Commit 75af5450 authored by Chaitanya Inumella's avatar Chaitanya Inumella
Browse files

Rebased with the develop branch of the composable kernel

parents 5d015452 63914743
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/include/profile_convnd_bwd_weight_impl.hpp"
namespace {
enum struct ConvDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
BF16_BF16_BF16, // 2
};
enum struct ConvInputLayout
{
NCHW, // 0
NHWC, // 1
};
enum struct ConvWeightLayout
{
KCYX, // 0
KYXC, // 1
};
enum struct ConvOutputLayout
{
NKHW, // 0
NHWK, // 1
};
ck::utils::conv::ConvParams parse_conv_params(int num_dim_spatial, char* argv[], int arg_idx)
{
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
ck::utils::conv::ConvParams params;
params.num_dim_spatial_ = num_dim_spatial;
params.N_ = std::stoi(argv[arg_idx++]);
params.K_ = std::stoi(argv[arg_idx++]);
params.C_ = std::stoi(argv[arg_idx++]);
params.filter_spatial_lengths_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.filter_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
}
params.input_spatial_lengths_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_strides_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_strides_[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_dilations_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_dilations_[i] = std::stoi(argv[arg_idx++]);
}
params.input_left_pads_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_left_pads_[i] = std::stoi(argv[arg_idx++]);
}
params.input_right_pads_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_right_pads_[i] = std::stoi(argv[arg_idx++]);
}
return params;
}
} // namespace
int profile_convnd_bwd_weight(int argc, char* argv[], int num_dim_spatial)
{
const int preParams = 11;
int conv_args = 3 + num_dim_spatial * 6;
int cmdline_nargs = conv_args + preParams;
if(cmdline_nargs != argc)
{
printf("arg1: tensor operation (convnd[1|2|3]d_bwd_weight: BackwardConvolution)\n");
printf("arg2: data type (0: fp32; 1: fp16, 2: bf16)\n");
printf("arg3: input tensor layout (0: NCHW; 1: NHWC)\n");
printf("arg4: weight tensor layout (0: KCYX; 1: KYXC)\n");
printf("arg5: output tensor layout (0: NKHW; 1: NHWK)\n");
printf("arg6: verification (0: no; 1: yes)\n");
printf("arg7: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg8: print tensor value (0: no; 1: yes)\n");
printf("arg9: time kernel (0=n0, 1=yes)\n");
printf("arg10: splitk\n");
printf("arg11 to 25: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
return 1;
}
const auto data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const auto in_layout = static_cast<ConvInputLayout>(std::stoi(argv[3]));
const auto wei_layout = static_cast<ConvWeightLayout>(std::stoi(argv[4]));
const auto out_layout = static_cast<ConvOutputLayout>(std::stoi(argv[5]));
const bool do_verification = std::stoi(argv[6]);
const int init_method = std::stoi(argv[7]);
const bool do_log = std::stoi(argv[8]);
const bool time_kernel = std::stoi(argv[9]);
ck::index_t split_k = std::stoi(argv[10]);
split_k = std::max(1, split_k);
ck::utils::conv::ConvParams params = parse_conv_params(num_dim_spatial, argv, preParams);
auto Run = [&](auto input_type, auto wei_type, auto out_type) {
using InDataType = decltype(input_type);
using WeiDataType = decltype(wei_type);
using OutDataType = decltype(out_type);
switch(num_dim_spatial)
{
case 1:
ck::profiler::profile_convnd_bwd_weight_impl<1,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_layout::convolution::NWC,
ck::tensor_layout::convolution::KXC,
ck::tensor_layout::convolution::NWK>(
do_verification,
init_method,
do_log,
time_kernel,
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
params.GetOutputSpatialLengths(),
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
split_k);
break;
case 2:
ck::profiler::profile_convnd_bwd_weight_impl<2,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
do_verification,
init_method,
do_log,
time_kernel,
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
params.GetOutputSpatialLengths(),
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
split_k);
break;
case 3:
ck::profiler::profile_convnd_bwd_weight_impl<3,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_layout::convolution::NDHWC,
ck::tensor_layout::convolution::KZYXC,
ck::tensor_layout::convolution::NDHWK>(
do_verification,
init_method,
do_log,
time_kernel,
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
params.GetOutputSpatialLengths(),
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
split_k);
break;
default: break;
}
};
if(data_type == ConvDataType::F32_F32_F32 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
Run(float{}, float{}, float{});
}
else if(data_type == ConvDataType::F16_F16_F16 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
Run(ck::half_t{}, ck::half_t{}, ck::half_t{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
Run(ck::bhalf_t{}, ck::bhalf_t{}, ck::bhalf_t{});
}
else
{
std::cout << "wrong! this Conv data_type & layout is not implemented" << std::endl;
return 1;
}
return 0;
}
......@@ -20,6 +20,7 @@ int profile_convnd_bwd_data(int, char*[], int);
int profile_conv_bwd_weight(int, char*[]);
int profile_normalization(int, char*[]);
int profile_reduce(int, char*[]);
int profile_convnd_bwd_weight(int, char*[], int);
static void print_helper_message()
{
......@@ -117,6 +118,18 @@ int main(int argc, char* argv[])
{
return profile_conv_bwd_weight(argc, argv);
}
else if(strcmp(argv[1], "convnd1d_bwd_weight") == 0)
{
return profile_convnd_bwd_weight(argc, argv, 1);
}
else if(strcmp(argv[1], "convnd2d_bwd_weight") == 0)
{
return profile_convnd_bwd_weight(argc, argv, 2);
}
else if(strcmp(argv[1], "convnd3d_bwd_weight") == 0)
{
return profile_convnd_bwd_weight(argc, argv, 3);
}
else if(strcmp(argv[1], "reduce") == 0)
{
return profile_reduce(argc, argv);
......
......@@ -44,6 +44,7 @@ add_subdirectory(grouped_gemm)
add_subdirectory(convnd_fwd)
add_subdirectory(reduce)
add_subdirectory(conv2d_bwd_weight)
add_subdirectory(convnd_bwd_weight)
add_subdirectory(convnd_bwd_data)
add_subdirectory(block_to_ctile_map)
add_subdirectory(softmax)
add_test_executable(test_convnd_bwd_weight convnd_bwd_weight.cpp)
target_link_libraries(test_convnd_bwd_weight PRIVATE host_tensor device_convnd_bwd_weight_instance conv_util)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <vector>
#include "test/convnd_fwd/conv_util.hpp"
#include "profiler/include/profile_convnd_bwd_weight_impl.hpp"
int test_self()
{
bool pass = true;
std::vector<ck::utils::conv::ConvParams> params;
params.push_back({1, 128, 256, 256, {1}, {7}, {2}, {1}, {0}, {0}});
params.push_back({1, 128, 256, 256, {3}, {14}, {1}, {1}, {1}, {1}});
params.push_back({1, 128, 256, 256, {1}, {3}, {1}, {1}, {0}, {0}});
for(auto& param : params)
{
// f32
pass &= ck::profiler::profile_convnd_bwd_weight_impl<1,
float,
float,
float,
ck::tensor_layout::convolution::NWC,
ck::tensor_layout::convolution::KXC,
ck::tensor_layout::convolution::NWK>(
true, // do_verification
1, // init_method
false, // do_log
true, // time_kernel
param.N_,
param.K_,
param.C_,
param.input_spatial_lengths_,
param.filter_spatial_lengths_,
param.GetOutputSpatialLengths(),
param.conv_filter_strides_,
param.conv_filter_dilations_,
param.input_left_pads_,
param.input_right_pads_,
2);
// fp16
pass &= ck::profiler::profile_convnd_bwd_weight_impl<1,
ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::convolution::NWC,
ck::tensor_layout::convolution::KXC,
ck::tensor_layout::convolution::NWK>(
true, // do_verification
1, // init_method
false, // do_log
true, // time_kernel
param.N_,
param.K_,
param.C_,
param.input_spatial_lengths_,
param.filter_spatial_lengths_,
param.GetOutputSpatialLengths(),
param.conv_filter_strides_,
param.conv_filter_dilations_,
param.input_left_pads_,
param.input_right_pads_,
2);
// bf16
pass &= ck::profiler::profile_convnd_bwd_weight_impl<1,
ck::bhalf_t,
ck::bhalf_t,
ck::bhalf_t,
ck::tensor_layout::convolution::NWC,
ck::tensor_layout::convolution::KXC,
ck::tensor_layout::convolution::NWK>(
true, // do_verification
1, // init_method
false, // do_log
true, // time_kernel
param.N_,
param.K_,
param.C_,
param.input_spatial_lengths_,
param.filter_spatial_lengths_,
param.GetOutputSpatialLengths(),
param.conv_filter_strides_,
param.conv_filter_dilations_,
param.input_left_pads_,
param.input_right_pads_,
2);
}
// check 2d
params.clear();
params.push_back({2, 128, 256, 256, {1, 1}, {7, 7}, {2, 2}, {1, 1}, {0, 0}, {0, 0}});
params.push_back({2, 128, 256, 256, {3, 3}, {14, 14}, {1, 1}, {1, 1}, {1, 1}, {1, 1}});
params.push_back({2, 128, 256, 256, {1, 1}, {3, 3}, {1, 1}, {1, 1}, {0, 0}, {0, 0}});
for(auto& param : params)
{
// f32
pass &= ck::profiler::profile_convnd_bwd_weight_impl<2,
float,
float,
float,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
true, // do_verification
1, // init_method
false, // do_log
true, // time_kernel
param.N_,
param.K_,
param.C_,
param.input_spatial_lengths_,
param.filter_spatial_lengths_,
param.GetOutputSpatialLengths(),
param.conv_filter_strides_,
param.conv_filter_dilations_,
param.input_left_pads_,
param.input_right_pads_,
2);
// fp16
pass &= ck::profiler::profile_convnd_bwd_weight_impl<2,
ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
true, // do_verification
1, // init_method
false, // do_log
true, // time_kernel
param.N_,
param.K_,
param.C_,
param.input_spatial_lengths_,
param.filter_spatial_lengths_,
param.GetOutputSpatialLengths(),
param.conv_filter_strides_,
param.conv_filter_dilations_,
param.input_left_pads_,
param.input_right_pads_,
2);
// bf16
pass &= ck::profiler::profile_convnd_bwd_weight_impl<2,
ck::bhalf_t,
ck::bhalf_t,
ck::bhalf_t,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
true, // do_verification
1, // init_method
false, // do_log
true, // time_kernel
param.N_,
param.K_,
param.C_,
param.input_spatial_lengths_,
param.filter_spatial_lengths_,
param.GetOutputSpatialLengths(),
param.conv_filter_strides_,
param.conv_filter_dilations_,
param.input_left_pads_,
param.input_right_pads_,
2);
}
// check 2d
params.clear();
params.push_back(
{3, 128, 256, 256, {1, 1, 1}, {4, 4, 4}, {2, 2, 2}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}});
params.push_back(
{3, 128, 256, 256, {3, 3, 3}, {4, 4, 8}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}});
params.push_back(
{3, 128, 256, 256, {1, 1, 1}, {3, 3, 3}, {1, 1, 1}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}});
for(auto& param : params)
{
// f32
pass &= ck::profiler::profile_convnd_bwd_weight_impl<3,
float,
float,
float,
ck::tensor_layout::convolution::NDHWC,
ck::tensor_layout::convolution::KZYXC,
ck::tensor_layout::convolution::NDHWK>(
true, // do_verification
1, // init_method
false, // do_log
true, // time_kernel
param.N_,
param.K_,
param.C_,
param.input_spatial_lengths_,
param.filter_spatial_lengths_,
param.GetOutputSpatialLengths(),
param.conv_filter_strides_,
param.conv_filter_dilations_,
param.input_left_pads_,
param.input_right_pads_,
2);
// fp16
pass &= ck::profiler::profile_convnd_bwd_weight_impl<3,
ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::convolution::NDHWC,
ck::tensor_layout::convolution::KZYXC,
ck::tensor_layout::convolution::NDHWK>(
true, // do_verification
1, // init_method
false, // do_log
true, // time_kernel
param.N_,
param.K_,
param.C_,
param.input_spatial_lengths_,
param.filter_spatial_lengths_,
param.GetOutputSpatialLengths(),
param.conv_filter_strides_,
param.conv_filter_dilations_,
param.input_left_pads_,
param.input_right_pads_,
2);
// bf16
pass &= ck::profiler::profile_convnd_bwd_weight_impl<3,
ck::bhalf_t,
ck::bhalf_t,
ck::bhalf_t,
ck::tensor_layout::convolution::NDHWC,
ck::tensor_layout::convolution::KZYXC,
ck::tensor_layout::convolution::NDHWK>(
true, // do_verification
1, // init_method
false, // do_log
true, // time_kernel
param.N_,
param.K_,
param.C_,
param.input_spatial_lengths_,
param.filter_spatial_lengths_,
param.GetOutputSpatialLengths(),
param.conv_filter_strides_,
param.conv_filter_dilations_,
param.input_left_pads_,
param.input_right_pads_,
2);
}
return pass;
}
int main()
{
// int data_type = 1;
// int init_method = 1;
bool pass = true;
pass = test_self();
if(pass)
{
std::cout << "test conv2d bwd weight : Pass" << std::endl;
return 0;
}
else
{
std::cout << "test conv2d bwd weight: Fail " << std::endl;
return -1;
}
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment