSpatialDim), + std::end(weights_lengths), + static_cast(1), + std::multiplies<>()); +} + +template +std::size_t +GetInputByte(const std::array& input_lengths) +{ + // sizeof(InDataType) * (G * N * C * ) + + return sizeof(InDataType) * std::accumulate(std::begin(input_lengths), + std::end(input_lengths), + static_cast(1), + std::multiplies<>()); +} + +template +std::size_t +GetWeightByte(const std::array& weights_lengths) +{ + // sizeof(WeiDataType) * (G * K * C * ) + + return sizeof(WeiDataType) * std::accumulate(std::begin(weights_lengths), + std::end(weights_lengths), + static_cast(1), + std::multiplies<>()); +} + +template +std::size_t +GetOutputByte(const std::array& output_lengths) +{ + // sizeof(OutDataType) * (G * N * K * ); + return sizeof(OutDataType) * std::accumulate(std::begin(output_lengths), + std::end(output_lengths), + static_cast(1), + std::multiplies()); +} + +template +bool run_grouped_conv_fwd(std::array in_lengths, + std::array wei_lengths, + std::array out_lengths) +{ + std::size_t in_mem_size = GetInputByte(in_lengths); + std::size_t wei_mem_size = GetWeightByte(wei_lengths); + std::size_t out_mem_size = GetOutputByte(out_lengths); + + SimpleDeviceMem in(in_mem_size); + SimpleDeviceMem wei(wei_mem_size); + SimpleDeviceMem out(out_mem_size); + + std::array in_strides; + std::array wei_strides; + std::array out_strides; + in_strides.fill(0); + wei_strides.fill(0); + out_strides.fill(0); + in_strides.back() = 1; + wei_strides.back() = 1; + out_strides.back() = 1; + + std::partial_sum(rbegin(in_lengths), + std::prev(rend(in_lengths)), + std::next(rbegin(in_strides)), + std::multiplies<>{}); + std::partial_sum(rbegin(wei_lengths), + std::prev(rend(wei_lengths)), + std::next(rbegin(wei_strides)), + std::multiplies<>{}); + std::partial_sum(rbegin(out_lengths), + std::prev(rend(out_lengths)), + std::next(rbegin(out_strides)), + std::multiplies<>{}); + + // transpose NDHWGC/KZYXGC/NDHWGK to GNDHWC/GKZYXC/GNDHWK to GNCDHW/GKCZYX/GNKDHW + std::rotate(std::next(rbegin(in_lengths)), std::next(rbegin(in_lengths), 2), rend(in_lengths)); + std::rotate(rbegin(in_lengths), + std::next(rbegin(in_lengths)), + std::next(rbegin(in_lengths), NumDimSpatial + 1)); + + std::rotate(std::next(rbegin(in_strides)), std::next(rbegin(in_strides), 2), rend(in_strides)); + std::rotate(rbegin(in_strides), + std::next(rbegin(in_strides)), + std::next(rbegin(in_strides), NumDimSpatial + 1)); + + std::rotate(rbegin(wei_lengths), + std::next(rbegin(wei_lengths)), + std::next(rbegin(wei_lengths), NumDimSpatial + 1)); + + std::rotate(rbegin(wei_strides), + std::next(rbegin(wei_strides)), + std::next(rbegin(wei_strides), NumDimSpatial + 1)); + + std::rotate( + std::next(rbegin(out_lengths)), std::next(rbegin(out_lengths), 2), rend(out_lengths)); + std::rotate(rbegin(out_lengths), + std::next(rbegin(out_lengths)), + std::next(rbegin(out_lengths), NumDimSpatial + 1)); + + std::rotate( + std::next(rbegin(out_strides)), std::next(rbegin(out_strides), 2), rend(out_strides)); + std::rotate(rbegin(out_strides), + std::next(rbegin(out_strides)), + std::next(rbegin(out_strides), NumDimSpatial + 1)); + + std::array conv_filter_strides; + std::array conv_filter_dilations; + std::array input_left_pads; + std::array input_right_pads; + conv_filter_strides.fill(1); + conv_filter_dilations.fill(1); + input_left_pads.fill(1); + input_right_pads.fill(1); + + std::size_t flop = GetFlops(out_lengths, wei_lengths); + std::size_t num_bytes = in_mem_size + wei_mem_size + out_mem_size; + + using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD, + OutLayout, + InDataType, + WeiDataType, + ck::Tuple<>, + OutDataType, + PassThrough, + PassThrough, + PassThrough>; + // get device op instances + const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + DeviceOp>::GetInstances(); + + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; + + std::string best_op_name; + int best_op_id = -1; + float best_avg_time = std::numeric_limits::max(); + float best_gb_per_sec = 0; + float best_tflops = 0; + + // profile device operation instances + std::cout << "Run all instances and do timing" << std::endl; + + for(int i = 0; i < op_ptrs.size(); ++i) + { + auto& op_ptr = op_ptrs[i]; + auto argument_ptr = op_ptr->MakeArgumentPointer( + in.GetDeviceBuffer(), + wei.GetDeviceBuffer(), + std::array{}, + out.GetDeviceBuffer(), + in_lengths, + in_strides, + wei_lengths, + wei_strides, + std::array, 0>{{}}, + std::array, 0>{{}}, + out_lengths, + out_strides, + conv_filter_strides, + conv_filter_dilations, + input_left_pads, + input_right_pads, + PassThrough{}, + PassThrough{}, + PassThrough{}); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + std::string op_name = op_ptr->GetTypeString(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); + + float tflops = static_cast(flop) / 1.E9 / avg_time; + float gb_per_sec = num_bytes / 1.E6 / avg_time; + + std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, " + << gb_per_sec << " GB/s, " << op_name << std::endl; + + if(tflops > best_tflops) + { + best_op_id = i; + best_op_name = op_name; + best_avg_time = avg_time; + best_gb_per_sec = gb_per_sec; + best_tflops = tflops; + } + } + else + { + std::cerr << op_name << " does not support this problem" << std::endl; + } + } + + if(best_op_id < 0) + { + std::cerr << "no suitable instance" << std::endl; + return false; + } + + std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops + << " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; + + // run the best intance + { + auto& op_ptr = op_ptrs[best_op_id]; + std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() + << std::endl; + auto argument_ptr = op_ptr->MakeArgumentPointer( + in.GetDeviceBuffer(), + wei.GetDeviceBuffer(), + std::array{}, + out.GetDeviceBuffer(), + in_lengths, + in_strides, + wei_lengths, + wei_strides, + std::array, 0>{{}}, + std::array, 0>{{}}, + out_lengths, + out_strides, + conv_filter_strides, + conv_filter_dilations, + input_left_pads, + input_right_pads, + PassThrough{}, + PassThrough{}, + PassThrough{}); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); + } + + std::cout << "Done" << std::endl; + } + return true; +} diff --git a/client_example/16_convnd_fwd/conv3d_fwd_fp16.cpp b/client_example/16_convnd_fwd/conv3d_fwd_fp16.cpp new file mode 100644 index 0000000000000000000000000000000000000000..d4455df628afcb6ec721b5f884b79e4572a5037c --- /dev/null +++ b/client_example/16_convnd_fwd/conv3d_fwd_fp16.cpp @@ -0,0 +1,44 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include "common.hpp" + +#include "ck/ck.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" + +using InDataType = ck::half_t; +using WeiDataType = ck::half_t; +using OutDataType = ck::half_t; + +using InLayout = ck::tensor_layout::convolution::NDHWGC; +using WeiLayout = ck::tensor_layout::convolution::GKZYXC; +using OutLayout = ck::tensor_layout::convolution::NDHWGK; + +static constexpr ck::index_t NumDimSpatial = 3; +static constexpr ck::index_t G = 1; +static constexpr ck::index_t N = 64; +static constexpr ck::index_t K = 128; +static constexpr ck::index_t C = 64; +static constexpr ck::index_t Z = 3; +static constexpr ck::index_t Y = 3; +static constexpr ck::index_t X = 3; +static constexpr ck::index_t Di = 28; +static constexpr ck::index_t Hi = 28; +static constexpr ck::index_t Wi = 3; +static constexpr ck::index_t Do = 28; +static constexpr ck::index_t Ho = 28; +static constexpr ck::index_t Wo = 3; + +int main() +{ + return run_grouped_conv_fwd( + {N, Di, Hi, Wi, G, C}, {G, K, Z, Y, X, C}, {N, Do, Ho, Wo, G, K}) + ? EXIT_SUCCESS + : EXIT_FAILURE; +} diff --git a/client_example/16_convnd_fwd/conv3d_fwd_fp32.cpp b/client_example/16_convnd_fwd/conv3d_fwd_fp32.cpp new file mode 100644 index 0000000000000000000000000000000000000000..7e8c98b6037418001571707a82aa14987059fb4f --- /dev/null +++ b/client_example/16_convnd_fwd/conv3d_fwd_fp32.cpp @@ -0,0 +1,44 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include "common.hpp" + +#include "ck/ck.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" + +using InDataType = float; +using WeiDataType = float; +using OutDataType = float; + +using InLayout = ck::tensor_layout::convolution::NDHWGC; +using WeiLayout = ck::tensor_layout::convolution::GKZYXC; +using OutLayout = ck::tensor_layout::convolution::NDHWGK; + +static constexpr ck::index_t NumDimSpatial = 3; +static constexpr ck::index_t G = 1; +static constexpr ck::index_t N = 64; +static constexpr ck::index_t K = 128; +static constexpr ck::index_t C = 64; +static constexpr ck::index_t Z = 3; +static constexpr ck::index_t Y = 3; +static constexpr ck::index_t X = 3; +static constexpr ck::index_t Di = 28; +static constexpr ck::index_t Hi = 28; +static constexpr ck::index_t Wi = 3; +static constexpr ck::index_t Do = 28; +static constexpr ck::index_t Ho = 28; +static constexpr ck::index_t Wo = 3; + +int main() +{ + return run_grouped_conv_fwd( + {N, Di, Hi, Wi, G, C}, {G, K, Z, Y, X, C}, {N, Do, Ho, Wo, G, K}) + ? EXIT_SUCCESS + : EXIT_FAILURE; +} diff --git a/client_example/17_grouped_gemm_fastgelu/CMakeLists.txt b/client_example/17_grouped_gemm_fastgelu/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..659e6769d8e69f227ea1ef5920c3951bba706f0d --- /dev/null +++ b/client_example/17_grouped_gemm_fastgelu/CMakeLists.txt @@ -0,0 +1,2 @@ +add_executable(client_grouped_gemm_fastgelu grouped_gemm_fastgelu.cpp) +target_link_libraries(client_grouped_gemm_fastgelu PRIVATE composable_kernel::device_operations) \ No newline at end of file diff --git a/client_example/17_grouped_gemm_fastgelu/grouped_gemm_fastgelu.cpp b/client_example/17_grouped_gemm_fastgelu/grouped_gemm_fastgelu.cpp new file mode 100644 index 0000000000000000000000000000000000000000..7ba3224fc3244ab3bd472b98864efa42ae132fde --- /dev/null +++ b/client_example/17_grouped_gemm_fastgelu/grouped_gemm_fastgelu.cpp @@ -0,0 +1,232 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include +#include +#include +#include + +#include "ck/ck.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" +#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp" +#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" + +#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_fastgelu.hpp" + +using F16 = ck::half_t; +using F32 = float; + +using Row = ck::tensor_layout::gemm::RowMajor; +using Col = ck::tensor_layout::gemm::ColumnMajor; + +using PassThrough = ck::tensor_operation::element_wise::PassThrough; +using FastGelu = ck::tensor_operation::element_wise::FastGelu; + +using ADataType = F16; +using BDataType = F16; +using DsDataType = ck::Tuple<>; +using EDataType = F16; + +using ALayout = Row; +using BLayout = Col; +using DsLayout = ck::Tuple<>; +using ELayout = Row; + +using AElementOp = PassThrough; +using BElementOp = PassThrough; +using CDEElementOp = FastGelu; + +struct SimpleDeviceMem +{ + SimpleDeviceMem() = delete; + + SimpleDeviceMem(std::size_t mem_size) : p_mem_{} + { + (void)hipMalloc(static_cast(&p_mem_), mem_size); + } + + void* GetDeviceBuffer() { return p_mem_; } + + ~SimpleDeviceMem() { (void)hipFree(p_mem_); } + + void* p_mem_; +}; + +int main() +{ + std::mt19937 gen(19391); + std::uniform_int_distribution<> distrib(1, 10); + int group_count = distrib(gen); + + std::vector Ms, Ns, Ks, StrideAs, StrideBs, StrideEs; + + for(int i = 0; i < group_count; ++i) + { + Ms.push_back(256 + 256 * distrib(gen)); + Ns.push_back(256 + 256 * distrib(gen)); + Ks.push_back(128 + 128 * distrib(gen)); + + StrideAs.push_back(std::is_same::value ? Ks[i] : Ms[i]); + StrideBs.push_back(std::is_same::value ? Ns[i] : Ks[i]); + StrideEs.push_back(std::is_same::value ? Ns[i] : Ms[i]); + } + + auto f_matrix_space_size = + [](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) { + using Layout = decltype(layout); + + if constexpr(std::is_same::value) + { + return (nRow - 1) * stride + nCol; + } + else + { + return (nCol - 1) * stride + nRow; + } + }; + + std::vector a_dev_bufs, b_dev_bufs, e_dev_bufs; + + a_dev_bufs.reserve(group_count); + b_dev_bufs.reserve(group_count); + e_dev_bufs.reserve(group_count); + + std::vector p_a, p_b; + std::vector p_e; + + p_a.reserve(group_count); + p_b.reserve(group_count); + p_e.reserve(group_count); + + std::vector gemm_descs; + + gemm_descs.reserve(group_count); + + for(int i = 0; i < group_count; ++i) + { + a_dev_bufs.emplace_back(sizeof(ADataType) * + f_matrix_space_size(Ms[i], Ks[i], StrideAs[i], ALayout{})); + b_dev_bufs.emplace_back(sizeof(BDataType) * + f_matrix_space_size(Ks[i], Ns[i], StrideBs[i], BLayout{})); + e_dev_bufs.emplace_back(sizeof(EDataType) * + f_matrix_space_size(Ms[i], Ns[i], StrideEs[i], ELayout{})); + + gemm_descs.push_back({Ms[i], Ns[i], Ks[i], StrideAs[i], StrideBs[i], StrideEs[i], {}}); + + p_a.push_back(a_dev_bufs[i].GetDeviceBuffer()); + p_b.push_back(b_dev_bufs[i].GetDeviceBuffer()); + p_e.push_back(e_dev_bufs[i].GetDeviceBuffer()); + } + + using DeviceOp = ck::tensor_operation::device::DeviceGroupedGemm; + + // get device op instances + const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + DeviceOp>::GetInstances(); + + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; + + const auto a_element_op = AElementOp{}; + const auto b_element_op = BElementOp{}; + const auto cde_element_op = CDEElementOp{}; + + std::string best_op_name; + bool found = false; + int best_op_id = -1; + float best_ave_time = 0; + float best_tflops = 0; + float best_gb_per_sec = 0; + + auto p_ds = std::vector>{}; + + // profile device operation instances + std::cout << "Run all instances and do timing" << std::endl; + + for(int i = 0; i < op_ptrs.size(); ++i) + { + auto& op_ptr = op_ptrs[i]; + + auto argument_ptr = op_ptr->MakeArgumentPointer( + p_a, p_b, p_ds, p_e, gemm_descs, a_element_op, b_element_op, cde_element_op); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + SimpleDeviceMem gemm_desc_workspace(op_ptr->GetWorkSpaceSize(argument_ptr.get())); + op_ptr->SetWorkSpacePointer(argument_ptr.get(), gemm_desc_workspace.GetDeviceBuffer()); + std::string op_name = op_ptr->GetTypeString(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + + float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); + + std::size_t flop = 0, num_btype = 0; + for(std::size_t j = 0; j < gemm_descs.size(); ++j) + { + flop += std::size_t(2) * Ms[j] * Ns[j] * Ks[j]; + + num_btype += sizeof(ADataType) * Ms[j] * Ks[j] + sizeof(BDataType) * Ks[j] * Ns[j] + + sizeof(EDataType) * Ms[j] * Ns[j]; + } + + float tflops = static_cast(flop) / 1.E9 / ave_time; + float gb_per_sec = num_btype / 1.E6 / ave_time; + + std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, " + << gb_per_sec << " GB/s, " << op_name << std::endl; + + if(tflops > best_tflops) + { + found = true; + best_op_id = i; + best_op_name = op_name; + best_tflops = tflops; + best_ave_time = ave_time; + best_gb_per_sec = gb_per_sec; + } + } + else + { + std::cout << op_name << " does not support this problem" << std::endl; + } + } + + std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, " + << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; + + // run the best intance + if(found) + { + auto& op_ptr = op_ptrs[best_op_id]; + + std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() + << std::endl; + + auto argument_ptr = op_ptr->MakeArgumentPointer( + p_a, p_b, p_ds, p_e, gemm_descs, a_element_op, b_element_op, cde_element_op); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + SimpleDeviceMem gemm_desc_workspace(op_ptr->GetWorkSpaceSize(argument_ptr.get())); + op_ptr->SetWorkSpacePointer(argument_ptr.get(), gemm_desc_workspace.GetDeviceBuffer()); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); + } + + std::cout << "Done" << std::endl; + } + + return 0; +} diff --git a/client_example/18_groupnorm/CMakeLists.txt b/client_example/18_groupnorm/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..17c88cb61bc5daaa3ac0c6a92459c147691be2fe --- /dev/null +++ b/client_example/18_groupnorm/CMakeLists.txt @@ -0,0 +1,2 @@ +add_executable(client_groupnorm_swish groupnorm_swish.cpp) +target_link_libraries(client_groupnorm_swish PRIVATE composable_kernel::device_operations) diff --git a/client_example/18_groupnorm/groupnorm_swish.cpp b/client_example/18_groupnorm/groupnorm_swish.cpp new file mode 100644 index 0000000000000000000000000000000000000000..e1d198d2282b85f21fb4c04afde443133c801b15 --- /dev/null +++ b/client_example/18_groupnorm/groupnorm_swish.cpp @@ -0,0 +1,194 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include +#include +#include + +#include "ck/ck.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" +#include "ck/tensor_operation/gpu/device/device_normalization.hpp" +#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" + +#include "ck/library/tensor_operation_instance/gpu/normalization_swish.hpp" + +using XDataType = ck::half_t; +using GammaDataType = float; +using BetaDataType = float; +using YDataType = ck::half_t; +using ComputeDataType = float; +using Swish = ck::tensor_operation::element_wise::Swish; + +constexpr int Rank = 5; +constexpr int NumReduceDim = 3; + +struct SimpleDeviceMem +{ + SimpleDeviceMem() = delete; + + SimpleDeviceMem(std::size_t mem_size) : p_mem_{} + { + (void)hipMalloc(static_cast(&p_mem_), mem_size); + } + + void* GetDeviceBuffer() { return p_mem_; } + + ~SimpleDeviceMem() { (void)hipFree(p_mem_); } + + void* p_mem_; +}; + +int main(int argc, char* argv[]) +{ + ck::index_t N = 32; + ck::index_t H = 16; + ck::index_t W = 16; + ck::index_t G = 64; + ck::index_t C = 128; + + std::size_t xy_size = N * H * W * G * C; + std::size_t gamma_beta_size = G * C; + + std::vector xy_strides = {H * W * G * C, W * G * C, G * C, C, 1}; + std::vector gamma_beta_strides = {0, 0, 0, C, 1}; + + SimpleDeviceMem x_device_buf(sizeof(XDataType) * xy_size); + SimpleDeviceMem gamma_device_buf(sizeof(GammaDataType) * gamma_beta_size); + SimpleDeviceMem beta_device_buf(sizeof(BetaDataType) * gamma_beta_size); + SimpleDeviceMem y_device_buf(sizeof(YDataType) * xy_size); + + using DeviceOp = ck::tensor_operation::device::DeviceNormalization; + + // get device op instances + const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + DeviceOp>::GetInstances(); + + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; + + const auto& generic_op_ptr = op_ptrs[0]; + + auto generic_argument_ptr = + generic_op_ptr->MakeArgumentPointer({N, H, W, G, C}, // lengths + xy_strides, // xStrides + gamma_beta_strides, // gammaStrides + gamma_beta_strides, // betaStrides + xy_strides, // yStrides + {1, 2, 4}, // reduceDims + 1e-6, + x_device_buf.GetDeviceBuffer(), + gamma_device_buf.GetDeviceBuffer(), + beta_device_buf.GetDeviceBuffer(), + y_device_buf.GetDeviceBuffer(), + nullptr, + nullptr, + Swish{}); + + if(!generic_op_ptr->IsSupportedArgument(generic_argument_ptr.get())) + { + throw std::runtime_error( + "The generic kernel instance should be able to support any input shapes"); + }; + + std::string best_op_name; + bool found = false; + int best_op_id = -1; + float best_ave_time = std::numeric_limits::max(); + float best_gb_per_sec = 0; + + // profile device operation instances + std::cout << "Run all instances and do timing" << std::endl; + + for(int i = 0; i < op_ptrs.size(); ++i) + { + auto& op_ptr = op_ptrs[i]; + auto argument_ptr = op_ptr->MakeArgumentPointer({N, H, W, G, C}, // lengths + xy_strides, // xStrides + gamma_beta_strides, // gammaStrides + gamma_beta_strides, // betaStrides + xy_strides, // yStrides + {1, 2, 4}, // reduceDims + 1e-6, + x_device_buf.GetDeviceBuffer(), + gamma_device_buf.GetDeviceBuffer(), + beta_device_buf.GetDeviceBuffer(), + y_device_buf.GetDeviceBuffer(), + nullptr, + nullptr, + Swish{}); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + std::string op_name = op_ptr->GetTypeString(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); + + std::size_t num_byte = + sizeof(XDataType) * xy_size + sizeof(GammaDataType) * gamma_beta_size + + sizeof(BetaDataType) * gamma_beta_size + sizeof(YDataType) * xy_size; + + float gb_per_sec = num_byte / 1.E6 / ave_time; + + std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, " + << op_name << std::endl; + + if(ave_time < best_ave_time) + { + found = true; + best_op_id = i; + best_op_name = op_name; + best_ave_time = ave_time; + best_gb_per_sec = gb_per_sec; + } + } + else + { + std::cout << op_name << " does not support this problem" << std::endl; + } + } + + // run the best intance + if(found) + { + std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, " + << best_op_name << std::endl; + + auto& op_ptr = op_ptrs[best_op_id]; + std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() + << std::endl; + + auto argument_ptr = op_ptr->MakeArgumentPointer({N, H, W, G, C}, // lengths + xy_strides, // xStrides + gamma_beta_strides, // gammaStrides + gamma_beta_strides, // betaStrides + xy_strides, // yStrides + {1, 2, 4}, // reduceDims + 1e-6, + x_device_buf.GetDeviceBuffer(), + gamma_device_buf.GetDeviceBuffer(), + beta_device_buf.GetDeviceBuffer(), + y_device_buf.GetDeviceBuffer(), + nullptr, + nullptr, + Swish{}); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); + } + + std::cout << "Done" << std::endl; + } + + return 0; +} diff --git a/client_example/19_pool_fwd/CMakeLists.txt b/client_example/19_pool_fwd/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..13f9f73c83d55c801fdf4609e13f6b0813cb0c67 --- /dev/null +++ b/client_example/19_pool_fwd/CMakeLists.txt @@ -0,0 +1,5 @@ +add_executable(client_max_pool2d_fwd max_pool2d_fwd.cpp) +target_link_libraries(client_max_pool2d_fwd PRIVATE composable_kernel::device_operations) + +add_executable(client_avg_pool3d_fwd avg_pool3d_fwd.cpp) +target_link_libraries(client_avg_pool3d_fwd PRIVATE composable_kernel::device_operations) \ No newline at end of file diff --git a/client_example/19_pool_fwd/avg_pool3d_fwd.cpp b/client_example/19_pool_fwd/avg_pool3d_fwd.cpp new file mode 100644 index 0000000000000000000000000000000000000000..2edaf474b5644a0a91fb51e675e1c37286841967 --- /dev/null +++ b/client_example/19_pool_fwd/avg_pool3d_fwd.cpp @@ -0,0 +1,199 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include +#include +#include + +#include "ck/ck.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" +#include "ck/tensor_operation/gpu/device/device_pool_fwd.hpp" +#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" + +#include "ck/library/tensor_operation_instance/gpu/pool3d_fwd.hpp" + +using InDataType = ck::half_t; +using OutDataType = ck::half_t; +using IndexDataType = int32_t; + +constexpr ck::index_t InOutRank = 5; +constexpr ck::index_t WindowRank = 3; +#if 0 +constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX; +constexpr bool OutputIndex = false; +#else +constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG; +constexpr bool OutputIndex = false; +#endif + +struct SimpleDeviceMem +{ + SimpleDeviceMem() = delete; + + SimpleDeviceMem(std::size_t mem_size) : p_mem_{} + { + (void)hipMalloc(static_cast(&p_mem_), mem_size); + } + + void* GetDeviceBuffer() { return p_mem_; } + + ~SimpleDeviceMem() { (void)hipFree(p_mem_); } + + void* p_mem_; +}; + +int main(int argc, char* argv[]) +{ + ck::index_t N = 2; + ck::index_t C = 32; + ck::index_t Z = 2; + ck::index_t Y = 2; + ck::index_t X = 2; + ck::index_t Di = 30; + ck::index_t Hi = 30; + ck::index_t Wi = 30; + ck::index_t window_stride_d = 2; + ck::index_t window_stride_h = 2; + ck::index_t window_stride_w = 2; + ck::index_t in_left_pad_d = 1; + ck::index_t in_left_pad_h = 1; + ck::index_t in_left_pad_w = 1; + ck::index_t in_right_pad_d = 1; + ck::index_t in_right_pad_h = 1; + ck::index_t in_right_pad_w = 1; + + ck::index_t Do = (Di + in_left_pad_d + in_right_pad_d - Z) / window_stride_d + 1; + ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Y) / window_stride_h + 1; + ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - X) / window_stride_w + 1; + + // Pool API only support the order of NCDHW + std::vector in_length = {N, C, Di, Hi, Wi}; + std::vector out_length = {N, C, Do, Ho, Wo}; + std::vector window_spatial_lengths = {Z, Y, X}; + std::vector window_strides = {window_stride_d, window_stride_h, window_stride_w}; + std::vector input_left_pads = {in_left_pad_d, in_left_pad_h, in_left_pad_w}; + std::vector input_right_pads = {in_right_pad_d, in_right_pad_h, in_right_pad_w}; + + std::size_t in_tensor_size = N * C * Di * Hi * Wi; + std::size_t out_tensor_size = N * C * Do * Ho * Wo; + + // tensor layout = NDHWC + std::vector in_tensor_stride = {Di * C * Hi * Wi, 1, C * Hi * Wi, Wi * C, C}; + std::vector out_tensor_stride = {Do * C * Ho * Wo, 1, C * Ho * Wo, Wo * C, C}; + + SimpleDeviceMem in_device_buf(sizeof(InDataType) * in_tensor_size); + SimpleDeviceMem out_device_buf(sizeof(OutDataType) * out_tensor_size); + SimpleDeviceMem out_indices_device_buf(sizeof(IndexDataType) * out_tensor_size); + + using DeviceOp = ck::tensor_operation::device::DevicePoolFwd; + + // get device op instances + const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + DeviceOp>::GetInstances(); + + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; + + std::string best_op_name; + bool found = false; + int best_op_id = -1; + float best_ave_time = std::numeric_limits::max(); + float best_gb_per_sec = 0; + + // profile device operation instances + std::cout << "Run all instances and do timing" << std::endl; + + for(int i = 0; i < op_ptrs.size(); ++i) + { + auto& op_ptr = op_ptrs[i]; + auto argument_ptr = op_ptr->MakeArgumentPointer( + static_cast(in_device_buf.GetDeviceBuffer()), + static_cast(out_device_buf.GetDeviceBuffer()), + static_cast(out_indices_device_buf.GetDeviceBuffer()), + in_length, + window_spatial_lengths, + out_length, + in_tensor_stride, + out_tensor_stride, + out_tensor_stride, + window_strides, + input_left_pads, + input_right_pads, + {2, 3, 4}); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + std::string op_name = op_ptr->GetTypeString(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); + + std::size_t num_bytes = + in_tensor_size * sizeof(InDataType) + out_tensor_size * sizeof(OutDataType); + + if constexpr(OutputIndex) + num_bytes += out_tensor_size * sizeof(IndexDataType); + + float gb_per_sec = num_bytes / 1.E6 / ave_time; + + std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, " + << op_name << std::endl; + + if(ave_time < best_ave_time) + { + found = true; + best_op_id = i; + best_op_name = op_name; + best_ave_time = ave_time; + best_gb_per_sec = gb_per_sec; + } + } + else + { + std::cout << op_name << " does not support this problem" << std::endl; + } + } + + // run the best intance + if(found) + { + std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, " + << best_op_name << std::endl; + + auto& op_ptr = op_ptrs[best_op_id]; + std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() + << std::endl; + + auto argument_ptr = op_ptr->MakeArgumentPointer( + static_cast(in_device_buf.GetDeviceBuffer()), + static_cast(out_device_buf.GetDeviceBuffer()), + static_cast(out_indices_device_buf.GetDeviceBuffer()), + in_length, + window_spatial_lengths, + out_length, + in_tensor_stride, + out_tensor_stride, + out_tensor_stride, + window_strides, + input_left_pads, + input_right_pads, + {2, 3, 4}); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); + } + + std::cout << "Done" << std::endl; + } + + return 0; +} diff --git a/client_example/19_pool_fwd/max_pool2d_fwd.cpp b/client_example/19_pool_fwd/max_pool2d_fwd.cpp new file mode 100644 index 0000000000000000000000000000000000000000..c776dc12da391de21daa2cf464d2bde39873db9f --- /dev/null +++ b/client_example/19_pool_fwd/max_pool2d_fwd.cpp @@ -0,0 +1,193 @@ +// SPDX-License-Identifier: MIT +// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. + +#include +#include +#include + +#include "ck/ck.hpp" +#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" +#include "ck/tensor_operation/gpu/device/device_pool_fwd.hpp" +#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" + +#include "ck/library/tensor_operation_instance/gpu/pool2d_fwd.hpp" + +using InDataType = ck::half_t; +using OutDataType = ck::half_t; +using IndexDataType = int32_t; + +constexpr ck::index_t InOutRank = 4; +constexpr ck::index_t WindowRank = 2; +#if 1 +constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX; +constexpr bool OutputIndex = true; +#else +constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG; +constexpr bool OutputIndex = false; +#endif + +struct SimpleDeviceMem +{ + SimpleDeviceMem() = delete; + + SimpleDeviceMem(std::size_t mem_size) : p_mem_{} + { + (void)hipMalloc(static_cast(&p_mem_), mem_size); + } + + void* GetDeviceBuffer() { return p_mem_; } + + ~SimpleDeviceMem() { (void)hipFree(p_mem_); } + + void* p_mem_; +}; + +int main(int argc, char* argv[]) +{ + ck::index_t N = 2; + ck::index_t C = 32; + ck::index_t Y = 2; + ck::index_t X = 2; + ck::index_t Hi = 30; + ck::index_t Wi = 30; + ck::index_t window_stride_h = 2; + ck::index_t window_stride_w = 2; + ck::index_t in_left_pad_h = 1; + ck::index_t in_left_pad_w = 1; + ck::index_t in_right_pad_h = 1; + ck::index_t in_right_pad_w = 1; + + ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Y) / window_stride_h + 1; + ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - X) / window_stride_w + 1; + + // Pool API only support the order of NCHW + std::vector in_length = {N, C, Hi, Wi}; + std::vector out_length = {N, C, Ho, Wo}; + std::vector window_spatial_lengths = {Y, X}; + std::vector window_strides = {window_stride_h, window_stride_w}; + std::vector input_left_pads = {in_left_pad_h, in_left_pad_w}; + std::vector input_right_pads = {in_right_pad_h, in_right_pad_w}; + + std::size_t in_tensor_size = N * C * Hi * Wi; + std::size_t out_tensor_size = N * C * Ho * Wo; + + // tensor layout = NHWC + std::vector in_tensor_stride = {C * Hi * Wi, 1, Wi * C, C}; + std::vector out_tensor_stride = {C * Ho * Wo, 1, Wo * C, C}; + + SimpleDeviceMem in_device_buf(sizeof(InDataType) * in_tensor_size); + SimpleDeviceMem out_device_buf(sizeof(OutDataType) * out_tensor_size); + SimpleDeviceMem out_indices_device_buf(sizeof(IndexDataType) * out_tensor_size); + + using DeviceOp = ck::tensor_operation::device::DevicePoolFwd; + + // get device op instances + const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< + DeviceOp>::GetInstances(); + + std::cout << "found " << op_ptrs.size() << " instances" << std::endl; + + std::string best_op_name; + bool found = false; + int best_op_id = -1; + float best_ave_time = std::numeric_limits::max(); + float best_gb_per_sec = 0; + + // profile device operation instances + std::cout << "Run all instances and do timing" << std::endl; + + for(int i = 0; i < op_ptrs.size(); ++i) + { + auto& op_ptr = op_ptrs[i]; + auto argument_ptr = op_ptr->MakeArgumentPointer( + static_cast(in_device_buf.GetDeviceBuffer()), + static_cast(out_device_buf.GetDeviceBuffer()), + static_cast(out_indices_device_buf.GetDeviceBuffer()), + in_length, + window_spatial_lengths, + out_length, + in_tensor_stride, + out_tensor_stride, + out_tensor_stride, + window_strides, + input_left_pads, + input_right_pads, + {2, 3}); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + std::string op_name = op_ptr->GetTypeString(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); + + std::size_t num_bytes = + in_tensor_size * sizeof(InDataType) + out_tensor_size * sizeof(OutDataType); + + if constexpr(OutputIndex) + num_bytes += out_tensor_size * sizeof(IndexDataType); + + float gb_per_sec = num_bytes / 1.E6 / ave_time; + + std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, " + << op_name << std::endl; + + if(ave_time < best_ave_time) + { + found = true; + best_op_id = i; + best_op_name = op_name; + best_ave_time = ave_time; + best_gb_per_sec = gb_per_sec; + } + } + else + { + std::cout << op_name << " does not support this problem" << std::endl; + } + } + + // run the best intance + if(found) + { + std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, " + << best_op_name << std::endl; + + auto& op_ptr = op_ptrs[best_op_id]; + std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() + << std::endl; + + auto argument_ptr = op_ptr->MakeArgumentPointer( + static_cast(in_device_buf.GetDeviceBuffer()), + static_cast(out_device_buf.GetDeviceBuffer()), + static_cast(out_indices_device_buf.GetDeviceBuffer()), + in_length, + window_spatial_lengths, + out_length, + in_tensor_stride, + out_tensor_stride, + out_tensor_stride, + window_strides, + input_left_pads, + input_right_pads, + {2, 3}); + + auto invoker_ptr = op_ptr->MakeInvokerPointer(); + + if(op_ptr->IsSupportedArgument(argument_ptr.get())) + { + invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); + } + + std::cout << "Done" << std::endl; + } + + return 0; +} diff --git a/cmake/EnableCompilerWarnings.cmake b/cmake/EnableCompilerWarnings.cmake index 78133af0315dd952771ecb481525c14f8f4abff5..369cd0b54c1fac60b061cdafdb0b02b819a8accd 100644 --- a/cmake/EnableCompilerWarnings.cmake +++ b/cmake/EnableCompilerWarnings.cmake @@ -65,7 +65,8 @@ else() -Wuninitialized -Wunreachable-code -Wunused - + -Wno-reserved-identifier + -Werror -Wsign-compare -Wno-extra-semi-stmt ) @@ -91,6 +92,7 @@ else() -Wno-unused-command-line-argument -Wno-weak-vtables -Wno-covered-switch-default + -Wno-unsafe-buffer-usage ) else() if (CMAKE_${COMPILER}_COMPILER_ID MATCHES "GNU" AND ${COMPILER} MATCHES "CXX") diff --git a/cmake/googletest.cmake b/cmake/googletest.cmake index 3c6cb56ccea3490c6d7a4eaf6107749dafa87bdf..d6577ac33e71c575b2aa441da30838f58157f0b4 100644 --- a/cmake/googletest.cmake +++ b/cmake/googletest.cmake @@ -21,6 +21,7 @@ list(APPEND GTEST_CMAKE_CXX_FLAGS -Wno-comma -Wno-old-style-cast -Wno-deprecated + -Wno-unsafe-buffer-usage ) message(STATUS "Suppressing googltest warnings with flags: ${GTEST_CMAKE_CXX_FLAGS}") diff --git a/doc/markdown/dockerhub.md b/doc/markdown/dockerhub.md deleted file mode 100644 index 91b6cb2295cf4a8dd08ead2eb165119c74996084..0000000000000000000000000000000000000000 --- a/doc/markdown/dockerhub.md +++ /dev/null @@ -1,93 +0,0 @@ -## CK docker hub - -[Docker hub](https://hub.docker.com/r/rocm/composable_kernel) - -## Why do I need this? - -To make our lives easier and bring Composable Kernel dependencies together, we recommend using docker images. - -## So what is Composable Kernel? - -Composable Kernel (CK) library aims to provide a programming model for writing performance critical kernels for machine learning workloads across multiple architectures including GPUs, CPUs, etc, through general purpose kernel languages, like HIP C++. - -To get the CK library - -``` -git clone https://github.com/ROCmSoftwarePlatform/composable_kernel.git -``` - -run a docker container - -``` -docker run \ --it \ ---privileged \ ---group-add sudo \ --w /root/workspace \ --v ${PATH_TO_LOCAL_WORKSPACE}:/root/workspace \ -rocm/composable_kernel:ck_ub20.04_rocm5.3_release \ -/bin/bash -``` - -and build the CK - -``` -mkdir build && cd build - -# Need to specify target ID, example below is for gfx908 and gfx90a -cmake \ --D CMAKE_PREFIX_PATH=/opt/rocm \ --D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \ --D CMAKE_CXX_FLAGS="-O3" \ --D CMAKE_BUILD_TYPE=Release \ --D GPU_TARGETS="gfx908;gfx90a" \ -.. -``` - -and - -``` -make -j examples tests -``` - -To run all the test cases including tests and examples run - -``` -make test -``` - -We can also run specific examples or tests like - -``` -./bin/example_gemm_xdl_fp16 -./bin/test_gemm_fp16 -``` - -For more details visit [CK github repo](https://github.com/ROCmSoftwarePlatform/composable_kernel), [CK examples](https://github.com/ROCmSoftwarePlatform/composable_kernel/tree/develop/example), [even more CK examples](https://github.com/ROCmSoftwarePlatform/composable_kernel/tree/develop/client_example). - -## And what is inside? - -The docker images have everything you need for running CK including: - -* [ROCm](https://www.amd.com/en/graphics/servers-solutions-rocm) -* [CMake](https://cmake.org/) -* [Compiler](https://github.com/RadeonOpenCompute/llvm-project) - -## Which image is right for me? - -Let's take a look at the image naming, for example "ck_ub20.04_rocm5.4_release". The image specs are: - -* "ck" - made for running Composable Kernel -* "ub20.04" - based on Ubuntu 20.04 -* "rocm5.4" - ROCm platform version 5.4 -* "release" - compiler version is release - -So just pick the right image for your project dependencies and you're all set. - -## DIY starts here - -If you need to customize a docker image or just can't stop tinkering, feel free to adjust the [Dockerfile](https://github.com/ROCmSoftwarePlatform/composable_kernel/blob/develop/Dockerfile) for your needs. - -## License - -CK is released under the MIT [license](https://github.com/ROCmSoftwarePlatform/composable_kernel/blob/develop/LICENSE). diff --git a/docs/API_Reference_Guide.rst b/docs/API_Reference_Guide.rst new file mode 100644 index 0000000000000000000000000000000000000000..b59c6e302692cd6b9d4035ed27d5901e790a0233 --- /dev/null +++ b/docs/API_Reference_Guide.rst @@ -0,0 +1,52 @@ + +******************* +API Reference Guide +******************* + +================= +Introduction +================= + +This document contains details of the APIs for the Composable Kernel (CK) library and introduces some of the key design +principles that are used to write new classes that extend CK functionality. + +================= +Using CK API +================= + +This section describes how to use the CK library API. + +================= +CK Datatypes +================= + +----------------- +DeviceMem +----------------- + +.. doxygenstruct:: DeviceMem + +--------------------------- +Kernels For Flashattention +--------------------------- + +The Flashattention algorithm is defined in :cite:t:`dao2022flashattention`. This sections lists the classes that are +used in the CK GPU implementation of Flashattention. + +**Gridwise classes** + +.. doxygenstruct:: ck::GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle + +**Blockwise classes** + +.. doxygenstruct:: ck::ThreadGroupTensorSliceTransfer_v4r1 + +.. doxygenstruct:: ck::BlockwiseGemmXdlops_v2 + +.. doxygenstruct:: ck::BlockwiseSoftmax + +**Threadwise classes** + +.. doxygenstruct:: ck::ThreadwiseTensorSliceTransfer_StaticToStatic + +.. bibliography:: diff --git a/docs/Contributors_Guide.rst b/docs/Contributors_Guide.rst new file mode 100644 index 0000000000000000000000000000000000000000..b2ddff398ce8efcd0c5d8be275d9dd09315d4349 --- /dev/null +++ b/docs/Contributors_Guide.rst @@ -0,0 +1,8 @@ +=================== +Contributor's Guide +=================== + +Pull-request guidelines +======================= + +[TODO] diff --git a/docs/Supported_Primitives_Guide.rst b/docs/Supported_Primitives_Guide.rst new file mode 100644 index 0000000000000000000000000000000000000000..4c3adf67d7119e22a622373ab8d1dccb4d024e18 --- /dev/null +++ b/docs/Supported_Primitives_Guide.rst @@ -0,0 +1,75 @@ +========================== +Supported Primitives Guide +========================== + +This document contains details of supported primitives in Composable Kernel (CK). In contrast to the API Reference +Guide, the Supported Primitives Guide is an introduction to the math which underpins the algorithms implemented in CK. + +------------ +Softmax +------------ + +For vectors :math:`x^{(1)}, x^{(2)}, \ldots, x^{(T)}` of size :math:`B` we can decompose the softmax of concatenated +:math:`x = [ x^{(1)}\ | \ \ldots \ | \ x^{(T)} ]` as, + +.. math:: + :nowrap: + + \begin{align} + m(x) & = m( [ x^{(1)}\ | \ \ldots \ | \ x^{(T)} ] ) = \max( m(x^{(1)}),\ldots, m(x^{(T)}) ) \\ + f(x) & = [\exp( m(x^{(1)}) - m(x) ) f( x^{(1)} )\ | \ \ldots \ | \ \exp( m(x^{(T)}) - m(x) ) f( x^{(T)} )] \\ + z(x) & = \exp( m(x^{(1)}) - m(x) )\ z(x^{(1)}) + \ldots + \exp( m(x^{(T)}) - m(x) )\ z(x^{(1)}) \\ + \operatorname{softmax}(x) &= f(x)\ / \ z(x) + \end{align} + +where :math:`f(x^{(j)}) = \exp( x^{(j)} - m(x^{(j)}) )` is of size :math:`B` and +:math:`z(x^{(j)}) = f(x_1^{(j)})+ \ldots+ f(x_B^{(j)})` is a scalar. + +For a matrix :math:`X` composed of :math:`T_r \times T_c` tiles, :math:`X_{ij}`, of size :math:`B_r \times B_c` we can +compute the row-wise softmax as follows. + +For :math:`j` from :math:`1` to :math:`T_c`, and :math:`i` from :math:`1` to :math:`T_r` calculate, + +.. math:: + :nowrap: + + \begin{align} + \tilde{m}_{ij} &= \operatorname{rowmax}( X_{ij} ) \\ + \tilde{P}_{ij} &= \exp(X_{ij} - \tilde{m}_{ij} ) \\ + \tilde{z}_{ij} &= \operatorname{rowsum}( P_{ij} ) \\ + \end{align} + +If :math:`j=1`, initialize running max, running sum, and the first column block of the output, + +.. math:: + :nowrap: + + \begin{align} + m_i &= \tilde{m}_{i1} \\ + z_i &= \tilde{z}_{i1} \\ + \tilde{Y}_{i1} &= \diag(\tilde{z}_{ij})^{-1} \tilde{P}_{i1} + \end{align} + +Else if :math:`j>1`, + +1. Update running max, running sum and column blocks :math:`k=1` to :math:`k=j-1` + +.. math:: + :nowrap: + + \begin{align} + m^{new}_i &= \max(m_i, \tilde{m}_{ij} ) \\ + z^{new}_i &= \exp(m_i - m^{new}_i)\ z_i + \exp( \tilde{m}_{ij} - m^{new}_i )\ \tilde{z}_{ij} \\ + Y_{ik} &= \diag(z^{new}_{i})^{-1} \diag(z_{i}) \exp(m_i - m^{new}_i)\ Y_{ik} + \end{align} + +2. Initialize column block :math:`j` of output and reset running max and running sum variables: + +.. math:: + :nowrap: + + \begin{align} + \tilde{Y}_{ij} &= \diag(z^{new}_{i})^{-1} \exp(\tilde{m}_{ij} - m^{new}_i ) \tilde{P}_{ij} \\ + z_i &= z^{new}_i \\ + m_i &= m^{new}_i \\ + \end{align} diff --git a/docs/conf.py b/docs/conf.py new file mode 100644 index 0000000000000000000000000000000000000000..0de590da1a53daba8dc0e379e68abbae250e0667 --- /dev/null +++ b/docs/conf.py @@ -0,0 +1,36 @@ +# Configuration file for the Sphinx documentation builder. +# +# This file only contains a selection of the most common options. For a full +# list see the documentation: +# https://www.sphinx-doc.org/en/master/usage/configuration.html + +import subprocess + +from rocm_docs import ROCmDocs + + +name = "Composable Kernel" +get_version = r'sed -n -e "s/^rocm_setup_version(.* \([0-9\.]\{1,\}\).*/\1/p" ../CMakeLists.txt' +version = subprocess.getoutput(get_version) +if len(version) > 0: + name = f"{name} {version}" + +external_toc_path = "./sphinx/_toc.yml" + +docs_core = ROCmDocs(f"{name} Documentation") +docs_core.run_doxygen(doxygen_root="doxygen", doxygen_path="doxygen/docBin/xml") +docs_core.setup() + +mathjax3_config = { +'tex': { + 'macros': { + 'diag': '\\operatorname{diag}', + } + } +} + +for sphinx_var in ROCmDocs.SPHINX_VARS: + globals()[sphinx_var] = getattr(docs_core, sphinx_var) + +extensions += ['sphinxcontrib.bibtex'] +bibtex_bibfiles = ['refs.bib'] diff --git a/doc/image/ck_component.png b/docs/data/ck_component.png similarity index 100% rename from doc/image/ck_component.png rename to docs/data/ck_component.png diff --git a/doc/image/ck_layer.png b/docs/data/ck_layer.png similarity index 100% rename from doc/image/ck_layer.png rename to docs/data/ck_layer.png diff --git a/docs/dockerhub.rst b/docs/dockerhub.rst new file mode 100644 index 0000000000000000000000000000000000000000..b51226cfebe6da27988ec2685eb334f5bc900ff9 --- /dev/null +++ b/docs/dockerhub.rst @@ -0,0 +1,96 @@ +=================== +CK docker hub +=================== + +`Docker hub `_ + +------------------------------------- +Why do I need this? +------------------------------------- + +To make our lives easier and bring Composable Kernel dependencies together, we recommend using docker images. + +------------------------------------- +So what is Composable Kernel? +------------------------------------- + +Composable Kernel (CK) library aims to provide a programming model for writing performance critical kernels for machine learning workloads across multiple architectures including GPUs, CPUs, etc, through general purpose kernel languages, like HIP C++. + +To get the CK library:: + + git clone https://github.com/ROCmSoftwarePlatform/composable_kernel.git + + + +run a docker container:: + + docker run \ + -it \ + --privileged \ + --group-add sudo \ + -w /root/workspace \ + -v ${PATH_TO_LOCAL_WORKSPACE}:/root/workspace \ + rocm/composable_kernel:ck_ub20.04_rocm5.3_release \ + /bin/bash + +and build the CK:: + + mkdir build && cd build + # Need to specify target ID, example below is for gfx908 and gfx90a + cmake \ + -D CMAKE_PREFIX_PATH=/opt/rocm \ + -D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \ + -D CMAKE_CXX_FLAGS="-O3" \ + -D CMAKE_BUILD_TYPE=Release \ + -D GPU_TARGETS="gfx908;gfx90a" \ + .. + +and:: + + make -j examples tests + +To run all the test cases including tests and examples run:: + + make test + +We can also run specific examples or tests like:: + + ./bin/example_gemm_xdl_fp16 + ./bin/test_gemm_fp16 + +For more details visit `CK github repo `_, `CK examples `_, `even more CK examples `_. + +------------------------------------- +And what is inside? +------------------------------------- + +The docker images have everything you need for running CK including: + +* `ROCm `_ +* `CMake `_ +* `Compiler `_ + +------------------------------------- +Which image is right for me? +------------------------------------- + +Let's take a look at the image naming, for example "ck_ub20.04_rocm5.4_release". The image specs are: + +* "ck" - made for running Composable Kernel +* "ub20.04" - based on Ubuntu 20.04 +* "rocm5.4" - ROCm platform version 5.4 +* "release" - compiler version is release + +So just pick the right image for your project dependencies and you're all set. + +------------------------------------- +DIY starts here +------------------------------------- + +If you need to customize a docker image or just can't stop tinkering, feel free to adjust the `Dockerfile `_ for your needs. + +------------------------------------- +License +------------------------------------- + +CK is released under the MIT `license `_. diff --git a/docs/doxygen/Doxyfile b/docs/doxygen/Doxyfile new file mode 100644 index 0000000000000000000000000000000000000000..1084f94c81bbef88a3373d6e9e5d24b89e7b5353 --- /dev/null +++ b/docs/doxygen/Doxyfile @@ -0,0 +1,2455 @@ +# Doxyfile 1.8.10 + +# This file describes the settings to be used by the documentation system +# doxygen (www.doxygen.org) for a project. +# +# All text after a double hash (##) is considered a comment and is placed in +# front of the TAG it is preceding. +# +# All text after a single hash (#) is considered a comment and will be ignored. +# The format is: +# TAG = value [value, ...] +# For lists, items can also be appended using: +# TAG += value [value, ...] +# Values that contain spaces should be placed between quotes (\" \"). + +#--------------------------------------------------------------------------- +# Project related configuration options +#--------------------------------------------------------------------------- + +# This tag specifies the encoding used for all characters in the config file +# that follow. The default is UTF-8 which is also the encoding used for all text +# before the first occurrence of this tag. Doxygen uses libiconv (or the iconv +# built into libc) for the transcoding. See http://www.gnu.org/software/libiconv +# for the list of possible encodings. +# The default value is: UTF-8. + +DOXYFILE_ENCODING = UTF-8 + +# The PROJECT_NAME tag is a single word (or a sequence of words surrounded by +# double-quotes, unless you are using Doxywizard) that should identify the +# project for which the documentation is generated. This name is used in the +# title of most generated pages and in a few other places. +# The default value is: My Project. + +PROJECT_NAME = "ck" + +# The PROJECT_NUMBER tag can be used to enter a project or revision number. This +# could be handy for archiving the generated documentation or if some version +# control system is used. + +PROJECT_NUMBER = v3.0.1.0 + +# Using the PROJECT_BRIEF tag one can provide an optional one line description +# for a project that appears at the top of each page and should give viewer a +# quick idea about the purpose of the project. Keep the description short. + +PROJECT_BRIEF = "prototype interfaces compatible with ROCm platform and HiP" + +# With the PROJECT_LOGO tag one can specify a logo or an icon that is included +# in the documentation. The maximum height of the logo should not exceed 55 +# pixels and the maximum width should not exceed 200 pixels. Doxygen will copy +# the logo to the output directory. + +PROJECT_LOGO = + +# The OUTPUT_DIRECTORY tag is used to specify the (relative or absolute) path +# into which the generated documentation will be written. If a relative path is +# entered, it will be relative to the location where doxygen was started. If +# left blank the current directory will be used. + +OUTPUT_DIRECTORY = docBin + +# If the CREATE_SUBDIRS tag is set to YES then doxygen will create 4096 sub- +# directories (in 2 levels) under the output directory of each output format and +# will distribute the generated files over these directories. Enabling this +# option can be useful when feeding doxygen a huge amount of source files, where +# putting all generated files in the same directory would otherwise causes +# performance problems for the file system. +# The default value is: NO. + +CREATE_SUBDIRS = NO + +# If the ALLOW_UNICODE_NAMES tag is set to YES, doxygen will allow non-ASCII +# characters to appear in the names of generated files. If set to NO, non-ASCII +# characters will be escaped, for example _xE3_x81_x84 will be used for Unicode +# U+3044. +# The default value is: NO. + +ALLOW_UNICODE_NAMES = NO + +# The OUTPUT_LANGUAGE tag is used to specify the language in which all +# documentation generated by doxygen is written. Doxygen will use this +# information to generate all constant output in the proper language. +# Possible values are: Afrikaans, Arabic, Armenian, Brazilian, Catalan, Chinese, +# Chinese-Traditional, Croatian, Czech, Danish, Dutch, English (United States), +# Esperanto, Farsi (Persian), Finnish, French, German, Greek, Hungarian, +# Indonesian, Italian, Japanese, Japanese-en (Japanese with English messages), +# Korean, Korean-en (Korean with English messages), Latvian, Lithuanian, +# Macedonian, Norwegian, Persian (Farsi), Polish, Portuguese, Romanian, Russian, +# Serbian, Serbian-Cyrillic, Slovak, Slovene, Spanish, Swedish, Turkish, +# Ukrainian and Vietnamese. +# The default value is: English. + +OUTPUT_LANGUAGE = English + +# If the BRIEF_MEMBER_DESC tag is set to YES, doxygen will include brief member +# descriptions after the members that are listed in the file and class +# documentation (similar to Javadoc). Set to NO to disable this. +# The default value is: YES. + +BRIEF_MEMBER_DESC = YES + +# If the REPEAT_BRIEF tag is set to YES, doxygen will prepend the brief +# description of a member or function before the detailed description +# +# Note: If both HIDE_UNDOC_MEMBERS and BRIEF_MEMBER_DESC are set to NO, the +# brief descriptions will be completely suppressed. +# The default value is: YES. + +REPEAT_BRIEF = YES + +# This tag implements a quasi-intelligent brief description abbreviator that is +# used to form the text in various listings. Each string in this list, if found +# as the leading text of the brief description, will be stripped from the text +# and the result, after processing the whole list, is used as the annotated +# text. Otherwise, the brief description is used as-is. If left blank, the +# following values are used ($name is automatically replaced with the name of +# the entity):The $name class, The $name widget, The $name file, is, provides, +# specifies, contains, represents, a, an and the. + +ABBREVIATE_BRIEF = "The $name class" \ + "The $name widget" \ + "The $name file" \ + is \ + provides \ + specifies \ + contains \ + represents \ + a \ + an \ + the + +# If the ALWAYS_DETAILED_SEC and REPEAT_BRIEF tags are both set to YES then +# doxygen will generate a detailed section even if there is only a brief +# description. +# The default value is: NO. + +ALWAYS_DETAILED_SEC = NO + +# If the INLINE_INHERITED_MEMB tag is set to YES, doxygen will show all +# inherited members of a class in the documentation of that class as if those +# members were ordinary class members. Constructors, destructors and assignment +# operators of the base classes will not be shown. +# The default value is: NO. + +INLINE_INHERITED_MEMB = NO + +# If the FULL_PATH_NAMES tag is set to YES, doxygen will prepend the full path +# before files name in the file list and in the header files. If set to NO the +# shortest path that makes the file name unique will be used +# The default value is: YES. + +FULL_PATH_NAMES = YES + +# The STRIP_FROM_PATH tag can be used to strip a user-defined part of the path. +# Stripping is only done if one of the specified strings matches the left-hand +# part of the path. The tag can be used to show relative paths in the file list. +# If left blank the directory from which doxygen is run is used as the path to +# strip. +# +# Note that you can specify absolute paths here, but also relative paths, which +# will be relative from the directory where doxygen is started. +# This tag requires that the tag FULL_PATH_NAMES is set to YES. + +STRIP_FROM_PATH = + +# The STRIP_FROM_INC_PATH tag can be used to strip a user-defined part of the +# path mentioned in the documentation of a class, which tells the reader which +# header file to include in order to use a class. If left blank only the name of +# the header file containing the class definition is used. Otherwise one should +# specify the list of include paths that are normally passed to the compiler +# using the -I flag. + +STRIP_FROM_INC_PATH = + +# If the SHORT_NAMES tag is set to YES, doxygen will generate much shorter (but +# less readable) file names. This can be useful is your file systems doesn't +# support long names like on DOS, Mac, or CD-ROM. +# The default value is: NO. + +SHORT_NAMES = NO + +# If the JAVADOC_AUTOBRIEF tag is set to YES then doxygen will interpret the +# first line (until the first dot) of a Javadoc-style comment as the brief +# description. If set to NO, the Javadoc-style will behave just like regular Qt- +# style comments (thus requiring an explicit @brief command for a brief +# description.) +# The default value is: NO. + +JAVADOC_AUTOBRIEF = NO + +# If the QT_AUTOBRIEF tag is set to YES then doxygen will interpret the first +# line (until the first dot) of a Qt-style comment as the brief description. If +# set to NO, the Qt-style will behave just like regular Qt-style comments (thus +# requiring an explicit \brief command for a brief description.) +# The default value is: NO. + +QT_AUTOBRIEF = NO + +# The MULTILINE_CPP_IS_BRIEF tag can be set to YES to make doxygen treat a +# multi-line C++ special comment block (i.e. a block of //! or /// comments) as +# a brief description. This used to be the default behavior. The new default is +# to treat a multi-line C++ comment block as a detailed description. Set this +# tag to YES if you prefer the old behavior instead. +# +# Note that setting this tag to YES also means that rational rose comments are +# not recognized any more. +# The default value is: NO. + +MULTILINE_CPP_IS_BRIEF = NO + +# If the INHERIT_DOCS tag is set to YES then an undocumented member inherits the +# documentation from any documented member that it re-implements. +# The default value is: YES. + +INHERIT_DOCS = YES + +# If the SEPARATE_MEMBER_PAGES tag is set to YES then doxygen will produce a new +# page for each member. If set to NO, the documentation of a member will be part +# of the file/class/namespace that contains it. +# The default value is: NO. + +SEPARATE_MEMBER_PAGES = NO + +# The TAB_SIZE tag can be used to set the number of spaces in a tab. Doxygen +# uses this value to replace tabs by spaces in code fragments. +# Minimum value: 1, maximum value: 16, default value: 4. + +TAB_SIZE = 4 + +# This tag can be used to specify a number of aliases that act as commands in +# the documentation. An alias has the form: +# name=value +# For example adding +# "sideeffect=@par Side Effects:\n" +# will allow you to put the command \sideeffect (or @sideeffect) in the +# documentation, which will result in a user-defined paragraph with heading +# "Side Effects:". You can put \n's in the value part of an alias to insert +# newlines. + +ALIASES = + +# This tag can be used to specify a number of word-keyword mappings (TCL only). +# A mapping has the form "name=value". For example adding "class=itcl::class" +# will allow you to use the command class in the itcl::class meaning. + +TCL_SUBST = + +# Set the OPTIMIZE_OUTPUT_FOR_C tag to YES if your project consists of C sources +# only. Doxygen will then generate output that is more tailored for C. For +# instance, some of the names that are used will be different. The list of all +# members will be omitted, etc. +# The default value is: NO. + +OPTIMIZE_OUTPUT_FOR_C = NO + +# Set the OPTIMIZE_OUTPUT_JAVA tag to YES if your project consists of Java or +# Python sources only. Doxygen will then generate output that is more tailored +# for that language. For instance, namespaces will be presented as packages, +# qualified scopes will look different, etc. +# The default value is: NO. + +OPTIMIZE_OUTPUT_JAVA = NO + +# Set the OPTIMIZE_FOR_FORTRAN tag to YES if your project consists of Fortran +# sources. Doxygen will then generate output that is tailored for Fortran. +# The default value is: NO. + +OPTIMIZE_FOR_FORTRAN = NO + +# Set the OPTIMIZE_OUTPUT_VHDL tag to YES if your project consists of VHDL +# sources. Doxygen will then generate output that is tailored for VHDL. +# The default value is: NO. + +OPTIMIZE_OUTPUT_VHDL = NO + +# Doxygen selects the parser to use depending on the extension of the files it +# parses. With this tag you can assign which parser to use for a given +# extension. Doxygen has a built-in mapping, but you can override or extend it +# using this tag. The format is ext=language, where ext is a file extension, and +# language is one of the parsers supported by doxygen: IDL, Java, Javascript, +# C#, C, C++, D, PHP, Objective-C, Python, Fortran (fixed format Fortran: +# FortranFixed, free formatted Fortran: FortranFree, unknown formatted Fortran: +# Fortran. In the later case the parser tries to guess whether the code is fixed +# or free formatted code, this is the default for Fortran type files), VHDL. For +# instance to make doxygen treat .inc files as Fortran files (default is PHP), +# and .f files as C (default is Fortran), use: inc=Fortran f=C. +# +# Note: For files without extension you can use no_extension as a placeholder. +# +# Note that for custom extensions you also need to set FILE_PATTERNS otherwise +# the files are not read by doxygen. + +EXTENSION_MAPPING = + +# If the MARKDOWN_SUPPORT tag is enabled then doxygen pre-processes all comments +# according to the Markdown format, which allows for more readable +# documentation. See http://daringfireball.net/projects/markdown/ for details. +# The output of markdown processing is further processed by doxygen, so you can +# mix doxygen, HTML, and XML commands with Markdown formatting. Disable only in +# case of backward compatibilities issues. +# The default value is: YES. + +MARKDOWN_SUPPORT = YES + +# When enabled doxygen tries to link words that correspond to documented +# classes, or namespaces to their corresponding documentation. Such a link can +# be prevented in individual cases by putting a % sign in front of the word or +# globally by setting AUTOLINK_SUPPORT to NO. +# The default value is: YES. + +AUTOLINK_SUPPORT = YES + +# If you use STL classes (i.e. std::string, std::vector, etc.) but do not want +# to include (a tag file for) the STL sources as input, then you should set this +# tag to YES in order to let doxygen match functions declarations and +# definitions whose arguments contain STL classes (e.g. func(std::string); +# versus func(std::string) {}). This also make the inheritance and collaboration +# diagrams that involve STL classes more complete and accurate. +# The default value is: NO. + +BUILTIN_STL_SUPPORT = YES + +# If you use Microsoft's C++/CLI language, you should set this option to YES to +# enable parsing support. +# The default value is: NO. + +CPP_CLI_SUPPORT = NO + +# Set the SIP_SUPPORT tag to YES if your project consists of sip (see: +# http://www.riverbankcomputing.co.uk/software/sip/intro) sources only. Doxygen +# will parse them like normal C++ but will assume all classes use public instead +# of private inheritance when no explicit protection keyword is present. +# The default value is: NO. + +SIP_SUPPORT = NO + +# For Microsoft's IDL there are propget and propput attributes to indicate +# getter and setter methods for a property. Setting this option to YES will make +# doxygen to replace the get and set methods by a property in the documentation. +# This will only work if the methods are indeed getting or setting a simple +# type. If this is not the case, or you want to show the methods anyway, you +# should set this option to NO. +# The default value is: YES. + +IDL_PROPERTY_SUPPORT = YES + +# If member grouping is used in the documentation and the DISTRIBUTE_GROUP_DOC +# tag is set to YES then doxygen will reuse the documentation of the first +# member in the group (if any) for the other members of the group. By default +# all members of a group must be documented explicitly. +# The default value is: NO. + +DISTRIBUTE_GROUP_DOC = YES + +# If one adds a struct or class to a group and this option is enabled, then also +# any nested class or struct is added to the same group. By default this option +# is disabled and one has to add nested compounds explicitly via \ingroup. +# The default value is: NO. + +GROUP_NESTED_COMPOUNDS = NO + +# Set the SUBGROUPING tag to YES to allow class member groups of the same type +# (for instance a group of public functions) to be put as a subgroup of that +# type (e.g. under the Public Functions section). Set it to NO to prevent +# subgrouping. Alternatively, this can be done per class using the +# \nosubgrouping command. +# The default value is: YES. + +SUBGROUPING = YES + +# When the INLINE_GROUPED_CLASSES tag is set to YES, classes, structs and unions +# are shown inside the group in which they are included (e.g. using \ingroup) +# instead of on a separate page (for HTML and Man pages) or section (for LaTeX +# and RTF). +# +# Note that this feature does not work in combination with +# SEPARATE_MEMBER_PAGES. +# The default value is: NO. + +INLINE_GROUPED_CLASSES = NO + +# When the INLINE_SIMPLE_STRUCTS tag is set to YES, structs, classes, and unions +# with only public data fields or simple typedef fields will be shown inline in +# the documentation of the scope in which they are defined (i.e. file, +# namespace, or group documentation), provided this scope is documented. If set +# to NO, structs, classes, and unions are shown on a separate page (for HTML and +# Man pages) or section (for LaTeX and RTF). +# The default value is: NO. + +INLINE_SIMPLE_STRUCTS = NO + +# When TYPEDEF_HIDES_STRUCT tag is enabled, a typedef of a struct, union, or +# enum is documented as struct, union, or enum with the name of the typedef. So +# typedef struct TypeS {} TypeT, will appear in the documentation as a struct +# with name TypeT. When disabled the typedef will appear as a member of a file, +# namespace, or class. And the struct will be named TypeS. This can typically be +# useful for C code in case the coding convention dictates that all compound +# types are typedef'ed and only the typedef is referenced, never the tag name. +# The default value is: NO. + +TYPEDEF_HIDES_STRUCT = YES + +# The size of the symbol lookup cache can be set using LOOKUP_CACHE_SIZE. This +# cache is used to resolve symbols given their name and scope. Since this can be +# an expensive process and often the same symbol appears multiple times in the +# code, doxygen keeps a cache of pre-resolved symbols. If the cache is too small +# doxygen will become slower. If the cache is too large, memory is wasted. The +# cache size is given by this formula: 2^(16+LOOKUP_CACHE_SIZE). The valid range +# is 0..9, the default is 0, corresponding to a cache size of 2^16=65536 +# symbols. At the end of a run doxygen will report the cache usage and suggest +# the optimal cache size from a speed point of view. +# Minimum value: 0, maximum value: 9, default value: 0. + +LOOKUP_CACHE_SIZE = 0 + +#--------------------------------------------------------------------------- +# Build related configuration options +#--------------------------------------------------------------------------- + +# If the EXTRACT_ALL tag is set to YES, doxygen will assume all entities in +# documentation are documented, even if no documentation was available. Private +# class members and static file members will be hidden unless the +# EXTRACT_PRIVATE respectively EXTRACT_STATIC tags are set to YES. +# Note: This will also disable the warnings about undocumented members that are +# normally produced when WARNINGS is set to YES. +# The default value is: NO. + +EXTRACT_ALL = YES + +# If the EXTRACT_PRIVATE tag is set to YES, all private members of a class will +# be included in the documentation. +# The default value is: NO. + +EXTRACT_PRIVATE = NO + +# If the EXTRACT_PACKAGE tag is set to YES, all members with package or internal +# scope will be included in the documentation. +# The default value is: NO. + +EXTRACT_PACKAGE = NO + +# If the EXTRACT_STATIC tag is set to YES, all static members of a file will be +# included in the documentation. +# The default value is: NO. + +EXTRACT_STATIC = NO + +# If the EXTRACT_LOCAL_CLASSES tag is set to YES, classes (and structs) defined +# locally in source files will be included in the documentation. If set to NO, +# only classes defined in header files are included. Does not have any effect +# for Java sources. +# The default value is: YES. + +EXTRACT_LOCAL_CLASSES = YES + +# This flag is only useful for Objective-C code. If set to YES, local methods, +# which are defined in the implementation section but not in the interface are +# included in the documentation. If set to NO, only methods in the interface are +# included. +# The default value is: NO. + +EXTRACT_LOCAL_METHODS = NO + +# If this flag is set to YES, the members of anonymous namespaces will be +# extracted and appear in the documentation as a namespace called +# 'anonymous_namespace{file}', where file will be replaced with the base name of +# the file that contains the anonymous namespace. By default anonymous namespace +# are hidden. +# The default value is: NO. + +EXTRACT_ANON_NSPACES = NO + +# If the HIDE_UNDOC_MEMBERS tag is set to YES, doxygen will hide all +# undocumented members inside documented classes or files. If set to NO these +# members will be included in the various overviews, but no documentation +# section is generated. This option has no effect if EXTRACT_ALL is enabled. +# The default value is: NO. + +HIDE_UNDOC_MEMBERS = NO + +# If the HIDE_UNDOC_CLASSES tag is set to YES, doxygen will hide all +# undocumented classes that are normally visible in the class hierarchy. If set +# to NO, these classes will be included in the various overviews. This option +# has no effect if EXTRACT_ALL is enabled. +# The default value is: NO. + +HIDE_UNDOC_CLASSES = NO + +# If the HIDE_FRIEND_COMPOUNDS tag is set to YES, doxygen will hide all friend +# (class|struct|union) declarations. If set to NO, these declarations will be +# included in the documentation. +# The default value is: NO. + +HIDE_FRIEND_COMPOUNDS = NO + +# If the HIDE_IN_BODY_DOCS tag is set to YES, doxygen will hide any +# documentation blocks found inside the body of a function. If set to NO, these +# blocks will be appended to the function's detailed documentation block. +# The default value is: NO. + +HIDE_IN_BODY_DOCS = NO + +# The INTERNAL_DOCS tag determines if documentation that is typed after a +# \internal command is included. If the tag is set to NO then the documentation +# will be excluded. Set it to YES to include the internal documentation. +# The default value is: NO. + +INTERNAL_DOCS = NO + +# If the CASE_SENSE_NAMES tag is set to NO then doxygen will only generate file +# names in lower-case letters. If set to YES, upper-case letters are also +# allowed. This is useful if you have classes or files whose names only differ +# in case and if your file system supports case sensitive file names. Windows +# and Mac users are advised to set this option to NO. +# The default value is: system dependent. + +CASE_SENSE_NAMES = NO + +# If the HIDE_SCOPE_NAMES tag is set to NO then doxygen will show members with +# their full class and namespace scopes in the documentation. If set to YES, the +# scope will be hidden. +# The default value is: NO. + +HIDE_SCOPE_NAMES = NO + +# If the HIDE_COMPOUND_REFERENCE tag is set to NO (default) then doxygen will +# append additional text to a page's title, such as Class Reference. If set to +# YES the compound reference will be hidden. +# The default value is: NO. + +HIDE_COMPOUND_REFERENCE= NO + +# If the SHOW_INCLUDE_FILES tag is set to YES then doxygen will put a list of +# the files that are included by a file in the documentation of that file. +# The default value is: YES. + +SHOW_INCLUDE_FILES = YES + +# If the SHOW_GROUPED_MEMB_INC tag is set to YES then Doxygen will add for each +# grouped member an include statement to the documentation, telling the reader +# which file to include in order to use the member. +# The default value is: NO. + +SHOW_GROUPED_MEMB_INC = NO + +# If the FORCE_LOCAL_INCLUDES tag is set to YES then doxygen will list include +# files with double quotes in the documentation rather than with sharp brackets. +# The default value is: NO. + +FORCE_LOCAL_INCLUDES = NO + +# If the INLINE_INFO tag is set to YES then a tag [inline] is inserted in the +# documentation for inline members. +# The default value is: YES. + +INLINE_INFO = YES + +# If the SORT_MEMBER_DOCS tag is set to YES then doxygen will sort the +# (detailed) documentation of file and class members alphabetically by member +# name. If set to NO, the members will appear in declaration order. +# The default value is: YES. + +SORT_MEMBER_DOCS = YES + +# If the SORT_BRIEF_DOCS tag is set to YES then doxygen will sort the brief +# descriptions of file, namespace and class members alphabetically by member +# name. If set to NO, the members will appear in declaration order. Note that +# this will also influence the order of the classes in the class list. +# The default value is: NO. + +SORT_BRIEF_DOCS = NO + +# If the SORT_MEMBERS_CTORS_1ST tag is set to YES then doxygen will sort the +# (brief and detailed) documentation of class members so that constructors and +# destructors are listed first. If set to NO the constructors will appear in the +# respective orders defined by SORT_BRIEF_DOCS and SORT_MEMBER_DOCS. +# Note: If SORT_BRIEF_DOCS is set to NO this option is ignored for sorting brief +# member documentation. +# Note: If SORT_MEMBER_DOCS is set to NO this option is ignored for sorting +# detailed member documentation. +# The default value is: NO. + +SORT_MEMBERS_CTORS_1ST = NO + +# If the SORT_GROUP_NAMES tag is set to YES then doxygen will sort the hierarchy +# of group names into alphabetical order. If set to NO the group names will +# appear in their defined order. +# The default value is: NO. + +SORT_GROUP_NAMES = NO + +# If the SORT_BY_SCOPE_NAME tag is set to YES, the class list will be sorted by +# fully-qualified names, including namespaces. If set to NO, the class list will +# be sorted only by class name, not including the namespace part. +# Note: This option is not very useful if HIDE_SCOPE_NAMES is set to YES. +# Note: This option applies only to the class list, not to the alphabetical +# list. +# The default value is: NO. + +SORT_BY_SCOPE_NAME = NO + +# If the STRICT_PROTO_MATCHING option is enabled and doxygen fails to do proper +# type resolution of all parameters of a function it will reject a match between +# the prototype and the implementation of a member function even if there is +# only one candidate or it is obvious which candidate to choose by doing a +# simple string match. By disabling STRICT_PROTO_MATCHING doxygen will still +# accept a match between prototype and implementation in such cases. +# The default value is: NO. + +STRICT_PROTO_MATCHING = NO + +# The GENERATE_TODOLIST tag can be used to enable (YES) or disable (NO) the todo +# list. This list is created by putting \todo commands in the documentation. +# The default value is: YES. + +GENERATE_TODOLIST = YES + +# The GENERATE_TESTLIST tag can be used to enable (YES) or disable (NO) the test +# list. This list is created by putting \test commands in the documentation. +# The default value is: YES. + +GENERATE_TESTLIST = YES + +# The GENERATE_BUGLIST tag can be used to enable (YES) or disable (NO) the bug +# list. This list is created by putting \bug commands in the documentation. +# The default value is: YES. + +GENERATE_BUGLIST = YES + +# The GENERATE_DEPRECATEDLIST tag can be used to enable (YES) or disable (NO) +# the deprecated list. This list is created by putting \deprecated commands in +# the documentation. +# The default value is: YES. + +GENERATE_DEPRECATEDLIST= YES + +# The ENABLED_SECTIONS tag can be used to enable conditional documentation +# sections, marked by \if ... \endif and \cond +# ... \endcond blocks. + +ENABLED_SECTIONS = + +# The MAX_INITIALIZER_LINES tag determines the maximum number of lines that the +# initial value of a variable or macro / define can have for it to appear in the +# documentation. If the initializer consists of more lines than specified here +# it will be hidden. Use a value of 0 to hide initializers completely. The +# appearance of the value of individual variables and macros / defines can be +# controlled using \showinitializer or \hideinitializer command in the +# documentation regardless of this setting. +# Minimum value: 0, maximum value: 10000, default value: 30. + +MAX_INITIALIZER_LINES = 30 + +# Set the SHOW_USED_FILES tag to NO to disable the list of files generated at +# the bottom of the documentation of classes and structs. If set to YES, the +# list will mention the files that were used to generate the documentation. +# The default value is: YES. + +SHOW_USED_FILES = YES + +# Set the SHOW_FILES tag to NO to disable the generation of the Files page. This +# will remove the Files entry from the Quick Index and from the Folder Tree View +# (if specified). +# The default value is: YES. + +SHOW_FILES = YES + +# Set the SHOW_NAMESPACES tag to NO to disable the generation of the Namespaces +# page. This will remove the Namespaces entry from the Quick Index and from the +# Folder Tree View (if specified). +# The default value is: YES. + +SHOW_NAMESPACES = YES + +# The FILE_VERSION_FILTER tag can be used to specify a program or script that +# doxygen should invoke to get the current version for each file (typically from +# the version control system). Doxygen will invoke the program by executing (via +# popen()) the command command input-file, where command is the value of the +# FILE_VERSION_FILTER tag, and input-file is the name of an input file provided +# by doxygen. Whatever the program writes to standard output is used as the file +# version. For an example see the documentation. + +FILE_VERSION_FILTER = + +# The LAYOUT_FILE tag can be used to specify a layout file which will be parsed +# by doxygen. The layout file controls the global structure of the generated +# output files in an output format independent way. To create the layout file +# that represents doxygen's defaults, run doxygen with the -l option. You can +# optionally specify a file name after the option, if omitted DoxygenLayout.xml +# will be used as the name of the layout file. +# +# Note that if you run doxygen from a directory containing a file called +# DoxygenLayout.xml, doxygen will parse it automatically even if the LAYOUT_FILE +# tag is left empty. + +LAYOUT_FILE = + +# The CITE_BIB_FILES tag can be used to specify one or more bib files containing +# the reference definitions. This must be a list of .bib files. The .bib +# extension is automatically appended if omitted. This requires the bibtex tool +# to be installed. See also http://en.wikipedia.org/wiki/BibTeX for more info. +# For LaTeX the style of the bibliography can be controlled using +# LATEX_BIB_STYLE. To use this feature you need bibtex and perl available in the +# search path. See also \cite for info how to create references. + +CITE_BIB_FILES = + +#--------------------------------------------------------------------------- +# Configuration options related to warning and progress messages +#--------------------------------------------------------------------------- + +# The QUIET tag can be used to turn on/off the messages that are generated to +# standard output by doxygen. If QUIET is set to YES this implies that the +# messages are off. +# The default value is: NO. + +QUIET = NO + +# The WARNINGS tag can be used to turn on/off the warning messages that are +# generated to standard error (stderr) by doxygen. If WARNINGS is set to YES +# this implies that the warnings are on. +# +# Tip: Turn warnings on while writing the documentation. +# The default value is: YES. + +WARNINGS = YES + +# If the WARN_IF_UNDOCUMENTED tag is set to YES then doxygen will generate +# warnings for undocumented members. If EXTRACT_ALL is set to YES then this flag +# will automatically be disabled. +# The default value is: YES. + +WARN_IF_UNDOCUMENTED = YES + +# If the WARN_IF_DOC_ERROR tag is set to YES, doxygen will generate warnings for +# potential errors in the documentation, such as not documenting some parameters +# in a documented function, or documenting parameters that don't exist or using +# markup commands wrongly. +# The default value is: YES. + +WARN_IF_DOC_ERROR = YES + +# This WARN_NO_PARAMDOC option can be enabled to get warnings for functions that +# are documented, but have no documentation for their parameters or return +# value. If set to NO, doxygen will only warn about wrong or incomplete +# parameter documentation, but not about the absence of documentation. +# The default value is: NO. + +WARN_NO_PARAMDOC = NO + +# The WARN_FORMAT tag determines the format of the warning messages that doxygen +# can produce. The string should contain the $file, $line, and $text tags, which +# will be replaced by the file and line number from which the warning originated +# and the warning text. Optionally the format may contain $version, which will +# be replaced by the version of the file (if it could be obtained via +# FILE_VERSION_FILTER) +# The default value is: $file:$line: $text. + +WARN_FORMAT = "$file:$line: $text" + +# The WARN_LOGFILE tag can be used to specify a file to which warning and error +# messages should be written. If left blank the output is written to standard +# error (stderr). + +WARN_LOGFILE = + +#--------------------------------------------------------------------------- +# Configuration options related to the input files +#--------------------------------------------------------------------------- + +# The INPUT tag is used to specify the files and/or directories that contain +# documented source files. You may enter file names like myfile.cpp or +# directories like /usr/src/myproject. Separate the files or directories with +# spaces. See also FILE_PATTERNS and EXTENSION_MAPPING +# Note: If this tag is empty the current directory is searched. + +INPUT = ../../include/ck/tensor_operation/gpu/grid \ + ../../include/ck/tensor_operation/gpu/block \ + ../../include/ck/tensor_operation/gpu/thread \ + ../../library/include/ck/library/utility + +# This tag can be used to specify the character encoding of the source files +# that doxygen parses. Internally doxygen uses the UTF-8 encoding. Doxygen uses +# libiconv (or the iconv built into libc) for the transcoding. See the libiconv +# documentation (see: http://www.gnu.org/software/libiconv) for the list of +# possible encodings. +# The default value is: UTF-8. + +INPUT_ENCODING = UTF-8 + +# If the value of the INPUT tag contains directories, you can use the +# FILE_PATTERNS tag to specify one or more wildcard patterns (like *.cpp and +# *.h) to filter out the source-files in the directories. +# +# Note that for custom extensions or not directly supported extensions you also +# need to set EXTENSION_MAPPING for the extension otherwise the files are not +# read by doxygen. +# +# If left blank the following patterns are tested:*.c, *.cc, *.cxx, *.cpp, +# *.c++, *.java, *.ii, *.ixx, *.ipp, *.i++, *.inl, *.idl, *.ddl, *.odl, *.h, +# *.hh, *.hxx, *.hpp, *.h++, *.cs, *.d, *.php, *.php4, *.php5, *.phtml, *.inc, +# *.m, *.markdown, *.md, *.mm, *.dox, *.py, *.f90, *.f, *.for, *.tcl, *.vhd, +# *.vhdl, *.ucf, *.qsf, *.as and *.js. + +FILE_PATTERNS = *.c \ + *.cc \ + *.cxx \ + *.cpp \ + *.c++ \ + *.java \ + *.ii \ + *.ixx \ + *.ipp \ + *.i++ \ + *.inl \ + *.idl \ + *.ddl \ + *.odl \ + *.h \ + *.hh \ + *.hxx \ + *.hpp \ + *.h++ \ + *.cs \ + *.d \ + *.php \ + *.php4 \ + *.php5 \ + *.phtml \ + *.inc \ + *.m \ + *.markdown \ + *.md \ + *.mm \ + *.dox \ + *.py \ + *.tcl \ + *.vhd \ + *.vhdl \ + *.ucf \ + *.qsf \ + *.as \ + *.js + +# The RECURSIVE tag can be used to specify whether or not subdirectories should +# be searched for input files as well. +# The default value is: NO. + +RECURSIVE = YES + +# The EXCLUDE tag can be used to specify files and/or directories that should be +# excluded from the INPUT source files. This way you can easily exclude a +# subdirectory from a directory tree whose root is specified with the INPUT tag. +# +# Note that relative paths are relative to the directory from which doxygen is +# run. + +EXCLUDE = + +# The EXCLUDE_SYMLINKS tag can be used to select whether or not files or +# directories that are symbolic links (a Unix file system feature) are excluded +# from the input. +# The default value is: NO. + +EXCLUDE_SYMLINKS = NO + +# If the value of the INPUT tag contains directories, you can use the +# EXCLUDE_PATTERNS tag to specify one or more wildcard patterns to exclude +# certain files from those directories. +# +# Note that the wildcards are matched against the file with absolute path, so to +# exclude all test directories for example use the pattern */test/* + +EXCLUDE_PATTERNS = + +# The EXCLUDE_SYMBOLS tag can be used to specify one or more symbol names +# (namespaces, classes, functions, etc.) that should be excluded from the +# output. The symbol name can be a fully qualified name, a word, or if the +# wildcard * is used, a substring. Examples: ANamespace, AClass, +# AClass::ANamespace, ANamespace::*Test +# +# Note that the wildcards are matched against the file with absolute path, so to +# exclude all test directories use the pattern */test/* + +EXCLUDE_SYMBOLS = + +# The EXAMPLE_PATH tag can be used to specify one or more files or directories +# that contain example code fragments that are included (see the \include +# command). + +EXAMPLE_PATH = + +# If the value of the EXAMPLE_PATH tag contains directories, you can use the +# EXAMPLE_PATTERNS tag to specify one or more wildcard pattern (like *.cpp and +# *.h) to filter out the source-files in the directories. If left blank all +# files are included. + +EXAMPLE_PATTERNS = * + +# If the EXAMPLE_RECURSIVE tag is set to YES then subdirectories will be +# searched for input files to be used with the \include or \dontinclude commands +# irrespective of the value of the RECURSIVE tag. +# The default value is: NO. + +EXAMPLE_RECURSIVE = NO + +# The IMAGE_PATH tag can be used to specify one or more files or directories +# that contain images that are to be included in the documentation (see the +# \image command). + +IMAGE_PATH = + +# The INPUT_FILTER tag can be used to specify a program that doxygen should +# invoke to filter for each input file. Doxygen will invoke the filter program +# by executing (via popen()) the command: +# +# +# +# where is the value of the INPUT_FILTER tag, and is the +# name of an input file. Doxygen will then use the output that the filter +# program writes to standard output. If FILTER_PATTERNS is specified, this tag +# will be ignored. +# +# Note that the filter must not add or remove lines; it is applied before the +# code is scanned, but not when the output code is generated. If lines are added +# or removed, the anchors will not be placed correctly. + +INPUT_FILTER = + +# The FILTER_PATTERNS tag can be used to specify filters on a per file pattern +# basis. Doxygen will compare the file name with each pattern and apply the +# filter if there is a match. The filters are a list of the form: pattern=filter +# (like *.cpp=my_cpp_filter). See INPUT_FILTER for further information on how +# filters are used. If the FILTER_PATTERNS tag is empty or if none of the +# patterns match the file name, INPUT_FILTER is applied. + +FILTER_PATTERNS = + +# If the FILTER_SOURCE_FILES tag is set to YES, the input filter (if set using +# INPUT_FILTER) will also be used to filter the input files that are used for +# producing the source files to browse (i.e. when SOURCE_BROWSER is set to YES). +# The default value is: NO. + +FILTER_SOURCE_FILES = NO + +# The FILTER_SOURCE_PATTERNS tag can be used to specify source filters per file +# pattern. A pattern will override the setting for FILTER_PATTERN (if any) and +# it is also possible to disable source filtering for a specific pattern using +# *.ext= (so without naming a filter). +# This tag requires that the tag FILTER_SOURCE_FILES is set to YES. + +FILTER_SOURCE_PATTERNS = + +# If the USE_MDFILE_AS_MAINPAGE tag refers to the name of a markdown file that +# is part of the input, its contents will be placed on the main page +# (index.html). This can be useful if you have a project on for instance GitHub +# and want to reuse the introduction page also for the doxygen output. + +USE_MDFILE_AS_MAINPAGE = ../README.md + +#--------------------------------------------------------------------------- +# Configuration options related to source browsing +#--------------------------------------------------------------------------- + +# If the SOURCE_BROWSER tag is set to YES then a list of source files will be +# generated. Documented entities will be cross-referenced with these sources. +# +# Note: To get rid of all source code in the generated output, make sure that +# also VERBATIM_HEADERS is set to NO. +# The default value is: NO. + +SOURCE_BROWSER = NO + +# Setting the INLINE_SOURCES tag to YES will include the body of functions, +# classes and enums directly into the documentation. +# The default value is: NO. + +INLINE_SOURCES = NO + +# Setting the STRIP_CODE_COMMENTS tag to YES will instruct doxygen to hide any +# special comment blocks from generated source code fragments. Normal C, C++ and +# Fortran comments will always remain visible. +# The default value is: YES. + +STRIP_CODE_COMMENTS = YES + +# If the REFERENCED_BY_RELATION tag is set to YES then for each documented +# function all documented functions referencing it will be listed. +# The default value is: NO. + +REFERENCED_BY_RELATION = NO + +# If the REFERENCES_RELATION tag is set to YES then for each documented function +# all documented entities called/used by that function will be listed. +# The default value is: NO. + +REFERENCES_RELATION = NO + +# If the REFERENCES_LINK_SOURCE tag is set to YES and SOURCE_BROWSER tag is set +# to YES then the hyperlinks from functions in REFERENCES_RELATION and +# REFERENCED_BY_RELATION lists will link to the source code. Otherwise they will +# link to the documentation. +# The default value is: YES. + +REFERENCES_LINK_SOURCE = YES + +# If SOURCE_TOOLTIPS is enabled (the default) then hovering a hyperlink in the +# source code will show a tooltip with additional information such as prototype, +# brief description and links to the definition and documentation. Since this +# will make the HTML file larger and loading of large files a bit slower, you +# can opt to disable this feature. +# The default value is: YES. +# This tag requires that the tag SOURCE_BROWSER is set to YES. + +SOURCE_TOOLTIPS = YES + +# If the USE_HTAGS tag is set to YES then the references to source code will +# point to the HTML generated by the htags(1) tool instead of doxygen built-in +# source browser. The htags tool is part of GNU's global source tagging system +# (see http://www.gnu.org/software/global/global.html). You will need version +# 4.8.6 or higher. +# +# To use it do the following: +# - Install the latest version of global +# - Enable SOURCE_BROWSER and USE_HTAGS in the config file +# - Make sure the INPUT points to the root of the source tree +# - Run doxygen as normal +# +# Doxygen will invoke htags (and that will in turn invoke gtags), so these +# tools must be available from the command line (i.e. in the search path). +# +# The result: instead of the source browser generated by doxygen, the links to +# source code will now point to the output of htags. +# The default value is: NO. +# This tag requires that the tag SOURCE_BROWSER is set to YES. + +USE_HTAGS = NO + +# If the VERBATIM_HEADERS tag is set the YES then doxygen will generate a +# verbatim copy of the header file for each class for which an include is +# specified. Set to NO to disable this. +# See also: Section \class. +# The default value is: YES. + +VERBATIM_HEADERS = YES + +# If the CLANG_ASSISTED_PARSING tag is set to YES then doxygen will use the +# clang parser (see: http://clang.llvm.org/) for more accurate parsing at the +# cost of reduced performance. This can be particularly helpful with template +# rich C++ code for which doxygen's built-in parser lacks the necessary type +# information. +# Note: The availability of this option depends on whether or not doxygen was +# compiled with the --with-libclang option. +# The default value is: NO. + +CLANG_ASSISTED_PARSING = NO + +# If clang assisted parsing is enabled you can provide the compiler with command +# line options that you would normally use when invoking the compiler. Note that +# the include paths will already be set by doxygen for the files and directories +# specified with INPUT and INCLUDE_PATH. +# This tag requires that the tag CLANG_ASSISTED_PARSING is set to YES. + +CLANG_OPTIONS = + +#--------------------------------------------------------------------------- +# Configuration options related to the alphabetical class index +#--------------------------------------------------------------------------- + +# If the ALPHABETICAL_INDEX tag is set to YES, an alphabetical index of all +# compounds will be generated. Enable this if the project contains a lot of +# classes, structs, unions or interfaces. +# The default value is: YES. + +ALPHABETICAL_INDEX = YES + +# The COLS_IN_ALPHA_INDEX tag can be used to specify the number of columns in +# which the alphabetical index list will be split. +# Minimum value: 1, maximum value: 20, default value: 5. +# This tag requires that the tag ALPHABETICAL_INDEX is set to YES. + +COLS_IN_ALPHA_INDEX = 5 + +# In case all classes in a project start with a common prefix, all classes will +# be put under the same header in the alphabetical index. The IGNORE_PREFIX tag +# can be used to specify a prefix (or a list of prefixes) that should be ignored +# while generating the index headers. +# This tag requires that the tag ALPHABETICAL_INDEX is set to YES. + +IGNORE_PREFIX = + +#--------------------------------------------------------------------------- +# Configuration options related to the HTML output +#--------------------------------------------------------------------------- + +# If the GENERATE_HTML tag is set to YES, doxygen will generate HTML output +# The default value is: YES. + +GENERATE_HTML = YES + +# The HTML_OUTPUT tag is used to specify where the HTML docs will be put. If a +# relative path is entered the value of OUTPUT_DIRECTORY will be put in front of +# it. +# The default directory is: html. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_OUTPUT = html + +# The HTML_FILE_EXTENSION tag can be used to specify the file extension for each +# generated HTML page (for example: .htm, .php, .asp). +# The default value is: .html. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_FILE_EXTENSION = .html + +# The HTML_HEADER tag can be used to specify a user-defined HTML header file for +# each generated HTML page. If the tag is left blank doxygen will generate a +# standard header. +# +# To get valid HTML the header file that includes any scripts and style sheets +# that doxygen needs, which is dependent on the configuration options used (e.g. +# the setting GENERATE_TREEVIEW). It is highly recommended to start with a +# default header using +# doxygen -w html new_header.html new_footer.html new_stylesheet.css +# YourConfigFile +# and then modify the file new_header.html. See also section "Doxygen usage" +# for information on how to generate the default header that doxygen normally +# uses. +# Note: The header is subject to change so you typically have to regenerate the +# default header when upgrading to a newer version of doxygen. For a description +# of the possible markers and block names see the documentation. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_HEADER = + +# The HTML_FOOTER tag can be used to specify a user-defined HTML footer for each +# generated HTML page. If the tag is left blank doxygen will generate a standard +# footer. See HTML_HEADER for more information on how to generate a default +# footer and what special commands can be used inside the footer. See also +# section "Doxygen usage" for information on how to generate the default footer +# that doxygen normally uses. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_FOOTER = + +# The HTML_STYLESHEET tag can be used to specify a user-defined cascading style +# sheet that is used by each HTML page. It can be used to fine-tune the look of +# the HTML output. If left blank doxygen will generate a default style sheet. +# See also section "Doxygen usage" for information on how to generate the style +# sheet that doxygen normally uses. +# Note: It is recommended to use HTML_EXTRA_STYLESHEET instead of this tag, as +# it is more robust and this tag (HTML_STYLESHEET) will in the future become +# obsolete. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_STYLESHEET = + +# The HTML_EXTRA_STYLESHEET tag can be used to specify additional user-defined +# cascading style sheets that are included after the standard style sheets +# created by doxygen. Using this option one can overrule certain style aspects. +# This is preferred over using HTML_STYLESHEET since it does not replace the +# standard style sheet and is therefore more robust against future updates. +# Doxygen will copy the style sheet files to the output directory. +# Note: The order of the extra style sheet files is of importance (e.g. the last +# style sheet in the list overrules the setting of the previous ones in the +# list). For an example see the documentation. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_EXTRA_STYLESHEET = + +# The HTML_EXTRA_FILES tag can be used to specify one or more extra images or +# other source files which should be copied to the HTML output directory. Note +# that these files will be copied to the base HTML output directory. Use the +# $relpath^ marker in the HTML_HEADER and/or HTML_FOOTER files to load these +# files. In the HTML_STYLESHEET file, use the file name only. Also note that the +# files will be copied as-is; there are no commands or markers available. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_EXTRA_FILES = + +# The HTML_COLORSTYLE_HUE tag controls the color of the HTML output. Doxygen +# will adjust the colors in the style sheet and background images according to +# this color. Hue is specified as an angle on a colorwheel, see +# http://en.wikipedia.org/wiki/Hue for more information. For instance the value +# 0 represents red, 60 is yellow, 120 is green, 180 is cyan, 240 is blue, 300 +# purple, and 360 is red again. +# Minimum value: 0, maximum value: 359, default value: 220. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_COLORSTYLE_HUE = 220 + +# The HTML_COLORSTYLE_SAT tag controls the purity (or saturation) of the colors +# in the HTML output. For a value of 0 the output will use grayscales only. A +# value of 255 will produce the most vivid colors. +# Minimum value: 0, maximum value: 255, default value: 100. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_COLORSTYLE_SAT = 100 + +# The HTML_COLORSTYLE_GAMMA tag controls the gamma correction applied to the +# luminance component of the colors in the HTML output. Values below 100 +# gradually make the output lighter, whereas values above 100 make the output +# darker. The value divided by 100 is the actual gamma applied, so 80 represents +# a gamma of 0.8, The value 220 represents a gamma of 2.2, and 100 does not +# change the gamma. +# Minimum value: 40, maximum value: 240, default value: 80. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_COLORSTYLE_GAMMA = 80 + +# If the HTML_TIMESTAMP tag is set to YES then the footer of each generated HTML +# page will contain the date and time when the page was generated. Setting this +# to YES can help to show when doxygen was last run and thus if the +# documentation is up to date. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_TIMESTAMP = NO + +# If the HTML_DYNAMIC_SECTIONS tag is set to YES then the generated HTML +# documentation will contain sections that can be hidden and shown after the +# page has loaded. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_DYNAMIC_SECTIONS = NO + +# With HTML_INDEX_NUM_ENTRIES one can control the preferred number of entries +# shown in the various tree structured indices initially; the user can expand +# and collapse entries dynamically later on. Doxygen will expand the tree to +# such a level that at most the specified number of entries are visible (unless +# a fully collapsed tree already exceeds this amount). So setting the number of +# entries 1 will produce a full collapsed tree by default. 0 is a special value +# representing an infinite number of entries and will result in a full expanded +# tree by default. +# Minimum value: 0, maximum value: 9999, default value: 100. +# This tag requires that the tag GENERATE_HTML is set to YES. + +HTML_INDEX_NUM_ENTRIES = 100 + +# If the GENERATE_DOCSET tag is set to YES, additional index files will be +# generated that can be used as input for Apple's Xcode 3 integrated development +# environment (see: http://developer.apple.com/tools/xcode/), introduced with +# OSX 10.5 (Leopard). To create a documentation set, doxygen will generate a +# Makefile in the HTML output directory. Running make will produce the docset in +# that directory and running make install will install the docset in +# ~/Library/Developer/Shared/Documentation/DocSets so that Xcode will find it at +# startup. See http://developer.apple.com/tools/creatingdocsetswithdoxygen.html +# for more information. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTML is set to YES. + +GENERATE_DOCSET = NO + +# This tag determines the name of the docset feed. A documentation feed provides +# an umbrella under which multiple documentation sets from a single provider +# (such as a company or product suite) can be grouped. +# The default value is: Doxygen generated docs. +# This tag requires that the tag GENERATE_DOCSET is set to YES. + +DOCSET_FEEDNAME = "Doxygen generated docs" + +# This tag specifies a string that should uniquely identify the documentation +# set bundle. This should be a reverse domain-name style string, e.g. +# com.mycompany.MyDocSet. Doxygen will append .docset to the name. +# The default value is: org.doxygen.Project. +# This tag requires that the tag GENERATE_DOCSET is set to YES. + +DOCSET_BUNDLE_ID = org.doxygen.Project + +# The DOCSET_PUBLISHER_ID tag specifies a string that should uniquely identify +# the documentation publisher. This should be a reverse domain-name style +# string, e.g. com.mycompany.MyDocSet.documentation. +# The default value is: org.doxygen.Publisher. +# This tag requires that the tag GENERATE_DOCSET is set to YES. + +DOCSET_PUBLISHER_ID = org.doxygen.Publisher + +# The DOCSET_PUBLISHER_NAME tag identifies the documentation publisher. +# The default value is: Publisher. +# This tag requires that the tag GENERATE_DOCSET is set to YES. + +DOCSET_PUBLISHER_NAME = Publisher + +# If the GENERATE_HTMLHELP tag is set to YES then doxygen generates three +# additional HTML index files: index.hhp, index.hhc, and index.hhk. The +# index.hhp is a project file that can be read by Microsoft's HTML Help Workshop +# (see: http://www.microsoft.com/en-us/download/details.aspx?id=21138) on +# Windows. +# +# The HTML Help Workshop contains a compiler that can convert all HTML output +# generated by doxygen into a single compiled HTML file (.chm). Compiled HTML +# files are now used as the Windows 98 help format, and will replace the old +# Windows help format (.hlp) on all Windows platforms in the future. Compressed +# HTML files also contain an index, a table of contents, and you can search for +# words in the documentation. The HTML workshop also contains a viewer for +# compressed HTML files. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTML is set to YES. + +GENERATE_HTMLHELP = NO + +# The CHM_FILE tag can be used to specify the file name of the resulting .chm +# file. You can add a path in front of the file if the result should not be +# written to the html output directory. +# This tag requires that the tag GENERATE_HTMLHELP is set to YES. + +CHM_FILE = + +# The HHC_LOCATION tag can be used to specify the location (absolute path +# including file name) of the HTML help compiler (hhc.exe). If non-empty, +# doxygen will try to run the HTML help compiler on the generated index.hhp. +# The file has to be specified with full path. +# This tag requires that the tag GENERATE_HTMLHELP is set to YES. + +HHC_LOCATION = + +# The GENERATE_CHI flag controls if a separate .chi index file is generated +# (YES) or that it should be included in the master .chm file (NO). +# The default value is: NO. +# This tag requires that the tag GENERATE_HTMLHELP is set to YES. + +GENERATE_CHI = NO + +# The CHM_INDEX_ENCODING is used to encode HtmlHelp index (hhk), content (hhc) +# and project file content. +# This tag requires that the tag GENERATE_HTMLHELP is set to YES. + +CHM_INDEX_ENCODING = + +# The BINARY_TOC flag controls whether a binary table of contents is generated +# (YES) or a normal table of contents (NO) in the .chm file. Furthermore it +# enables the Previous and Next buttons. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTMLHELP is set to YES. + +BINARY_TOC = NO + +# The TOC_EXPAND flag can be set to YES to add extra items for group members to +# the table of contents of the HTML help documentation and to the tree view. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTMLHELP is set to YES. + +TOC_EXPAND = NO + +# If the GENERATE_QHP tag is set to YES and both QHP_NAMESPACE and +# QHP_VIRTUAL_FOLDER are set, an additional index file will be generated that +# can be used as input for Qt's qhelpgenerator to generate a Qt Compressed Help +# (.qch) of the generated HTML documentation. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTML is set to YES. + +GENERATE_QHP = NO + +# If the QHG_LOCATION tag is specified, the QCH_FILE tag can be used to specify +# the file name of the resulting .qch file. The path specified is relative to +# the HTML output folder. +# This tag requires that the tag GENERATE_QHP is set to YES. + +QCH_FILE = + +# The QHP_NAMESPACE tag specifies the namespace to use when generating Qt Help +# Project output. For more information please see Qt Help Project / Namespace +# (see: http://qt-project.org/doc/qt-4.8/qthelpproject.html#namespace). +# The default value is: org.doxygen.Project. +# This tag requires that the tag GENERATE_QHP is set to YES. + +QHP_NAMESPACE = org.doxygen.Project + +# The QHP_VIRTUAL_FOLDER tag specifies the namespace to use when generating Qt +# Help Project output. For more information please see Qt Help Project / Virtual +# Folders (see: http://qt-project.org/doc/qt-4.8/qthelpproject.html#virtual- +# folders). +# The default value is: doc. +# This tag requires that the tag GENERATE_QHP is set to YES. + +QHP_VIRTUAL_FOLDER = doc + +# If the QHP_CUST_FILTER_NAME tag is set, it specifies the name of a custom +# filter to add. For more information please see Qt Help Project / Custom +# Filters (see: http://qt-project.org/doc/qt-4.8/qthelpproject.html#custom- +# filters). +# This tag requires that the tag GENERATE_QHP is set to YES. + +QHP_CUST_FILTER_NAME = + +# The QHP_CUST_FILTER_ATTRS tag specifies the list of the attributes of the +# custom filter to add. For more information please see Qt Help Project / Custom +# Filters (see: http://qt-project.org/doc/qt-4.8/qthelpproject.html#custom- +# filters). +# This tag requires that the tag GENERATE_QHP is set to YES. + +QHP_CUST_FILTER_ATTRS = + +# The QHP_SECT_FILTER_ATTRS tag specifies the list of the attributes this +# project's filter section matches. Qt Help Project / Filter Attributes (see: +# http://qt-project.org/doc/qt-4.8/qthelpproject.html#filter-attributes). +# This tag requires that the tag GENERATE_QHP is set to YES. + +QHP_SECT_FILTER_ATTRS = + +# The QHG_LOCATION tag can be used to specify the location of Qt's +# qhelpgenerator. If non-empty doxygen will try to run qhelpgenerator on the +# generated .qhp file. +# This tag requires that the tag GENERATE_QHP is set to YES. + +QHG_LOCATION = + +# If the GENERATE_ECLIPSEHELP tag is set to YES, additional index files will be +# generated, together with the HTML files, they form an Eclipse help plugin. To +# install this plugin and make it available under the help contents menu in +# Eclipse, the contents of the directory containing the HTML and XML files needs +# to be copied into the plugins directory of eclipse. The name of the directory +# within the plugins directory should be the same as the ECLIPSE_DOC_ID value. +# After copying Eclipse needs to be restarted before the help appears. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTML is set to YES. + +GENERATE_ECLIPSEHELP = NO + +# A unique identifier for the Eclipse help plugin. When installing the plugin +# the directory name containing the HTML and XML files should also have this +# name. Each documentation set should have its own identifier. +# The default value is: org.doxygen.Project. +# This tag requires that the tag GENERATE_ECLIPSEHELP is set to YES. + +ECLIPSE_DOC_ID = org.doxygen.Project + +# If you want full control over the layout of the generated HTML pages it might +# be necessary to disable the index and replace it with your own. The +# DISABLE_INDEX tag can be used to turn on/off the condensed index (tabs) at top +# of each HTML page. A value of NO enables the index and the value YES disables +# it. Since the tabs in the index contain the same information as the navigation +# tree, you can set this option to YES if you also set GENERATE_TREEVIEW to YES. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTML is set to YES. + +DISABLE_INDEX = NO + +# The GENERATE_TREEVIEW tag is used to specify whether a tree-like index +# structure should be generated to display hierarchical information. If the tag +# value is set to YES, a side panel will be generated containing a tree-like +# index structure (just like the one that is generated for HTML Help). For this +# to work a browser that supports JavaScript, DHTML, CSS and frames is required +# (i.e. any modern browser). Windows users are probably better off using the +# HTML help feature. Via custom style sheets (see HTML_EXTRA_STYLESHEET) one can +# further fine-tune the look of the index. As an example, the default style +# sheet generated by doxygen has an example that shows how to put an image at +# the root of the tree instead of the PROJECT_NAME. Since the tree basically has +# the same information as the tab index, you could consider setting +# DISABLE_INDEX to YES when enabling this option. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTML is set to YES. + +GENERATE_TREEVIEW = NO + +# The ENUM_VALUES_PER_LINE tag can be used to set the number of enum values that +# doxygen will group on one line in the generated HTML documentation. +# +# Note that a value of 0 will completely suppress the enum values from appearing +# in the overview section. +# Minimum value: 0, maximum value: 20, default value: 4. +# This tag requires that the tag GENERATE_HTML is set to YES. + +ENUM_VALUES_PER_LINE = 1 + +# If the treeview is enabled (see GENERATE_TREEVIEW) then this tag can be used +# to set the initial width (in pixels) of the frame in which the tree is shown. +# Minimum value: 0, maximum value: 1500, default value: 250. +# This tag requires that the tag GENERATE_HTML is set to YES. + +TREEVIEW_WIDTH = 250 + +# If the EXT_LINKS_IN_WINDOW option is set to YES, doxygen will open links to +# external symbols imported via tag files in a separate window. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTML is set to YES. + +EXT_LINKS_IN_WINDOW = NO + +# Use this tag to change the font size of LaTeX formulas included as images in +# the HTML documentation. When you change the font size after a successful +# doxygen run you need to manually remove any form_*.png images from the HTML +# output directory to force them to be regenerated. +# Minimum value: 8, maximum value: 50, default value: 10. +# This tag requires that the tag GENERATE_HTML is set to YES. + +FORMULA_FONTSIZE = 10 + +# Use the FORMULA_TRANPARENT tag to determine whether or not the images +# generated for formulas are transparent PNGs. Transparent PNGs are not +# supported properly for IE 6.0, but are supported on all modern browsers. +# +# Note that when changing this option you need to delete any form_*.png files in +# the HTML output directory before the changes have effect. +# The default value is: YES. +# This tag requires that the tag GENERATE_HTML is set to YES. + +FORMULA_TRANSPARENT = YES + +# Enable the USE_MATHJAX option to render LaTeX formulas using MathJax (see +# http://www.mathjax.org) which uses client side Javascript for the rendering +# instead of using pre-rendered bitmaps. Use this if you do not have LaTeX +# installed or if you want to formulas look prettier in the HTML output. When +# enabled you may also need to install MathJax separately and configure the path +# to it using the MATHJAX_RELPATH option. +# The default value is: NO. +# This tag requires that the tag GENERATE_HTML is set to YES. + +USE_MATHJAX = YES + +# When MathJax is enabled you can set the default output format to be used for +# the MathJax output. See the MathJax site (see: +# http://docs.mathjax.org/en/latest/output.html) for more details. +# Possible values are: HTML-CSS (which is slower, but has the best +# compatibility), NativeMML (i.e. MathML) and SVG. +# The default value is: HTML-CSS. +# This tag requires that the tag USE_MATHJAX is set to YES. + +MATHJAX_FORMAT = HTML-CSS + +# When MathJax is enabled you need to specify the location relative to the HTML +# output directory using the MATHJAX_RELPATH option. The destination directory +# should contain the MathJax.js script. For instance, if the mathjax directory +# is located at the same level as the HTML output directory, then +# MATHJAX_RELPATH should be ../mathjax. The default value points to the MathJax +# Content Delivery Network so you can quickly see the result without installing +# MathJax. However, it is strongly recommended to install a local copy of +# MathJax from http://www.mathjax.org before deployment. +# The default value is: http://cdn.mathjax.org/mathjax/latest. +# This tag requires that the tag USE_MATHJAX is set to YES. + +MATHJAX_RELPATH = http://cdn.mathjax.org/mathjax/latest + +# The MATHJAX_EXTENSIONS tag can be used to specify one or more MathJax +# extension names that should be enabled during MathJax rendering. For example +# MATHJAX_EXTENSIONS = TeX/AMSmath TeX/AMSsymbols +# This tag requires that the tag USE_MATHJAX is set to YES. + +MATHJAX_EXTENSIONS = + +# The MATHJAX_CODEFILE tag can be used to specify a file with javascript pieces +# of code that will be used on startup of the MathJax code. See the MathJax site +# (see: http://docs.mathjax.org/en/latest/output.html) for more details. For an +# example see the documentation. +# This tag requires that the tag USE_MATHJAX is set to YES. + +MATHJAX_CODEFILE = + +# When the SEARCHENGINE tag is enabled doxygen will generate a search box for +# the HTML output. The underlying search engine uses javascript and DHTML and +# should work on any modern browser. Note that when using HTML help +# (GENERATE_HTMLHELP), Qt help (GENERATE_QHP), or docsets (GENERATE_DOCSET) +# there is already a search function so this one should typically be disabled. +# For large projects the javascript based search engine can be slow, then +# enabling SERVER_BASED_SEARCH may provide a better solution. It is possible to +# search using the keyboard; to jump to the search box use + S +# (what the is depends on the OS and browser, but it is typically +# , /