Commit 76f2b6cd authored by danyao12's avatar danyao12
Browse files

merge develop to attn-train-develop-qloop

parents 9b4c780a 1ee99dca
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_bwd_data_common.hpp"
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_bwd_data_common.hpp"
......
add_example_executable(example_batched_gemm_reduce_xdl_fp16 batched_gemm_reduce_xdl_fp16.cpp)
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_example_executable(example_batched_gemm_reduce_xdl_fp16 batched_gemm_reduce_xdl_fp16.cpp)
set(target 1)
endif()
endforeach()
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
......@@ -23,13 +23,13 @@ using CDataType = F16;
using Add = ck::tensor_operation::element_wise::Add;
using DeviceElementwiseAddInstance =
ck::tensor_operation::device::DeviceElementwise<ck::Tuple<ABDataType, ABDataType>,
ck::Tuple<CDataType>,
Add,
2,
8,
ck::Sequence<8, 8>,
ck::Sequence<8>>;
ck::tensor_operation::device::DeviceElementwiseImpl<ck::Tuple<ABDataType, ABDataType>,
ck::Tuple<CDataType>,
Add,
2,
8,
ck::Sequence<8, 8>,
ck::Sequence<8>>;
template <typename HostTensorA,
typename HostTensorB,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
......@@ -23,13 +23,13 @@ using CDataType = F16;
using Add = ck::tensor_operation::element_wise::Add;
using DeviceElementwiseAddInstance =
ck::tensor_operation::device::DeviceElementwise<ck::Tuple<ABDataType, ABDataType>,
ck::Tuple<CDataType>,
Add,
3,
8,
ck::Sequence<1, 8>,
ck::Sequence<8>>;
ck::tensor_operation::device::DeviceElementwiseImpl<ck::Tuple<ABDataType, ABDataType>,
ck::Tuple<CDataType>,
Add,
3,
8,
ck::Sequence<1, 8>,
ck::Sequence<8>>;
template <typename HostTensorA, typename HostTensorB, typename HostTensorC, typename Functor>
void host_broadcast3D_am_bmnk(HostTensorC& C,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
......@@ -21,13 +21,13 @@ using CDataType = F16;
using Add = ck::tensor_operation::element_wise::Add;
using DeviceElementwiseAddInstance =
ck::tensor_operation::device::DeviceElementwise<ck::Tuple<ABDataType, ABDataType>,
ck::Tuple<CDataType>,
Add,
1,
8,
ck::Sequence<8, 8>,
ck::Sequence<8>>;
ck::tensor_operation::device::DeviceElementwiseImpl<ck::Tuple<ABDataType, ABDataType>,
ck::Tuple<CDataType>,
Add,
1,
8,
ck::Sequence<8, 8>,
ck::Sequence<8>>;
template <typename HostTensorA, typename HostTensorB, typename HostTensorC, typename Functor>
void host_elementwise1D(
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
......@@ -23,13 +23,13 @@ using CDataType = F16;
using Add = ck::tensor_operation::element_wise::Add;
using DeviceElementwiseAddInstance =
ck::tensor_operation::device::DeviceElementwise<ck::Tuple<ABDataType, ABDataType>,
ck::Tuple<CDataType>,
Add,
4,
8,
ck::Sequence<8, 8>,
ck::Sequence<8>>;
ck::tensor_operation::device::DeviceElementwiseImpl<ck::Tuple<ABDataType, ABDataType>,
ck::Tuple<CDataType>,
Add,
4,
8,
ck::Sequence<8, 8>,
ck::Sequence<8>>;
template <typename HostTensorA, typename HostTensorB, typename HostTensorC, typename Functor>
void host_elementwise4D(HostTensorC& C,
......
add_custom_target(example_grouped_conv_bwd_weight)
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_custom_target(example_grouped_conv_bwd_weight)
add_example_executable(example_grouped_conv_bwd_weight_xdl_fp16 grouped_conv_bwd_weight_xdl_fp16.cpp)
add_example_executable(example_grouped_conv_bwd_weight_xdl_bf16 grouped_conv_bwd_weight_xdl_bf16.cpp)
add_example_executable(example_grouped_conv_bwd_weight_xdl_fp16 grouped_conv_bwd_weight_xdl_fp16.cpp)
add_example_executable(example_grouped_conv_bwd_weight_xdl_bf16 grouped_conv_bwd_weight_xdl_bf16.cpp)
add_dependencies(example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_fp16
add_dependencies(example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_fp16
example_grouped_conv_bwd_weight_xdl_bf16)
set(target 1)
endif()
endforeach()
add_custom_target(example_grouped_conv_bwd_weight_dl)
add_example_executable(example_grouped_conv_bwd_weight_dl_fp16 grouped_conv_bwd_weight_dl_fp16.cpp)
add_dependencies(example_grouped_conv_bwd_weight_dl example_grouped_conv_bwd_weight_dl_fp16)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -9,7 +9,6 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_gnwc_gkxc_gnwk_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_gnwc_gkxc_gnwk_dl.hpp"
using InDataType = F16;
using WeiDataType = F16;
using OutDataType = F16;
using AccDataType = F32;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = PassThrough;
template <ck::index_t NDimSpatial>
using DeviceConvBwdWeightInstance =
ck::tensor_operation::device::DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl<
NDimSpatial, // NDimSpatial
InDataType, // InDataType
WeiDataType, // WeiDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
InElementOp, // InElementwiseOperation
WeiElementOp, // WeiElementwiseOperation
OutElementOp, // OutElementwiseOperation
ConvBwdWeightDefault, // ConvBackwardWeightSpecialization
256, // BlockSize
128, // MPerBlock
128, // NPerBlock
16, // K0PerBlock
2, // K1
4, // M1PerThread
4, // N1PerThread
1, // KPerThread
S<8, 2>, // M1N1ThreadClusterM1Xs
S<8, 2>, // M1N1ThreadClusterN1Xs
S<1, 8, 1, 1, 2>, // ABlockTransferThreadSliceLengths_K0_M0_M1_K1
S<1, 2, 1, 128, 1>, // ABlockTransferThreadClusterLengths_K0_M0_M1_K1
S<0, 2, 3, 1, 4>, // ABlockTransferThreadClusterArrangeOrder
S<0, 2, 3, 1, 4>, // ABlockTransferSrcAccessOrder
S<1, 1, 1, 1, 1>, // ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
S<0, 2, 3, 1, 4>, // ABlockTransferSrcVectorTensorContiguousDimOrder
S<1, 1, 1, 1, 1>, // ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1
S<1, 1, 1, 8, 2>, // BBlockTransferThreadSliceLengths_K0_N0_N1_K1
S<1, 16, 1, 16, 1>, // BBlockTransferThreadClusterLengths_K0_N0_N1_K1
S<0, 1, 4, 2, 3>, // BBlockTransferThreadClusterArrangeOrder
S<0, 1, 4, 2, 3>, // BBlockTransferSrcAccessOrder
S<1, 1, 1, 8, 1>, // BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
S<0, 1, 4, 2, 3>, // BBlockTransferSrcVectorTensorContiguousDimOrder
S<1, 1, 1, 1, 2>, // BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
S<0, 1, 2, 3, 4, 5>, // CThreadTransferSrcDstAccessOrder
5, // CThreadTransferSrcDstVectorDim
4>; // CThreadTransferDstScalarPerVector
#include "run_grouped_conv_bwd_weight_example.inc"
int main(int argc, char* argv[]) { return !run_grouped_conv_bwd_weight_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_xdl_cshuffle.hpp"
using InDataType = BF16;
// bf16 kernel use fp32 atomic add to accumulate Weight tensor into global memory
using WeiDataType = F32;
......@@ -13,6 +15,58 @@ using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = PassThrough;
template <ck::index_t NDimSpatial>
using DeviceConvBwdWeightInstance =
ck::tensor_operation::device::DeviceGroupedConvBwdWeight_Xdl_CShuffle<
NDimSpatial,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GNWC,
ck::tensor_layout::convolution::GNHWC,
ck::tensor_layout::convolution::GNDHWC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GKXC,
ck::tensor_layout::convolution::GKYXC,
ck::tensor_layout::convolution::GKZYXC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GNWK,
ck::tensor_layout::convolution::GNHWK,
ck::tensor_layout::convolution::GNDHWK>>,
InDataType, // InDataType
WeiDataType, // WeiDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
InElementOp, // InElementwiseOperation
WeiElementOp, // WeiElementwiseOperation
OutElementOp, // OutElementwiseOperation
ConvBwdWeightDefault, // ConvolutionBackwardWeightSpecialization
256, // BlockSize
128, // MPerBlock
128, // NPerBlock
4, // K0PerBlock
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
2, // NXdlPerWave
S<1, 4, 16, 4>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<0, 3, 1, 2>, // ABlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
2, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<1, 4, 16, 4>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<0, 3, 1, 2>, // BBlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
2, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 4>, // CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
128 / (sizeof(WeiDataType) * CHAR_BIT)>; // CBlockTransferScalarPerVector_NWaveNPerXdl
#include "run_grouped_conv_bwd_weight_example.inc"
int main(int argc, char* argv[]) { return !run_grouped_conv_bwd_weight_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_xdl_cshuffle.hpp"
using InDataType = F16;
using WeiDataType = F16;
using OutDataType = F16;
......@@ -12,6 +14,58 @@ using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = PassThrough;
template <ck::index_t NDimSpatial>
using DeviceConvBwdWeightInstance =
ck::tensor_operation::device::DeviceGroupedConvBwdWeight_Xdl_CShuffle<
NDimSpatial,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GNWC,
ck::tensor_layout::convolution::GNHWC,
ck::tensor_layout::convolution::GNDHWC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GKXC,
ck::tensor_layout::convolution::GKYXC,
ck::tensor_layout::convolution::GKZYXC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GNWK,
ck::tensor_layout::convolution::GNHWK,
ck::tensor_layout::convolution::GNDHWK>>,
InDataType, // InDataType
WeiDataType, // WeiDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
InElementOp, // InElementwiseOperation
WeiElementOp, // WeiElementwiseOperation
OutElementOp, // OutElementwiseOperation
ConvBwdWeightDefault, // ConvolutionBackwardWeightSpecialization
256, // BlockSize
128, // MPerBlock
128, // NPerBlock
4, // K0PerBlock
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
2, // NXdlPerWave
S<1, 4, 16, 4>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<0, 3, 1, 2>, // ABlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
2, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<1, 4, 16, 4>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<0, 3, 1, 2>, // BBlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
2, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 4>, // CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
128 / (sizeof(WeiDataType) * CHAR_BIT)>; // CBlockTransferScalarPerVector_NWaveNPerXdl
#include "run_grouped_conv_bwd_weight_example.inc"
int main(int argc, char* argv[]) { return !run_grouped_conv_bwd_weight_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
template <ck::index_t NDimSpatial>
using DeviceConvBwdWeightInstance =
ck::tensor_operation::device::DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Xdl_CShuffle<
NDimSpatial, // NDimSpatial
InDataType, // InDataType
WeiDataType, // WeiDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
InElementOp, // InElementwiseOperation
WeiElementOp, // WeiElementwiseOperation
OutElementOp, // OutElementwiseOperation
ConvBwdWeightDefault, // ConvolutionBackwardWeightSpecialization
256, // BlockSize
128, // MPerBlock
128, // NPerBlock
4, // K0PerBlock
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
2, // NXdlPerWave
S<1, 4, 16, 4>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<0, 3, 1, 2>, // ABlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
2, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<1, 4, 16, 4>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<0, 3, 1, 2>, // BBlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
2, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 4>, // CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
128 / (sizeof(WeiDataType) * CHAR_BIT)>; // CBlockTransferScalarPerVector_NWaveNPerXdl
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
template <ck::index_t NDimSpatial>
using HostConvBwdWeightInstance = ck::tensor_operation::host::ReferenceConvBwdWeight<NDimSpatial,
......@@ -54,7 +14,20 @@ template <ck::index_t NDimSpatial>
bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
const ck::utils::conv::ConvParam& conv_param)
{
constexpr ck::index_t split_k = 2;
ck::index_t split_k;
// Set split_k = 2 for xdl op, split_k = 1 for dl
// Dl op doesn't support split_k > 1
// TODO: Add Dl op split_k > 1 support
if(!(ck::get_device_name() == "gfx906" || ck::get_device_name() == "gfx1030" ||
ck::get_device_name() == "gfx1100" || ck::get_device_name() == "gfx1101" ||
ck::get_device_name() == "gfx1102"))
{
split_k = 2;
}
else
{
split_k = 1;
}
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<
......@@ -102,6 +75,8 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
std::array<ck::index_t, NDimSpatial> input_spatial_lengths{};
std::array<ck::index_t, NDimSpatial> filter_spatial_lengths{};
std::array<ck::index_t, NDimSpatial> output_spatial_lengths{};
std::array<ck::index_t, NDimSpatial + 3> input_strides{};
std::array<ck::index_t, NDimSpatial + 3> output_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
......@@ -112,6 +87,8 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
range_copy(conv_param.input_spatial_lengths_, begin(input_spatial_lengths));
range_copy(conv_param.filter_spatial_lengths_, begin(filter_spatial_lengths));
range_copy(conv_param.output_spatial_lengths_, begin(output_spatial_lengths));
range_copy(in_g_n_c_wis_desc.GetStrides(), begin(input_strides));
range_copy(out_g_n_k_wos_desc.GetStrides(), begin(output_strides));
range_copy(conv_param.conv_filter_strides_, begin(conv_filter_strides));
range_copy(conv_param.conv_filter_dilations_, begin(conv_filter_dilations));
range_copy(conv_param.input_left_pads_, begin(input_left_pads));
......@@ -130,6 +107,8 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
input_strides,
output_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
......@@ -144,7 +123,7 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
std::cerr << "wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<< std::endl;
return false;
return true;
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
......
add_example_executable(example_gemm_bias_relu_add_layernorm_xdl_fp16 gemm_bias_relu_add_layernorm_xdl_fp16.cpp)
add_example_executable(example_gemm_layernorm_xdl_fp16 gemm_layernorm_xdl_fp16.cpp)
add_example_executable(example_gemm_xdl_layernorm_single_kernel_fp16 gemm_xdl_layernorm_single_kernel_fp16.cpp)
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_example_executable(example_gemm_bias_relu_add_layernorm_xdl_welford_fp16 gemm_bias_relu_add_layernorm_xdl_welford_fp16.cpp)
add_example_executable(example_gemm_bias_relu_add_layernorm_xdl_naive_fp16 gemm_bias_relu_add_layernorm_xdl_naive_fp16.cpp)
add_example_executable(example_gemm_layernorm_xdl_naive_fp16 gemm_layernorm_xdl_naive_fp16.cpp)
add_example_executable(example_gemm_xdl_layernorm_naive_single_kernel_fp16 gemm_xdl_layernorm_naive_single_kernel_fp16.cpp)
set(target 1)
endif()
endforeach()
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
......@@ -95,7 +94,7 @@ using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataTyp
using NormalizeFunctor = ck::tensor_operation::element_wise::Normalize;
// A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y
using DeviceNormalizeInstance = ck::tensor_operation::device::DeviceElementwise<
using DeviceNormalizeInstance = ck::tensor_operation::device::DeviceElementwiseImpl<
ck::Tuple<EDataType,
R0DataType,
R1DataType,
......@@ -116,7 +115,7 @@ auto f_host_tensor_descriptor2d =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
if constexpr(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_layernorm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"
#include "ck/library/utility/check_err.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddReluAdd = ck::tensor_operation::element_wise::AddReluAdd;
// DataType
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using D0DataType = F16;
using D1DataType = F16;
using DsDataType = ck::Tuple<D0DataType, D1DataType>;
using EMeanVarDataType = F16;
using GammaDataType = F16;
using BetaDataType = F16;
using HDataType = F16;
// Layout
using ALayout = Row;
using BLayout = Col;
using D0Layout = Row;
using D1Layout = Row;
using DsLayout = ck::Tuple<D0Layout, D1Layout>;
using HLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddReluAdd;
using HElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// clang-format off
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleDLayernorm_Xdl_CShuffle
//######| ALayout| BLayout| DsLayout| HLayout| AData| BData| AccData| CShuffle| DsData| EMeanVarData| GammaData| BetaData| HData| A| B| CDE| H| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| PostShuffle| PostShuffle| Layernorm| Layernorm|
//######| | | | | Type| Type| Type| DataType| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ThreadClusterLengths| ScalarPerVector| ThreadClusterLengths| ThreadSliceSize|
//######| | | | | | | | | | | | | | Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _M_N| _M_N| _M_N| _M|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, DsLayout, HLayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EMeanVarDataType, GammaDataType, BetaDataType, HDataType, AElementOp, BElementOp, CDEElementOp, HElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<32, 8>, 8, S<8, 32>, 8>;
// clang-format on
auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
return HostTensorDescriptor({len}, {stride});
};
auto f_host_tensor_descriptor2d =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if constexpr(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
void host_gemm_layernorm(Tensor<HDataType>& h_m_n,
const Tensor<ADataType>& a_m_k,
const Tensor<BDataType>& b_k_n,
const Tensor<D0DataType>& bias_n,
const Tensor<D1DataType>& d1_m_n,
const Tensor<GammaDataType>& gamma_n,
const Tensor<BetaDataType>& beta_n,
AElementOp a_element_op,
BElementOp b_element_op,
CDEElementOp cde_element_op,
HElementOp h_element_op,
int M,
int N,
AccDataType epsilon = 1e-5)
{
using ReferenceGemm = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
using ReferenceLayernorm = ck::tensor_operation::host::ReferenceLayernorm<EMeanVarDataType,
GammaDataType,
BetaDataType,
HDataType,
AccDataType,
HElementOp,
2,
1>;
Tensor<EMeanVarDataType> e_m_n(HostTensorDescriptor{M, N});
Tensor<AccDataType> c_m_n(HostTensorDescriptor{M, N});
auto ref_gemm = ReferenceGemm{};
auto ref_gemm_invoker = ref_gemm.MakeInvoker();
auto ref_gemm_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, a_element_op, b_element_op, PassThrough{});
ref_gemm_invoker.Run(ref_gemm_argument);
for(int n = 0; n < N; ++n)
{
AccDataType bias = static_cast<AccDataType>(bias_n(n));
for(int m = 0; m < M; ++m)
{
AccDataType e = static_cast<AccDataType>(e_m_n(m, n));
AccDataType d1 = static_cast<AccDataType>(d1_m_n(m, n));
cde_element_op(e, c_m_n(m, n), bias, d1);
e_m_n(m, n) = static_cast<EMeanVarDataType>(e);
}
}
ReferenceLayernorm ref_layernorm;
auto ref_layernorm_invoker = ref_layernorm.MakeInvoker();
auto ref_layernorm_argument = ref_layernorm.MakeArgument(
e_m_n, gamma_n, beta_n, h_m_n, h_element_op, {M, N}, {1}, epsilon);
ref_layernorm_invoker.Run(ref_layernorm_argument);
}
int main()
{
bool do_verification = true;
// GEMM shape
ck::index_t M = 1024;
ck::index_t N = 1024;
ck::index_t K = 1024;
ck::index_t StrideA = K;
ck::index_t StrideB = K;
ck::index_t StrideD0 = 0;
ck::index_t StrideD1 = N;
ck::index_t StrideH = N;
float epsilon = 1e-5;
Tensor<ADataType> a_m_k(f_host_tensor_descriptor2d(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor2d(K, N, StrideB, BLayout{}));
Tensor<D0DataType> d0_n(f_host_tensor_descriptor1d(N, 1));
Tensor<D1DataType> d1_m_n(f_host_tensor_descriptor2d(M, N, StrideD1, D1Layout{}));
Tensor<GammaDataType> gamma_n(f_host_tensor_descriptor1d(N, 1));
Tensor<BetaDataType> beta_n(f_host_tensor_descriptor1d(N, 1));
Tensor<HDataType> h_m_n(f_host_tensor_descriptor2d(M, N, StrideH, HLayout{}));
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{-1, 1});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-1, 1});
d0_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{-1, 1});
d1_m_n.GenerateTensorValue(GeneratorTensor_3<D1DataType>{-1, 1});
gamma_n.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{-1, 1});
beta_n.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{-1, 1});
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem d0_device_buf(sizeof(D0DataType) * d0_n.mDesc.GetElementSpaceSize());
DeviceMem d1_device_buf(sizeof(D1DataType) * d1_m_n.mDesc.GetElementSpaceSize());
DeviceMem gamma_device_buf(sizeof(GammaDataType) * gamma_n.mDesc.GetElementSpaceSize());
DeviceMem beta_device_buf(sizeof(BetaDataType) * beta_n.mDesc.GetElementSpaceSize());
DeviceMem h_device_buf(sizeof(HDataType) * h_m_n.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
d0_device_buf.ToDevice(d0_n.mData.data());
d1_device_buf.ToDevice(d1_m_n.mData.data());
gamma_device_buf.ToDevice(gamma_n.mData.data());
beta_device_buf.ToDevice(beta_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
auto h_element_op = HElementOp{};
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
{d0_device_buf.GetDeviceBuffer(), d1_device_buf.GetDeviceBuffer()},
gamma_device_buf.GetDeviceBuffer(),
beta_device_buf.GetDeviceBuffer(),
h_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
{StrideD0, StrideD1},
StrideH,
epsilon,
a_element_op,
b_element_op,
cde_element_op,
h_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error("wrong! this device_op instance does not support this problem");
}
size_t workspace_sz = device_op.GetWorkSpaceSize(&argument);
DeviceMem workspace_dev(workspace_sz);
device_op.SetWorkSpacePointer(&argument, workspace_dev.GetDeviceBuffer());
invoker.Run(argument, StreamConfig{nullptr, false});
bool pass = true;
if(do_verification)
{
Tensor<HDataType> h_m_n_host(HostTensorDescriptor{M, N});
host_gemm_layernorm(h_m_n_host,
a_m_k,
b_k_n,
d0_n,
d1_m_n,
gamma_n,
beta_n,
a_element_op,
b_element_op,
cde_element_op,
h_element_op,
M,
N,
epsilon);
h_device_buf.FromDevice(h_m_n.mData.data());
pass &=
ck::utils::check_err(h_m_n, h_m_n_host, "Error: Incorrect results h_m_n", 1e-2, 1e-2);
}
return pass ? 0 : 1;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
......@@ -92,7 +91,7 @@ using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataTyp
using NormalizeFunctor = ck::tensor_operation::element_wise::Normalize;
// A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y
using DeviceNormalizeInstance = ck::tensor_operation::device::DeviceElementwise<
using DeviceNormalizeInstance = ck::tensor_operation::device::DeviceElementwiseImpl<
ck::Tuple<EDataType,
R0DataType,
R1DataType,
......@@ -115,7 +114,7 @@ auto f_host_tensor_descriptor2d =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
if constexpr(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
......@@ -135,7 +135,7 @@ int main(int argc, char* argv[])
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
if constexpr(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment