Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
76f2b6cd
Commit
76f2b6cd
authored
Jul 14, 2023
by
danyao12
Browse files
merge develop to attn-train-develop-qloop
parents
9b4c780a
1ee99dca
Changes
531
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
541 additions
and
109 deletions
+541
-109
example/17_convnd_bwd_data/convnd_bwd_data_dl_fp16.cpp
example/17_convnd_bwd_data/convnd_bwd_data_dl_fp16.cpp
+1
-1
example/17_convnd_bwd_data/convnd_bwd_data_xdl_fp16.cpp
example/17_convnd_bwd_data/convnd_bwd_data_xdl_fp16.cpp
+1
-1
example/18_batched_gemm_reduce/CMakeLists.txt
example/18_batched_gemm_reduce/CMakeLists.txt
+8
-2
example/18_batched_gemm_reduce/batched_gemm_reduce_xdl_fp16.cpp
...e/18_batched_gemm_reduce/batched_gemm_reduce_xdl_fp16.cpp
+1
-1
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
+9
-9
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
+9
-9
example/19_binary_elementwise/elementwise_add_1d.cpp
example/19_binary_elementwise/elementwise_add_1d.cpp
+9
-9
example/19_binary_elementwise/elementwise_add_4d.cpp
example/19_binary_elementwise/elementwise_add_4d.cpp
+9
-9
example/20_grouped_conv_bwd_weight/CMakeLists.txt
example/20_grouped_conv_bwd_weight/CMakeLists.txt
+17
-5
example/20_grouped_conv_bwd_weight/common.hpp
example/20_grouped_conv_bwd_weight/common.hpp
+1
-2
example/20_grouped_conv_bwd_weight/grouped_conv_bwd_weight_dl_fp16.cpp
...ouped_conv_bwd_weight/grouped_conv_bwd_weight_dl_fp16.cpp
+59
-0
example/20_grouped_conv_bwd_weight/grouped_conv_bwd_weight_xdl_bf16.cpp
...uped_conv_bwd_weight/grouped_conv_bwd_weight_xdl_bf16.cpp
+55
-1
example/20_grouped_conv_bwd_weight/grouped_conv_bwd_weight_xdl_fp16.cpp
...uped_conv_bwd_weight/grouped_conv_bwd_weight_xdl_fp16.cpp
+55
-1
example/20_grouped_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
...d_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
+22
-43
example/21_gemm_layernorm/CMakeLists.txt
example/21_gemm_layernorm/CMakeLists.txt
+11
-3
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_naive_fp16.cpp
...layernorm/gemm_bias_relu_add_layernorm_xdl_naive_fp16.cpp
+4
-5
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_welford_fp16.cpp
...yernorm/gemm_bias_relu_add_layernorm_xdl_welford_fp16.cpp
+263
-0
example/21_gemm_layernorm/gemm_layernorm_xdl_naive_fp16.cpp
example/21_gemm_layernorm/gemm_layernorm_xdl_naive_fp16.cpp
+4
-5
example/21_gemm_layernorm/gemm_xdl_layernorm_naive_single_kernel_fp16.cpp
...layernorm/gemm_xdl_layernorm_naive_single_kernel_fp16.cpp
+2
-2
example/22_cgemm/cgemm_xdl_bf16.cpp
example/22_cgemm/cgemm_xdl_bf16.cpp
+1
-1
No files found.
Too many changes to show.
To preserve performance only
531 of 531+
files are displayed.
Plain diff
Email patch
example/17_convnd_bwd_data/convnd_bwd_data_dl_fp16.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_bwd_data_common.hpp"
...
...
example/17_convnd_bwd_data/convnd_bwd_data_xdl_fp16.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_bwd_data_common.hpp"
...
...
example/18_batched_gemm_reduce/CMakeLists.txt
View file @
76f2b6cd
add_example_executable
(
example_batched_gemm_reduce_xdl_fp16 batched_gemm_reduce_xdl_fp16.cpp
)
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_example_executable
(
example_batched_gemm_reduce_xdl_fp16 batched_gemm_reduce_xdl_fp16.cpp
)
set
(
target 1
)
endif
()
endforeach
()
example/18_batched_gemm_reduce/batched_gemm_reduce_xdl_fp16.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise
_impl
.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
@@ -23,13 +23,13 @@ using CDataType = F16;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ABDataType
,
ABDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
2
,
8
,
ck
::
Sequence
<
8
,
8
>
,
ck
::
Sequence
<
8
>>
;
ck
::
tensor_operation
::
device
::
DeviceElementwise
Impl
<
ck
::
Tuple
<
ABDataType
,
ABDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
2
,
8
,
ck
::
Sequence
<
8
,
8
>
,
ck
::
Sequence
<
8
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
...
...
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise
_impl
.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
...
...
@@ -23,13 +23,13 @@ using CDataType = F16;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ABDataType
,
ABDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
3
,
8
,
ck
::
Sequence
<
1
,
8
>
,
ck
::
Sequence
<
8
>>
;
ck
::
tensor_operation
::
device
::
DeviceElementwise
Impl
<
ck
::
Tuple
<
ABDataType
,
ABDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
3
,
8
,
ck
::
Sequence
<
1
,
8
>
,
ck
::
Sequence
<
8
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
void
host_broadcast3D_am_bmnk
(
HostTensorC
&
C
,
...
...
example/19_binary_elementwise/elementwise_add_1d.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise
_impl
.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
@@ -21,13 +21,13 @@ using CDataType = F16;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ABDataType
,
ABDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
1
,
8
,
ck
::
Sequence
<
8
,
8
>
,
ck
::
Sequence
<
8
>>
;
ck
::
tensor_operation
::
device
::
DeviceElementwise
Impl
<
ck
::
Tuple
<
ABDataType
,
ABDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
1
,
8
,
ck
::
Sequence
<
8
,
8
>
,
ck
::
Sequence
<
8
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
void
host_elementwise1D
(
...
...
example/19_binary_elementwise/elementwise_add_4d.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise
_impl
.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
...
...
@@ -23,13 +23,13 @@ using CDataType = F16;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ABDataType
,
ABDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
4
,
8
,
ck
::
Sequence
<
8
,
8
>
,
ck
::
Sequence
<
8
>>
;
ck
::
tensor_operation
::
device
::
DeviceElementwise
Impl
<
ck
::
Tuple
<
ABDataType
,
ABDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
4
,
8
,
ck
::
Sequence
<
8
,
8
>
,
ck
::
Sequence
<
8
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
void
host_elementwise4D
(
HostTensorC
&
C
,
...
...
example/20_grouped_conv_bwd_weight/CMakeLists.txt
View file @
76f2b6cd
add_custom_target
(
example_grouped_conv_bwd_weight
)
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_custom_target
(
example_grouped_conv_bwd_weight
)
add_example_executable
(
example_grouped_conv_bwd_weight_xdl_fp16 grouped_conv_bwd_weight_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_conv_bwd_weight_xdl_bf16 grouped_conv_bwd_weight_xdl_bf16.cpp
)
add_example_executable
(
example_grouped_conv_bwd_weight_xdl_fp16 grouped_conv_bwd_weight_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_conv_bwd_weight_xdl_bf16 grouped_conv_bwd_weight_xdl_bf16.cpp
)
add_dependencies
(
example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_fp16
add_dependencies
(
example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_fp16
example_grouped_conv_bwd_weight_xdl_bf16
)
set
(
target 1
)
endif
()
endforeach
()
add_custom_target
(
example_grouped_conv_bwd_weight_dl
)
add_example_executable
(
example_grouped_conv_bwd_weight_dl_fp16 grouped_conv_bwd_weight_dl_fp16.cpp
)
add_dependencies
(
example_grouped_conv_bwd_weight_dl example_grouped_conv_bwd_weight_dl_fp16
)
example/20_grouped_conv_bwd_weight/common.hpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -9,7 +9,6 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_gnwc_gkxc_gnwk_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
...
...
example/20_grouped_conv_bwd_weight/grouped_conv_bwd_weight_dl_fp16.cpp
0 → 100644
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_gnwc_gkxc_gnwk_dl.hpp"
using
InDataType
=
F16
;
using
WeiDataType
=
F16
;
using
OutDataType
=
F16
;
using
AccDataType
=
F32
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
PassThrough
;
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvBwdWeightInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
<
NDimSpatial
,
// NDimSpatial
InDataType
,
// InDataType
WeiDataType
,
// WeiDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
InElementOp
,
// InElementwiseOperation
WeiElementOp
,
// WeiElementwiseOperation
OutElementOp
,
// OutElementwiseOperation
ConvBwdWeightDefault
,
// ConvBackwardWeightSpecialization
256
,
// BlockSize
128
,
// MPerBlock
128
,
// NPerBlock
16
,
// K0PerBlock
2
,
// K1
4
,
// M1PerThread
4
,
// N1PerThread
1
,
// KPerThread
S
<
8
,
2
>
,
// M1N1ThreadClusterM1Xs
S
<
8
,
2
>
,
// M1N1ThreadClusterN1Xs
S
<
1
,
8
,
1
,
1
,
2
>
,
// ABlockTransferThreadSliceLengths_K0_M0_M1_K1
S
<
1
,
2
,
1
,
128
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M0_M1_K1
S
<
0
,
2
,
3
,
1
,
4
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
3
,
1
,
4
>
,
// ABlockTransferSrcAccessOrder
S
<
1
,
1
,
1
,
1
,
1
>
,
// ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
S
<
0
,
2
,
3
,
1
,
4
>
,
// ABlockTransferSrcVectorTensorContiguousDimOrder
S
<
1
,
1
,
1
,
1
,
1
>
,
// ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1
S
<
1
,
1
,
1
,
8
,
2
>
,
// BBlockTransferThreadSliceLengths_K0_N0_N1_K1
S
<
1
,
16
,
1
,
16
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N0_N1_K1
S
<
0
,
1
,
4
,
2
,
3
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
0
,
1
,
4
,
2
,
3
>
,
// BBlockTransferSrcAccessOrder
S
<
1
,
1
,
1
,
8
,
1
>
,
// BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
S
<
0
,
1
,
4
,
2
,
3
>
,
// BBlockTransferSrcVectorTensorContiguousDimOrder
S
<
1
,
1
,
1
,
1
,
2
>
,
// BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
// CThreadTransferSrcDstAccessOrder
5
,
// CThreadTransferSrcDstVectorDim
4
>
;
// CThreadTransferDstScalarPerVector
#include "run_grouped_conv_bwd_weight_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_bwd_weight_example
(
argc
,
argv
);
}
example/20_grouped_conv_bwd_weight/grouped_conv_bwd_weight_xdl_bf16.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_xdl_cshuffle.hpp"
using
InDataType
=
BF16
;
// bf16 kernel use fp32 atomic add to accumulate Weight tensor into global memory
using
WeiDataType
=
F32
;
...
...
@@ -13,6 +15,58 @@ using InElementOp = PassThrough;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
PassThrough
;
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvBwdWeightInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ck
::
tuple_element_t
<
NDimSpatial
-
1
,
ck
::
Tuple
<
ck
::
tensor_layout
::
convolution
::
GNWC
,
ck
::
tensor_layout
::
convolution
::
GNHWC
,
ck
::
tensor_layout
::
convolution
::
GNDHWC
>>
,
ck
::
tuple_element_t
<
NDimSpatial
-
1
,
ck
::
Tuple
<
ck
::
tensor_layout
::
convolution
::
GKXC
,
ck
::
tensor_layout
::
convolution
::
GKYXC
,
ck
::
tensor_layout
::
convolution
::
GKZYXC
>>
,
ck
::
tuple_element_t
<
NDimSpatial
-
1
,
ck
::
Tuple
<
ck
::
tensor_layout
::
convolution
::
GNWK
,
ck
::
tensor_layout
::
convolution
::
GNHWK
,
ck
::
tensor_layout
::
convolution
::
GNDHWK
>>
,
InDataType
,
// InDataType
WeiDataType
,
// WeiDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
InElementOp
,
// InElementwiseOperation
WeiElementOp
,
// WeiElementwiseOperation
OutElementOp
,
// OutElementwiseOperation
ConvBwdWeightDefault
,
// ConvolutionBackwardWeightSpecialization
256
,
// BlockSize
128
,
// MPerBlock
128
,
// NPerBlock
4
,
// K0PerBlock
8
,
// K1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
1
,
4
,
16
,
4
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
0
,
3
,
1
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
2
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
1
,
4
,
16
,
4
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
0
,
3
,
1
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
2
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
4
>
,
// CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
128
/
(
sizeof
(
WeiDataType
)
*
CHAR_BIT
)
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
#include "run_grouped_conv_bwd_weight_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_bwd_weight_example
(
argc
,
argv
);
}
example/20_grouped_conv_bwd_weight/grouped_conv_bwd_weight_xdl_fp16.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_xdl_cshuffle.hpp"
using
InDataType
=
F16
;
using
WeiDataType
=
F16
;
using
OutDataType
=
F16
;
...
...
@@ -12,6 +14,58 @@ using InElementOp = PassThrough;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
PassThrough
;
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvBwdWeightInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdWeight_Xdl_CShuffle
<
NDimSpatial
,
ck
::
tuple_element_t
<
NDimSpatial
-
1
,
ck
::
Tuple
<
ck
::
tensor_layout
::
convolution
::
GNWC
,
ck
::
tensor_layout
::
convolution
::
GNHWC
,
ck
::
tensor_layout
::
convolution
::
GNDHWC
>>
,
ck
::
tuple_element_t
<
NDimSpatial
-
1
,
ck
::
Tuple
<
ck
::
tensor_layout
::
convolution
::
GKXC
,
ck
::
tensor_layout
::
convolution
::
GKYXC
,
ck
::
tensor_layout
::
convolution
::
GKZYXC
>>
,
ck
::
tuple_element_t
<
NDimSpatial
-
1
,
ck
::
Tuple
<
ck
::
tensor_layout
::
convolution
::
GNWK
,
ck
::
tensor_layout
::
convolution
::
GNHWK
,
ck
::
tensor_layout
::
convolution
::
GNDHWK
>>
,
InDataType
,
// InDataType
WeiDataType
,
// WeiDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
InElementOp
,
// InElementwiseOperation
WeiElementOp
,
// WeiElementwiseOperation
OutElementOp
,
// OutElementwiseOperation
ConvBwdWeightDefault
,
// ConvolutionBackwardWeightSpecialization
256
,
// BlockSize
128
,
// MPerBlock
128
,
// NPerBlock
4
,
// K0PerBlock
8
,
// K1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
1
,
4
,
16
,
4
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
0
,
3
,
1
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
2
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
1
,
4
,
16
,
4
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
0
,
3
,
1
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
2
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
4
>
,
// CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
128
/
(
sizeof
(
WeiDataType
)
*
CHAR_BIT
)
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
#include "run_grouped_conv_bwd_weight_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_bwd_weight_example
(
argc
,
argv
);
}
example/20_grouped_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvBwdWeightInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Xdl_CShuffle
<
NDimSpatial
,
// NDimSpatial
InDataType
,
// InDataType
WeiDataType
,
// WeiDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
InElementOp
,
// InElementwiseOperation
WeiElementOp
,
// WeiElementwiseOperation
OutElementOp
,
// OutElementwiseOperation
ConvBwdWeightDefault
,
// ConvolutionBackwardWeightSpecialization
256
,
// BlockSize
128
,
// MPerBlock
128
,
// NPerBlock
4
,
// K0PerBlock
8
,
// K1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
1
,
4
,
16
,
4
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
0
,
3
,
1
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
2
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
1
,
4
,
16
,
4
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
0
,
3
,
1
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
2
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
4
>
,
// CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
128
/
(
sizeof
(
WeiDataType
)
*
CHAR_BIT
)
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
template
<
ck
::
index_t
NDimSpatial
>
using
HostConvBwdWeightInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvBwdWeight
<
NDimSpatial
,
...
...
@@ -54,7 +14,20 @@ template <ck::index_t NDimSpatial>
bool
run_grouped_conv_bwd_weight
(
const
ExecutionConfig
&
config
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
{
constexpr
ck
::
index_t
split_k
=
2
;
ck
::
index_t
split_k
;
// Set split_k = 2 for xdl op, split_k = 1 for dl
// Dl op doesn't support split_k > 1
// TODO: Add Dl op split_k > 1 support
if
(
!
(
ck
::
get_device_name
()
==
"gfx906"
||
ck
::
get_device_name
()
==
"gfx1030"
||
ck
::
get_device_name
()
==
"gfx1100"
||
ck
::
get_device_name
()
==
"gfx1101"
||
ck
::
get_device_name
()
==
"gfx1102"
))
{
split_k
=
2
;
}
else
{
split_k
=
1
;
}
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
...
...
@@ -102,6 +75,8 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
input_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
output_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
...
...
@@ -112,6 +87,8 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
range_copy
(
conv_param
.
input_spatial_lengths_
,
begin
(
input_spatial_lengths
));
range_copy
(
conv_param
.
filter_spatial_lengths_
,
begin
(
filter_spatial_lengths
));
range_copy
(
conv_param
.
output_spatial_lengths_
,
begin
(
output_spatial_lengths
));
range_copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
begin
(
input_strides
));
range_copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
begin
(
output_strides
));
range_copy
(
conv_param
.
conv_filter_strides_
,
begin
(
conv_filter_strides
));
range_copy
(
conv_param
.
conv_filter_dilations_
,
begin
(
conv_filter_dilations
));
range_copy
(
conv_param
.
input_left_pads_
,
begin
(
input_left_pads
));
...
...
@@ -130,6 +107,8 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
input_strides
,
output_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
...
...
@@ -144,7 +123,7 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
std
::
cerr
<<
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<<
std
::
endl
;
return
fals
e
;
return
tru
e
;
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
...
...
example/21_gemm_layernorm/CMakeLists.txt
View file @
76f2b6cd
add_example_executable
(
example_gemm_bias_relu_add_layernorm_xdl_fp16 gemm_bias_relu_add_layernorm_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_layernorm_xdl_fp16 gemm_layernorm_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_xdl_layernorm_single_kernel_fp16 gemm_xdl_layernorm_single_kernel_fp16.cpp
)
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_example_executable
(
example_gemm_bias_relu_add_layernorm_xdl_welford_fp16 gemm_bias_relu_add_layernorm_xdl_welford_fp16.cpp
)
add_example_executable
(
example_gemm_bias_relu_add_layernorm_xdl_naive_fp16 gemm_bias_relu_add_layernorm_xdl_naive_fp16.cpp
)
add_example_executable
(
example_gemm_layernorm_xdl_naive_fp16 gemm_layernorm_xdl_naive_fp16.cpp
)
add_example_executable
(
example_gemm_xdl_layernorm_naive_single_kernel_fp16 gemm_xdl_layernorm_naive_single_kernel_fp16.cpp
)
set
(
target 1
)
endif
()
endforeach
()
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_fp16.cpp
→
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_
naive_
fp16.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise
_impl
.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
@@ -95,7 +94,7 @@ using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataTyp
using
NormalizeFunctor
=
ck
::
tensor_operation
::
element_wise
::
Normalize
;
// A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y
using
DeviceNormalizeInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
using
DeviceNormalizeInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
Impl
<
ck
::
Tuple
<
EDataType
,
R0DataType
,
R1DataType
,
...
...
@@ -116,7 +115,7 @@ auto f_host_tensor_descriptor2d =
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
...
...
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_welford_fp16.cpp
0 → 100644
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_layernorm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"
#include "ck/library/utility/check_err.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddReluAdd
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
// DataType
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
F16
;
using
D1DataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
,
D1DataType
>
;
using
EMeanVarDataType
=
F16
;
using
GammaDataType
=
F16
;
using
BetaDataType
=
F16
;
using
HDataType
=
F16
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
D0Layout
=
Row
;
using
D1Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
,
D1Layout
>
;
using
HLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AddReluAdd
;
using
HElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDLayernorm_Xdl_CShuffle
//######| ALayout| BLayout| DsLayout| HLayout| AData| BData| AccData| CShuffle| DsData| EMeanVarData| GammaData| BetaData| HData| A| B| CDE| H| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| PostShuffle| PostShuffle| Layernorm| Layernorm|
//######| | | | | Type| Type| Type| DataType| Type| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ThreadClusterLengths| ScalarPerVector| ThreadClusterLengths| ThreadSliceSize|
//######| | | | | | | | | | | | | | Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _M_N| _M_N| _M_N| _M|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
HLayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EMeanVarDataType
,
GammaDataType
,
BetaDataType
,
HDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
HElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
32
,
8
>
,
8
,
S
<
8
,
32
>
,
8
>
;
// clang-format on
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
({
len
},
{
stride
});
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
constexpr
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
void
host_gemm_layernorm
(
Tensor
<
HDataType
>&
h_m_n
,
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
BDataType
>&
b_k_n
,
const
Tensor
<
D0DataType
>&
bias_n
,
const
Tensor
<
D1DataType
>&
d1_m_n
,
const
Tensor
<
GammaDataType
>&
gamma_n
,
const
Tensor
<
BetaDataType
>&
beta_n
,
AElementOp
a_element_op
,
BElementOp
b_element_op
,
CDEElementOp
cde_element_op
,
HElementOp
h_element_op
,
int
M
,
int
N
,
AccDataType
epsilon
=
1e-5
)
{
using
ReferenceGemm
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
AccDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
using
ReferenceLayernorm
=
ck
::
tensor_operation
::
host
::
ReferenceLayernorm
<
EMeanVarDataType
,
GammaDataType
,
BetaDataType
,
HDataType
,
AccDataType
,
HElementOp
,
2
,
1
>
;
Tensor
<
EMeanVarDataType
>
e_m_n
(
HostTensorDescriptor
{
M
,
N
});
Tensor
<
AccDataType
>
c_m_n
(
HostTensorDescriptor
{
M
,
N
});
auto
ref_gemm
=
ReferenceGemm
{};
auto
ref_gemm_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_gemm_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_gemm_invoker
.
Run
(
ref_gemm_argument
);
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
AccDataType
bias
=
static_cast
<
AccDataType
>
(
bias_n
(
n
));
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
AccDataType
e
=
static_cast
<
AccDataType
>
(
e_m_n
(
m
,
n
));
AccDataType
d1
=
static_cast
<
AccDataType
>
(
d1_m_n
(
m
,
n
));
cde_element_op
(
e
,
c_m_n
(
m
,
n
),
bias
,
d1
);
e_m_n
(
m
,
n
)
=
static_cast
<
EMeanVarDataType
>
(
e
);
}
}
ReferenceLayernorm
ref_layernorm
;
auto
ref_layernorm_invoker
=
ref_layernorm
.
MakeInvoker
();
auto
ref_layernorm_argument
=
ref_layernorm
.
MakeArgument
(
e_m_n
,
gamma_n
,
beta_n
,
h_m_n
,
h_element_op
,
{
M
,
N
},
{
1
},
epsilon
);
ref_layernorm_invoker
.
Run
(
ref_layernorm_argument
);
}
int
main
()
{
bool
do_verification
=
true
;
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
K
;
ck
::
index_t
StrideD0
=
0
;
ck
::
index_t
StrideD1
=
N
;
ck
::
index_t
StrideH
=
N
;
float
epsilon
=
1e-5
;
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
D0DataType
>
d0_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
D1DataType
>
d1_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideD1
,
D1Layout
{}));
Tensor
<
GammaDataType
>
gamma_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
BetaDataType
>
beta_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
HDataType
>
h_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideH
,
HLayout
{}));
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
1
,
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
1
,
1
});
d0_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
-
1
,
1
});
d1_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
-
1
,
1
});
gamma_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
GammaDataType
>
{
-
1
,
1
});
beta_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BetaDataType
>
{
-
1
,
1
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
d0_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
gamma_device_buf
(
sizeof
(
GammaDataType
)
*
gamma_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
beta_device_buf
(
sizeof
(
BetaDataType
)
*
beta_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
h_device_buf
(
sizeof
(
HDataType
)
*
h_m_n
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_m_n
.
mData
.
data
());
gamma_device_buf
.
ToDevice
(
gamma_n
.
mData
.
data
());
beta_device_buf
.
ToDevice
(
beta_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
h_element_op
=
HElementOp
{};
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
(),
h_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
{
StrideD0
,
StrideD1
},
StrideH
,
epsilon
,
a_element_op
,
b_element_op
,
cde_element_op
,
h_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
size_t
workspace_sz
=
device_op
.
GetWorkSpaceSize
(
&
argument
);
DeviceMem
workspace_dev
(
workspace_sz
);
device_op
.
SetWorkSpacePointer
(
&
argument
,
workspace_dev
.
GetDeviceBuffer
());
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
if
(
do_verification
)
{
Tensor
<
HDataType
>
h_m_n_host
(
HostTensorDescriptor
{
M
,
N
});
host_gemm_layernorm
(
h_m_n_host
,
a_m_k
,
b_k_n
,
d0_n
,
d1_m_n
,
gamma_n
,
beta_n
,
a_element_op
,
b_element_op
,
cde_element_op
,
h_element_op
,
M
,
N
,
epsilon
);
h_device_buf
.
FromDevice
(
h_m_n
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
h_m_n
,
h_m_n_host
,
"Error: Incorrect results h_m_n"
,
1e-2
,
1e-2
);
}
return
pass
?
0
:
1
;
}
example/21_gemm_layernorm/gemm_layernorm_xdl_fp16.cpp
→
example/21_gemm_layernorm/gemm_layernorm_xdl_
naive_
fp16.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise
_impl
.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
@@ -92,7 +91,7 @@ using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataTyp
using
NormalizeFunctor
=
ck
::
tensor_operation
::
element_wise
::
Normalize
;
// A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y
using
DeviceNormalizeInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
using
DeviceNormalizeInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
Impl
<
ck
::
Tuple
<
EDataType
,
R0DataType
,
R1DataType
,
...
...
@@ -115,7 +114,7 @@ auto f_host_tensor_descriptor2d =
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
...
...
example/21_gemm_layernorm/gemm_xdl_layernorm_single_kernel_fp16.cpp
→
example/21_gemm_layernorm/gemm_xdl_layernorm_
naive_
single_kernel_fp16.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
@@ -135,7 +135,7 @@ int main(int argc, char* argv[])
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
...
...
example/22_cgemm/cgemm_xdl_bf16.cpp
View file @
76f2b6cd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
2
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
...
...
Prev
1
…
6
7
8
9
10
11
12
13
14
…
27
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment