Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
76f2b6cd
Commit
76f2b6cd
authored
Jul 14, 2023
by
danyao12
Browse files
merge develop to attn-train-develop-qloop
parents
9b4c780a
1ee99dca
Changes
531
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
684 additions
and
92 deletions
+684
-92
example/34_batchnorm/batchnorm_forward_inferring_nhwc.cpp
example/34_batchnorm/batchnorm_forward_inferring_nhwc.cpp
+1
-1
example/34_batchnorm/batchnorm_forward_training_nhwc.cpp
example/34_batchnorm/batchnorm_forward_training_nhwc.cpp
+13
-6
example/34_batchnorm/batchnorm_forward_training_nhwc_obsolete.cpp
...34_batchnorm/batchnorm_forward_training_nhwc_obsolete.cpp
+598
-0
example/34_batchnorm/batchnorm_infer_impl.hpp
example/34_batchnorm/batchnorm_infer_impl.hpp
+3
-3
example/35_splitK_gemm/CMakeLists.txt
example/35_splitK_gemm/CMakeLists.txt
+17
-11
example/35_splitK_gemm/splitK_gemm_xdl_bfp16.cpp
example/35_splitK_gemm/splitK_gemm_xdl_bfp16.cpp
+1
-1
example/35_splitK_gemm/splitK_gemm_xdl_fp16.cpp
example/35_splitK_gemm/splitK_gemm_xdl_fp16.cpp
+1
-1
example/35_splitK_gemm/splitK_gemm_xdl_fp32.cpp
example/35_splitK_gemm/splitK_gemm_xdl_fp32.cpp
+1
-1
example/35_splitK_gemm/splitK_gemm_xdl_int4.cpp
example/35_splitK_gemm/splitK_gemm_xdl_int4.cpp
+1
-1
example/35_splitK_gemm/splitK_gemm_xdl_int8.cpp
example/35_splitK_gemm/splitK_gemm_xdl_int8.cpp
+1
-1
example/36_sparse_embedding/sparse_embedding3_forward_layernorm.cpp
..._sparse_embedding/sparse_embedding3_forward_layernorm.cpp
+27
-52
example/37_batched_gemm_add_add_relu_gemm_add/batched_gemm_add_add_relu_gemm_add_xdl_fp16.cpp
..._gemm_add/batched_gemm_add_add_relu_gemm_add_xdl_fp16.cpp
+1
-1
example/38_grouped_conv_bwd_data_multiple_d/CMakeLists.txt
example/38_grouped_conv_bwd_data_multiple_d/CMakeLists.txt
+12
-6
example/38_grouped_conv_bwd_data_multiple_d/common.hpp
example/38_grouped_conv_bwd_data_multiple_d/common.hpp
+1
-1
example/38_grouped_conv_bwd_data_multiple_d/grouped_conv_bwd_data_bias_relu_fp16.cpp
..._data_multiple_d/grouped_conv_bwd_data_bias_relu_fp16.cpp
+1
-1
example/38_grouped_conv_bwd_data_multiple_d/grouped_conv_bwd_data_fp16.cpp
...d_conv_bwd_data_multiple_d/grouped_conv_bwd_data_fp16.cpp
+1
-1
example/38_grouped_conv_bwd_data_multiple_d/run_grouped_conv_bwd_data_bias_relu_example.inc
...ultiple_d/run_grouped_conv_bwd_data_bias_relu_example.inc
+1
-1
example/38_grouped_conv_bwd_data_multiple_d/run_grouped_conv_bwd_data_example.inc
...bwd_data_multiple_d/run_grouped_conv_bwd_data_example.inc
+1
-1
example/39_permute/common.hpp
example/39_permute/common.hpp
+1
-1
example/39_permute/permute_1xHxW_fp16.cpp
example/39_permute/permute_1xHxW_fp16.cpp
+1
-1
No files found.
Too many changes to show.
To preserve performance only
531 of 531+
files are displayed.
Plain diff
Email patch
example/34_batchnorm/batchnorm_forward_inferring_nhwc.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include <limits>
#include <iostream>
...
...
example/34_batchnorm/batchnorm_forward_training_nhwc.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include <limits>
#include <iostream>
...
...
@@ -414,7 +414,7 @@ bool bnorm_fwd_nhwc_test(bool do_verification,
(
void
)
invoker_ptr_ref
->
Run
(
argument_ptr_ref
.
get
());
y_dev
.
FromDevice
(
y
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
y
,
y_ref
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
y
,
y_ref
,
"Incorrect normalized output values"
);
if
(
updateMovingAverage
)
{
...
...
@@ -424,8 +424,12 @@ bool bnorm_fwd_nhwc_test(bool do_verification,
resultRunningMean_dev
.
FromDevice
(
resultRunningMean
.
mData
.
data
());
resultRunningVariance_dev
.
FromDevice
(
resultRunningVariance
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultRunningMean
,
resultRunningMean_ref
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultRunningVariance
,
resultRunningVariance_ref
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultRunningMean
,
resultRunningMean_ref
,
"Incorrect running mean values"
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultRunningVariance
,
resultRunningVariance_ref
,
"Incorrect running variance values"
);
};
if
(
saveMeanAndInvVariance
)
...
...
@@ -438,8 +442,11 @@ bool bnorm_fwd_nhwc_test(bool do_verification,
resultSaveMean_dev
.
FromDevice
(
resultSaveMean
.
mData
.
data
());
resultSaveInvVariance_dev
.
FromDevice
(
resultSaveInvVariance
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultSaveMean
,
resultSaveMean_ref
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultSaveInvVariance
,
resultSaveInvVariance_ref
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultSaveMean
,
resultSaveMean_ref
,
"Incorrect saved mean values"
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultSaveInvVariance
,
resultSaveInvVariance_ref
,
"Incorrect saved invvariance values"
);
};
};
...
...
example/34_batchnorm/batchnorm_forward_training_nhwc_obsolete.cpp
0 → 100644
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <limits>
#include <iostream>
#include <vector>
#include <array>
#include <algorithm>
#include <getopt.h>
#include "ck/ck.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batchnorm_forward.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batchnorm_forward_impl_obsolete.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
static
struct
option
long_options
[]
=
{{
"inOutLengths"
,
required_argument
,
nullptr
,
'D'
},
{
"verify"
,
required_argument
,
nullptr
,
'v'
},
{
"help"
,
no_argument
,
nullptr
,
'?'
},
{
nullptr
,
0
,
nullptr
,
0
}};
class
BatchNormFwdArg
{
private:
int
option_index
=
0
;
public:
std
::
vector
<
size_t
>
inOutLengths
;
bool
do_verification
=
false
;
bool
updateMovingAverage
;
bool
saveMeanAndInvVariance
;
int
data_type
=
0
;
int
init_method
=
2
;
bool
time_kernel
=
false
;
bool
use_multiblock_welford
=
false
;
public:
void
show_usage
(
const
char
*
cmd
)
{
std
::
cout
<<
"Usage of "
<<
cmd
<<
std
::
endl
;
std
::
cout
<<
"--inOutLengths or -D, comma separated list of input tensor dimension "
"lengths, must have 4 integers for nhwc"
<<
std
::
endl
;
std
::
cout
<<
"--verify or -v, 1/0 to indicate whether to verify the batch-normalization "
"result by "
"comparing with the host-based batch-normalization"
<<
std
::
endl
;
std
::
cout
<<
"Arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64)"
<<
std
::
endl
;
std
::
cout
<<
"Arg2: 1/0 to indicate whether to update the moving average and variance "
"(0=no, 1=yes)"
<<
std
::
endl
;
std
::
cout
<<
"Arg3: 1/0 to indicate whether to save the calculated mean and invVariance "
"(0=no, 1=yes)"
<<
std
::
endl
;
std
::
cout
<<
"Arg4: init method used for bnScale and bnBias (0=no init, 1=single integer "
"value, 2=scope integer "
"value, 3=decimal value)"
<<
std
::
endl
;
std
::
cout
<<
"Arg5: time kernel (0=no, 1=yes)"
<<
std
::
endl
;
std
::
cout
<<
"Arg6: use multi-block welford (0=n0, 1=yes)"
<<
std
::
endl
;
};
int
processArgs
(
int
argc
,
char
*
argv
[])
{
using
ck
::
host_common
::
getTypeValuesFromString
;
int
ch
;
while
(
1
)
{
ch
=
getopt_long
(
argc
,
argv
,
"D:v:"
,
long_options
,
&
option_index
);
if
(
ch
==
-
1
)
break
;
switch
(
ch
)
{
case
'D'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
inOutLengths
=
getTypeValuesFromString
<
size_t
>
(
optarg
);
if
(
inOutLengths
.
size
()
!=
4
)
throw
std
::
runtime_error
(
"NHWC tensor layout should have 4 length values specified!"
);
break
;
case
'v'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
do_verification
=
static_cast
<
bool
>
(
std
::
atoi
(
optarg
));
break
;
case
'?'
:
if
(
std
::
string
(
long_options
[
option_index
].
name
)
==
"help"
)
{
show_usage
(
argv
[
0
]);
return
(
-
1
);
};
break
;
default:
show_usage
(
argv
[
0
]);
return
(
-
1
);
};
};
if
(
optind
+
6
>
argc
)
throw
std
::
runtime_error
(
"Invalid cmd-line arguments, more argumetns are needed!"
);
data_type
=
std
::
atoi
(
argv
[
optind
++
]);
updateMovingAverage
=
std
::
atoi
(
argv
[
optind
++
]);
saveMeanAndInvVariance
=
std
::
atoi
(
argv
[
optind
++
]);
init_method
=
std
::
atoi
(
argv
[
optind
++
]);
time_kernel
=
static_cast
<
bool
>
(
std
::
atoi
(
argv
[
optind
++
]));
use_multiblock_welford
=
static_cast
<
bool
>
(
std
::
atoi
(
argv
[
optind
]));
if
(
data_type
!=
0
&&
data_type
!=
1
&&
data_type
!=
3
&&
data_type
!=
5
&&
data_type
!=
6
)
return
(
-
1
);
return
(
0
);
};
};
using
namespace
ck
;
template
<
typename
InOutDataType
,
typename
AccDataType
,
bool
UseMultiblockInK
>
bool
bnorm_fwd_nhwc_test
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
std
::
vector
<
size_t
>
inOutLengths
,
bool
updateMovingAverage
,
bool
saveMeanAndInvVariance
,
double
averageFactor
,
double
epsilon
)
{
// for NHWC BatchNorm calculation of mean and meansquare
constexpr
int
Rank
=
4
;
constexpr
int
NumReduceDim
=
3
;
// when using lengths[] to create a tensor, lengths[0] is the length of highest dimension
// eg. N of NHWC, so lengths[3] is the dimension C length of NHWC
const
std
::
vector
<
size_t
>
scaleBiasMeanVarLengths
=
{
inOutLengths
[
3
]};
// input data of the batchnorm forward algorithm
Tensor
<
InOutDataType
>
x
(
inOutLengths
);
Tensor
<
AccDataType
>
bnScale
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
bnBias
(
scaleBiasMeanVarLengths
);
// output data of the batchnorm forward algorithm
Tensor
<
InOutDataType
>
y_ref
(
inOutLengths
);
Tensor
<
InOutDataType
>
y
(
inOutLengths
);
Tensor
<
AccDataType
>
resultSaveMean_ref
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
resultSaveInvVariance_ref
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
resultRunningMean_ref
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
resultRunningVariance_ref
(
scaleBiasMeanVarLengths
);
auto
inOutStrides
=
x
.
mDesc
.
GetStrides
();
auto
scaleBiasMeanVarStrides
=
bnScale
.
mDesc
.
GetStrides
();
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
();
if
(
updateMovingAverage
)
{
if
constexpr
(
std
::
is_same
<
InOutDataType
,
int8_t
>::
value
)
{
x
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOutDataType
>
{
-
5
,
5
},
num_thread
);
const
float
x_mean
=
0.0
f
;
const
float
x_stddev
=
2.5
f
;
const
float
noise_stddev
=
0.04
f
;
resultRunningMean_ref
.
GenerateTensorValue
(
GeneratorTensor_4
<
AccDataType
>
{
x_mean
,
noise_stddev
},
num_thread
);
resultRunningVariance_ref
.
GenerateTensorValue
(
GeneratorTensor_4
<
AccDataType
>
{
x_stddev
*
x_stddev
,
noise_stddev
},
num_thread
);
}
else
{
const
float
x_mean
=
0.0
f
;
const
float
x_stddev
=
1.0
f
;
const
float
noise_stddev
=
0.04
f
;
// input data in normal distribution
x
.
GenerateTensorValue
(
GeneratorTensor_4
<
InOutDataType
>
{
x_mean
,
x_stddev
},
num_thread
);
// initialize the runningMean to be values with tiny variation to the mean of the x
// values
resultRunningMean_ref
.
GenerateTensorValue
(
GeneratorTensor_4
<
AccDataType
>
{
x_mean
,
noise_stddev
},
num_thread
);
// initialize the runningVariance to be values with tiny variation to the variance of
// the x values
resultRunningVariance_ref
.
GenerateTensorValue
(
GeneratorTensor_4
<
AccDataType
>
{
x_stddev
*
x_stddev
,
noise_stddev
},
num_thread
);
};
}
else
{
if
constexpr
(
std
::
is_same
<
InOutDataType
,
int8_t
>::
value
)
x
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOutDataType
>
{
-
5
,
5
},
num_thread
);
else
x
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOutDataType
>
{
-
5.0
f
,
5.0
f
},
num_thread
);
};
if
(
do_verification
)
{
switch
(
init_method
)
{
case
0
:
bnScale
.
GenerateTensorValue
(
GeneratorTensor_0
<
AccDataType
>
{},
num_thread
);
bnBias
.
GenerateTensorValue
(
GeneratorTensor_0
<
AccDataType
>
{},
num_thread
);
break
;
case
1
:
bnScale
.
GenerateTensorValue
(
GeneratorTensor_1
<
AccDataType
>
{
1
},
num_thread
);
bnBias
.
GenerateTensorValue
(
GeneratorTensor_1
<
AccDataType
>
{
0
},
num_thread
);
break
;
case
2
:
bnScale
.
GenerateTensorValue
(
GeneratorTensor_2
<
AccDataType
>
{
-
5
,
5
},
num_thread
);
bnBias
.
GenerateTensorValue
(
GeneratorTensor_2
<
AccDataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
bnScale
.
GenerateTensorValue
(
GeneratorTensor_3
<
AccDataType
>
{
-
5.0
f
,
5.0
f
},
num_thread
);
bnBias
.
GenerateTensorValue
(
GeneratorTensor_3
<
AccDataType
>
{
-
5.0
f
,
5.0
f
},
num_thread
);
}
};
// these buffers are usually provided by the user application
DeviceMem
x_dev
(
sizeof
(
InOutDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
y_dev
(
sizeof
(
InOutDataType
)
*
y
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bnScale_dev
(
sizeof
(
AccDataType
)
*
bnScale
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bnBias_dev
(
sizeof
(
AccDataType
)
*
bnBias
.
mDesc
.
GetElementSpaceSize
());
// mean_dev or resultSaveMean_dev
DeviceMem
resultSaveMean_dev
(
sizeof
(
AccDataType
)
*
resultSaveMean_ref
.
mDesc
.
GetElementSpaceSize
());
// meansquare_dev or resultSaveInvVariance_dev
DeviceMem
resultSaveInvVariance_dev
(
sizeof
(
AccDataType
)
*
resultSaveInvVariance_ref
.
mDesc
.
GetElementSpaceSize
());
// resultRunningMean_dev
DeviceMem
resultRunningMean_dev
(
sizeof
(
AccDataType
)
*
resultRunningMean_ref
.
mDesc
.
GetElementSpaceSize
());
// resultRunningVariance_dev
DeviceMem
resultRunningVariance_dev
(
sizeof
(
AccDataType
)
*
resultRunningVariance_ref
.
mDesc
.
GetElementSpaceSize
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
bnScale_dev
.
ToDevice
(
bnScale
.
mData
.
data
());
bnBias_dev
.
ToDevice
(
bnBias
.
mData
.
data
());
if
(
updateMovingAverage
)
{
resultRunningMean_dev
.
ToDevice
(
resultRunningMean_ref
.
mData
.
data
());
resultRunningVariance_dev
.
ToDevice
(
resultRunningVariance_ref
.
mData
.
data
());
};
std
::
array
<
index_t
,
Rank
>
i_inOutLengths
;
std
::
array
<
index_t
,
Rank
>
i_inOutStrides
;
std
::
array
<
index_t
,
Rank
-
NumReduceDim
>
i_scaleBiasMeanVarLengths
;
std
::
array
<
index_t
,
Rank
-
NumReduceDim
>
i_scaleBiasMeanVarStrides
;
ck
::
ranges
::
copy
(
inOutLengths
,
i_inOutLengths
.
begin
());
ck
::
ranges
::
copy
(
inOutStrides
,
i_inOutStrides
.
begin
());
ck
::
ranges
::
copy
(
scaleBiasMeanVarLengths
,
i_scaleBiasMeanVarLengths
.
begin
());
ck
::
ranges
::
copy
(
scaleBiasMeanVarStrides
,
i_scaleBiasMeanVarStrides
.
begin
());
using
PassThroughOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceBatchNormFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchNormFwdImpl
<
InOutDataType
,
InOutDataType
,
AccDataType
,
AccDataType
,
// ScaleDataType
AccDataType
,
// BiasDataType
AccDataType
,
// MeanVarDataType
PassThroughOp
,
// YElementwiseOp
Rank
,
NumReduceDim
,
UseMultiblockInK
,
256
,
16
,
16
,
1
,
2
,
0
,
1
,
1
,
1
,
1
,
1
>
;
auto
batchnorm_fwd
=
DeviceBatchNormFwdInstance
{};
auto
argument_ptr
=
batchnorm_fwd
.
MakeArgumentPointer
(
i_inOutLengths
,
i_inOutStrides
,
i_inOutStrides
,
{
0
,
1
,
2
},
// indicates physical indices of reduce dimensions in lengths[] and strides[]
i_scaleBiasMeanVarLengths
,
i_scaleBiasMeanVarStrides
,
i_scaleBiasMeanVarStrides
,
i_scaleBiasMeanVarStrides
,
x_dev
.
GetDeviceBuffer
(),
bnScale_dev
.
GetDeviceBuffer
(),
bnBias_dev
.
GetDeviceBuffer
(),
epsilon
,
PassThroughOp
{},
y_dev
.
GetDeviceBuffer
(),
saveMeanAndInvVariance
?
resultSaveMean_dev
.
GetDeviceBuffer
()
:
nullptr
,
saveMeanAndInvVariance
?
resultSaveInvVariance_dev
.
GetDeviceBuffer
()
:
nullptr
,
averageFactor
,
updateMovingAverage
?
resultRunningMean_dev
.
GetDeviceBuffer
()
:
nullptr
,
updateMovingAverage
?
resultRunningVariance_dev
.
GetDeviceBuffer
()
:
nullptr
);
if
(
!
batchnorm_fwd
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
cout
<<
"The runtime parameters seems not supported by the BatchNorm device instance, "
"exiting!"
<<
std
::
endl
;
return
(
false
);
};
size_t
workspace_sz
=
batchnorm_fwd
.
GetWorkSpaceSize
(
argument_ptr
.
get
());
DeviceMem
workspace_dev
(
workspace_sz
);
batchnorm_fwd
.
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace_dev
.
GetDeviceBuffer
());
auto
invoker_ptr
=
batchnorm_fwd
.
MakeInvokerPointer
();
if
(
time_kernel
)
{
float
avg_time
=
0.0
f
;
size_t
num_bytes
=
0
;
size_t
total_length
=
inOutLengths
[
0
]
*
inOutLengths
[
1
]
*
inOutLengths
[
2
]
*
inOutLengths
[
3
];
size_t
invariant_length
=
inOutLengths
[
3
];
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
// inputing of x, scale, bias, outputing of y
num_bytes
+=
total_length
*
sizeof
(
InOutDataType
)
*
2
+
invariant_length
*
sizeof
(
AccDataType
)
*
2
;
// outputing of mean, inv-variance
num_bytes
+=
saveMeanAndInvVariance
?
invariant_length
*
sizeof
(
AccDataType
)
*
2
:
0
;
// updating of moving mean, variance
num_bytes
+=
updateMovingAverage
?
invariant_length
*
sizeof
(
AccDataType
)
*
4
:
0
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
}
else
(
void
)
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
bool
pass
=
true
;
if
(
do_verification
)
{
using
ReferenceBatchNormFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchNormFwd
<
InOutDataType
,
InOutDataType
,
AccDataType
,
AccDataType
,
AccDataType
,
AccDataType
,
PassThroughOp
,
Rank
,
NumReduceDim
>
;
auto
batchNormFwd_ref
=
ReferenceBatchNormFwdInstance
{};
auto
argument_ptr_ref
=
batchNormFwd_ref
.
MakeArgumentPointer
(
i_inOutLengths
,
i_inOutStrides
,
i_inOutStrides
,
{
0
,
1
,
2
},
// indicates physical indices of reduce dimensions in lengths[] and strides[]
i_scaleBiasMeanVarLengths
,
i_scaleBiasMeanVarStrides
,
i_scaleBiasMeanVarStrides
,
i_scaleBiasMeanVarStrides
,
x
.
mData
.
data
(),
bnScale
.
mData
.
data
(),
bnBias
.
mData
.
data
(),
epsilon
,
PassThroughOp
{},
y_ref
.
mData
.
data
(),
saveMeanAndInvVariance
?
resultSaveMean_ref
.
mData
.
data
()
:
nullptr
,
saveMeanAndInvVariance
?
resultSaveInvVariance_ref
.
mData
.
data
()
:
nullptr
,
averageFactor
,
updateMovingAverage
?
resultRunningMean_ref
.
mData
.
data
()
:
nullptr
,
updateMovingAverage
?
resultRunningVariance_ref
.
mData
.
data
()
:
nullptr
);
if
(
!
batchNormFwd_ref
.
IsSupportedArgument
(
argument_ptr_ref
.
get
()))
{
std
::
cout
<<
"The runtime parameters seems not supported by the BatchNorm reference "
"instance, exiting!"
<<
std
::
endl
;
return
(
false
);
};
auto
invoker_ptr_ref
=
batchNormFwd_ref
.
MakeInvokerPointer
();
(
void
)
invoker_ptr_ref
->
Run
(
argument_ptr_ref
.
get
());
y_dev
.
FromDevice
(
y
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
y
,
y_ref
,
"Incorrect normalized output values"
);
if
(
updateMovingAverage
)
{
Tensor
<
AccDataType
>
resultRunningMean
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
resultRunningVariance
(
scaleBiasMeanVarLengths
);
resultRunningMean_dev
.
FromDevice
(
resultRunningMean
.
mData
.
data
());
resultRunningVariance_dev
.
FromDevice
(
resultRunningVariance
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultRunningMean
,
resultRunningMean_ref
,
"Incorrect running mean values"
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultRunningVariance
,
resultRunningVariance_ref
,
"Incorrect running variance values"
);
};
if
(
saveMeanAndInvVariance
)
{
using
ck
::
host_common
::
dumpBufferToFile
;
Tensor
<
AccDataType
>
resultSaveMean
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
resultSaveInvVariance
(
scaleBiasMeanVarLengths
);
resultSaveMean_dev
.
FromDevice
(
resultSaveMean
.
mData
.
data
());
resultSaveInvVariance_dev
.
FromDevice
(
resultSaveInvVariance
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultSaveMean
,
resultSaveMean_ref
,
"Incorrect saved mean values"
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
resultSaveInvVariance
,
resultSaveInvVariance_ref
,
"Incorrect saved invvariance values"
);
};
};
return
(
pass
);
};
const
double
epsilon
=
std
::
numeric_limits
<
float
>::
epsilon
();
static
const
double
averageFactor
=
0.1
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
pass
=
true
;
if
(
argc
>
1
)
{
BatchNormFwdArg
arg
;
if
(
arg
.
processArgs
(
argc
,
argv
)
<
0
)
return
(
-
1
);
if
(
arg
.
data_type
==
0
)
{
if
(
arg
.
use_multiblock_welford
)
pass
=
bnorm_fwd_nhwc_test
<
ck
::
half_t
,
float
,
true
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
updateMovingAverage
,
arg
.
saveMeanAndInvVariance
,
averageFactor
,
epsilon
);
else
pass
=
bnorm_fwd_nhwc_test
<
ck
::
half_t
,
float
,
false
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
updateMovingAverage
,
arg
.
saveMeanAndInvVariance
,
averageFactor
,
epsilon
);
}
else
if
(
arg
.
data_type
==
1
)
{
if
(
arg
.
use_multiblock_welford
)
pass
=
bnorm_fwd_nhwc_test
<
float
,
float
,
true
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
updateMovingAverage
,
arg
.
saveMeanAndInvVariance
,
averageFactor
,
epsilon
);
else
pass
=
bnorm_fwd_nhwc_test
<
float
,
float
,
false
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
updateMovingAverage
,
arg
.
saveMeanAndInvVariance
,
averageFactor
,
epsilon
);
}
else
if
(
arg
.
data_type
==
3
)
{
if
(
arg
.
use_multiblock_welford
)
pass
=
bnorm_fwd_nhwc_test
<
int8_t
,
float
,
true
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
updateMovingAverage
,
arg
.
saveMeanAndInvVariance
,
averageFactor
,
epsilon
);
else
pass
=
bnorm_fwd_nhwc_test
<
int8_t
,
float
,
false
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
updateMovingAverage
,
arg
.
saveMeanAndInvVariance
,
averageFactor
,
epsilon
);
}
else
if
(
arg
.
data_type
==
5
)
{
if
(
arg
.
use_multiblock_welford
)
pass
=
bnorm_fwd_nhwc_test
<
ck
::
bhalf_t
,
float
,
true
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
updateMovingAverage
,
arg
.
saveMeanAndInvVariance
,
averageFactor
,
epsilon
);
else
pass
=
bnorm_fwd_nhwc_test
<
ck
::
bhalf_t
,
float
,
false
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
updateMovingAverage
,
arg
.
saveMeanAndInvVariance
,
averageFactor
,
epsilon
);
}
else
if
(
arg
.
data_type
==
6
)
{
if
(
arg
.
use_multiblock_welford
)
pass
=
bnorm_fwd_nhwc_test
<
double
,
double
,
true
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
updateMovingAverage
,
arg
.
saveMeanAndInvVariance
,
averageFactor
,
epsilon
);
else
pass
=
bnorm_fwd_nhwc_test
<
double
,
double
,
false
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inOutLengths
,
arg
.
updateMovingAverage
,
arg
.
saveMeanAndInvVariance
,
averageFactor
,
epsilon
);
}
}
else
{
pass
=
bnorm_fwd_nhwc_test
<
ck
::
half_t
,
float
,
true
>
(
true
,
2
,
false
,
// don't time kernel
{
128
,
16
,
6
,
512
},
true
,
true
,
averageFactor
,
epsilon
);
pass
=
pass
&&
bnorm_fwd_nhwc_test
<
ck
::
half_t
,
float
,
false
>
(
true
,
2
,
false
,
// don't time kernel
{
128
,
16
,
3
,
1024
},
true
,
true
,
averageFactor
,
epsilon
);
};
return
(
pass
?
0
:
1
);
}
example/34_batchnorm/batchnorm_infer_impl.hpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -10,7 +10,7 @@
#include "ck/utility/sequence.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise
_impl
.hpp"
#include "batchnorm_common.hpp"
...
...
@@ -46,7 +46,7 @@ int bnorm_infer(
static_assert
(
NumBatchNormReduceDim
<
Rank
,
"Invalid number of reduced dimensions for batchnorm!"
);
using
DeviceNormalizeInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
using
DeviceNormalizeInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
Impl
<
ck
::
Tuple
<
XDataType
,
AccDataType
,
AccDataType
,
AccDataType
,
AccDataType
>
,
// x, mean,
// variance,
// scale,
...
...
example/35_splitK_gemm/CMakeLists.txt
View file @
76f2b6cd
add_custom_target
(
example_splitK_gemm_xdl
)
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_custom_target
(
example_splitK_gemm_xdl
)
add_example_executable
(
example_splitK_gemm_xdl_fp32 splitK_gemm_xdl_fp32.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_fp16 splitK_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_bfp16 splitK_gemm_xdl_bfp16.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_int8 splitK_gemm_xdl_int8.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_fp32 splitK_gemm_xdl_fp32.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_fp16 splitK_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_bfp16 splitK_gemm_xdl_bfp16.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_int8 splitK_gemm_xdl_int8.cpp
)
add_dependencies
(
example_splitK_gemm_xdl
add_dependencies
(
example_splitK_gemm_xdl
example_splitK_gemm_xdl_fp32
example_splitK_gemm_xdl_fp16
example_splitK_gemm_xdl_bfp16
example_splitK_gemm_xdl_int8
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_splitK_gemm_xdl_int4 splitK_gemm_xdl_int4.cpp
)
add_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_int4
)
endif
()
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_splitK_gemm_xdl_int4 splitK_gemm_xdl_int4.cpp
)
add_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_int4
)
endif
()
set
(
target 1
)
endif
()
endforeach
()
example/35_splitK_gemm/splitK_gemm_xdl_bfp16.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
example/35_splitK_gemm/splitK_gemm_xdl_fp16.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
example/35_splitK_gemm/splitK_gemm_xdl_fp32.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
example/35_splitK_gemm/splitK_gemm_xdl_int4.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
example/35_splitK_gemm/splitK_gemm_xdl_int8.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
example/36_sparse_embedding/sparse_embedding3_forward_layernorm.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
@@ -9,7 +9,8 @@
#include <ctime>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_sparse_embedding3_forward_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_sparse_embeddings_forward_layernorm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
@@ -18,53 +19,26 @@
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_sparse_embedding3_forward_layernorm.hpp"
// using EmbType = float;
// using IndexType = int64_t;
// using GammaDataType = float;
// using BetaDataType = float;
// using AccDataType = float;
// using OutType = float;
// clang-format off
using
EmbType
=
ck
::
half_t
;
using
IndexType
=
int64_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
OutType
=
ck
::
half_t
;
using
EmbElementwiseOperation
=
ck
::
tensor_operation
::
element_wise
::
AddAdd
;
// clang-format off
// BlockSize, DimClusterSize, RowClusterSize, DimPerBlock, RowPerBlock, DimThreadSize, RowVectorSize
using
DeviceInstance_fp32_e256
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbedding3ForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
256
,
1
,
256
,
1
,
256
,
1
,
1
>
;
using
DeviceInstance_fp32_e512
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbedding3ForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
256
,
1
,
256
,
1
,
512
,
1
,
1
>
;
using
DeviceInstance_fp32_e768
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbedding3ForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
256
,
1
,
256
,
1
,
768
,
1
,
1
>
;
using
DeviceInstance_fp32_e1024
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbedding3ForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
256
,
1
,
256
,
1
,
1024
,
1
,
1
>
;
using
DeviceInstance_fp32_e1536
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbedding3ForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
256
,
1
,
256
,
1
,
1536
,
1
,
1
>
;
using
DeviceInstance_fp32_e2048
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbedding3ForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
256
,
1
,
256
,
1
,
2048
,
1
,
4
>
;
using
DeviceInstance_fp32_e4096
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbedding3ForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
256
,
1
,
256
,
1
,
4096
,
1
,
4
>
;
using
DeviceInstance_fp32_e8192
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbedding3ForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
256
,
1
,
256
,
1
,
8192
,
1
,
4
>
;
using
DeviceInstance_fp32_e16384
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbedding3ForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
256
,
1
,
256
,
1
,
16384
,
1
,
4
>
;
using
DeviceInstance_fp16_e256
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbedding3ForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
256
,
1
,
256
,
1
,
256
,
1
,
1
>
;
using
DeviceInstance_fp16_e512
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbedding3ForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
256
,
1
,
256
,
1
,
512
,
1
,
2
>
;
using
DeviceInstance_fp16_e768
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbedding3ForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
256
,
1
,
256
,
1
,
768
,
1
,
1
>
;
using
DeviceInstance_fp16_e1024
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbedding3ForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
256
,
1
,
256
,
1
,
1024
,
1
,
2
>
;
using
DeviceInstance_fp16_e1536
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbedding3ForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
256
,
1
,
256
,
1
,
1536
,
1
,
2
>
;
using
DeviceInstance_fp16_e2048
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbedding3ForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
256
,
1
,
256
,
1
,
2048
,
1
,
2
>
;
using
DeviceInstance_fp16_e4096
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbedding3ForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
256
,
1
,
256
,
1
,
4096
,
1
,
8
>
;
using
DeviceInstance_fp16_e8192
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbedding3ForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
256
,
1
,
256
,
1
,
8192
,
1
,
8
>
;
using
DeviceInstance_fp16_e256
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbeddingsForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
EmbElementwiseOperation
,
256
,
1
,
256
,
1
,
256
,
1
,
1
,
3
>
;
using
DeviceInstance_fp16_e512
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbeddingsForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
EmbElementwiseOperation
,
256
,
1
,
256
,
1
,
512
,
1
,
2
,
3
>
;
using
DeviceInstance_fp16_e768
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbeddingsForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
EmbElementwiseOperation
,
256
,
1
,
256
,
1
,
768
,
1
,
1
,
3
>
;
using
DeviceInstance_fp16_e1024
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbeddingsForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
EmbElementwiseOperation
,
256
,
1
,
256
,
1
,
1024
,
1
,
2
,
3
>
;
using
DeviceInstance_fp16_e1536
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbeddingsForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
EmbElementwiseOperation
,
256
,
1
,
256
,
1
,
1536
,
1
,
2
,
3
>
;
using
DeviceInstance_fp16_e2048
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbeddingsForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
EmbElementwiseOperation
,
256
,
1
,
256
,
1
,
2048
,
1
,
2
,
3
>
;
using
DeviceInstance_fp16_e4096
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbeddingsForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
EmbElementwiseOperation
,
256
,
1
,
256
,
1
,
4096
,
1
,
8
,
3
>
;
using
DeviceInstance_fp16_e8192
=
ck
::
tensor_operation
::
device
::
DeviceSparseEmbeddingsForwardLayernorm
<
EmbType
,
IndexType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
OutType
,
EmbElementwiseOperation
,
256
,
1
,
256
,
1
,
8192
,
1
,
8
,
3
>
;
template
<
typename
emb_type
,
ck
::
index_t
dim
>
struct
emb_kernel
{};
template
<
>
struct
emb_kernel
<
float
,
256
>
{
using
kernel_type
=
DeviceInstance_fp32_e256
;
};
template
<
>
struct
emb_kernel
<
float
,
512
>
{
using
kernel_type
=
DeviceInstance_fp32_e512
;
};
template
<
>
struct
emb_kernel
<
float
,
768
>
{
using
kernel_type
=
DeviceInstance_fp32_e768
;
};
template
<
>
struct
emb_kernel
<
float
,
1024
>
{
using
kernel_type
=
DeviceInstance_fp32_e1024
;};
template
<
>
struct
emb_kernel
<
float
,
1536
>
{
using
kernel_type
=
DeviceInstance_fp32_e1536
;};
template
<
>
struct
emb_kernel
<
float
,
2048
>
{
using
kernel_type
=
DeviceInstance_fp32_e2048
;};
template
<
>
struct
emb_kernel
<
float
,
4096
>
{
using
kernel_type
=
DeviceInstance_fp32_e4096
;};
template
<
>
struct
emb_kernel
<
float
,
8192
>
{
using
kernel_type
=
DeviceInstance_fp32_e8192
;};
template
<
>
struct
emb_kernel
<
float
,
16384
>
{
using
kernel_type
=
DeviceInstance_fp32_e16384
;};
template
<
>
struct
emb_kernel
<
ck
::
half_t
,
256
>
{
using
kernel_type
=
DeviceInstance_fp16_e256
;
};
template
<
>
struct
emb_kernel
<
ck
::
half_t
,
512
>
{
using
kernel_type
=
DeviceInstance_fp16_e512
;
};
template
<
>
struct
emb_kernel
<
ck
::
half_t
,
768
>
{
using
kernel_type
=
DeviceInstance_fp16_e768
;
};
...
...
@@ -152,19 +126,20 @@ int main()
beta_dev
.
ToDevice
(
beta
.
mData
.
data
());
auto
device_instance
=
typename
emb_kernel
<
EmbType
,
current_dim
>::
kernel_type
{};
auto
argument_ptr
=
device_instance
.
MakeArgumentPointer
(
out_dev
.
GetDeviceBuffer
(),
emb_a_dev
.
GetDeviceBuffer
(),
emb_b_dev
.
GetDeviceBuffer
(),
emb_c_dev
.
GetDeviceBuffer
(),
index_a_dev
.
GetDeviceBuffer
(),
index_b_dev
.
GetDeviceBuffer
(),
index_c_dev
.
GetDeviceBuffer
(),
gamma_dev
.
GetDeviceBuffer
(),
beta_dev
.
GetDeviceBuffer
(),
num_rows
,
current_dim
,
index_length
,
epsilon
);
auto
argument_ptr
=
device_instance
.
MakeArgumentPointer
(
out_dev
.
GetDeviceBuffer
(),
{
ck
::
type_convert
<
EmbType
*>
(
emb_a_dev
.
GetDeviceBuffer
()),
ck
::
type_convert
<
EmbType
*>
(
emb_b_dev
.
GetDeviceBuffer
()),
ck
::
type_convert
<
EmbType
*>
(
emb_c_dev
.
GetDeviceBuffer
())},
{
ck
::
type_convert
<
IndexType
*>
(
index_a_dev
.
GetDeviceBuffer
()),
ck
::
type_convert
<
IndexType
*>
(
index_b_dev
.
GetDeviceBuffer
()),
ck
::
type_convert
<
IndexType
*>
(
index_c_dev
.
GetDeviceBuffer
())},
gamma_dev
.
GetDeviceBuffer
(),
beta_dev
.
GetDeviceBuffer
(),
current_dim
,
index_length
,
epsilon
,
EmbElementwiseOperation
{});
std
::
cout
<<
"Dim:"
<<
current_dim
<<
", kernel:"
<<
device_instance
.
GetTypeString
()
<<
std
::
endl
<<
std
::
flush
;
...
...
example/37_batched_gemm_add_add_relu_gemm_add/batched_gemm_add_add_relu_gemm_add_xdl_fp16.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
/*
Computes C_m_o = Relu(A0[m, k] * B0[n, k] + D00[m, n] + D01[mn]) * B1[n, o] + D1[m, o]
...
...
example/38_grouped_conv_bwd_data_multiple_d/CMakeLists.txt
View file @
76f2b6cd
add_custom_target
(
example_grouped_conv_bwd_data
)
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_custom_target
(
example_grouped_conv_bwd_data
)
add_example_executable
(
example_grouped_conv_bwd_data_fp16 grouped_conv_bwd_data_fp16.cpp
)
add_example_executable
(
example_grouped_conv_bwd_data_bias_relu_fp16 grouped_conv_bwd_data_bias_relu_fp16.cpp
)
add_
example_executable
(
example_grouped_conv_bwd_data_fp16
grouped_conv_bwd_data_fp16.cpp
)
add_
example_executable
(
example_grouped_conv_bwd_data
_bias_relu_fp16
grouped_conv_bwd_data_bias_relu_fp16
.cpp
)
add_dependencies
(
example_grouped_conv_bwd_data example_grouped_conv_bwd_data_fp16
)
add_dependencies
(
example_grouped_conv_bwd_data example_grouped_conv_bwd_data_bias_relu_fp16
)
add_
dependencies
(
example_grouped_conv_bwd_data
example_grouped_conv_bwd_data_fp16
)
add_
dependencies
(
example_grouped_conv_bwd_data
example_
grouped_conv_bwd_data_bias_relu_fp16
)
set
(
target 1
)
endif
(
)
endforeach
(
)
\ No newline at end of file
example/38_grouped_conv_bwd_data_multiple_d/common.hpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
example/38_grouped_conv_bwd_data_multiple_d/grouped_conv_bwd_data_bias_relu_fp16.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
...
...
example/38_grouped_conv_bwd_data_multiple_d/grouped_conv_bwd_data_fp16.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
...
...
example/38_grouped_conv_bwd_data_multiple_d/run_grouped_conv_bwd_data_bias_relu_example.inc
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
bool
run_conv_bwd_data_bias_relu
(
const
ExecutionConfig
&
config
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_params
,
...
...
example/38_grouped_conv_bwd_data_multiple_d/run_grouped_conv_bwd_data_example.inc
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
bool
run_conv_bwd_data
(
const
ExecutionConfig
&
config
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_params
,
...
...
example/39_permute/common.hpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
example/39_permute/permute_1xHxW_fp16.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
...
...
Prev
1
…
10
11
12
13
14
15
16
17
18
…
27
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment