Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
75126813
Commit
75126813
authored
Mar 18, 2022
by
Jianfeng yan
Browse files
added test for batched_gemm
parent
a863776f
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
257 additions
and
7 deletions
+257
-7
include/ck/tensor_operation/gpu/device/device_batched_gemm_xdl.hpp
...k/tensor_operation/gpu/device/device_batched_gemm_xdl.hpp
+3
-1
library/include/ck/library/host_tensor/host_tensor.hpp
library/include/ck/library/host_tensor/host_tensor.hpp
+2
-1
library/src/tensor_operation_instance/gpu/batched_gemm/device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instance.cpp
...ice_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instance.cpp
+4
-5
test/CMakeLists.txt
test/CMakeLists.txt
+1
-0
test/batched_gemm/CMakeLists.txt
test/batched_gemm/CMakeLists.txt
+4
-0
test/batched_gemm/batched_gemm_fp16.cpp
test/batched_gemm/batched_gemm_fp16.cpp
+137
-0
test/batched_gemm/batched_gemm_util.hpp
test/batched_gemm/batched_gemm_util.hpp
+106
-0
No files found.
include/ck/tensor_operation/gpu/device/device_batched_gemm_xdl.hpp
View file @
75126813
...
@@ -249,7 +249,9 @@ struct DeviceBatchedGemmXdl
...
@@ -249,7 +249,9 @@ struct DeviceBatchedGemmXdl
struct
ComputeBasePtrOfStridedBatch
struct
ComputeBasePtrOfStridedBatch
{
{
ComputeBasePtrOfStridedBatch
(
index_t
BatchStrideA
,
index_t
BatchStrideB
,
index_t
BatchStrideC
)
ComputeBasePtrOfStridedBatch
(
index_t
BatchStrideA
,
index_t
BatchStrideB
,
index_t
BatchStrideC
)
:
BatchStrideA_
(
BatchStrideA
),
BatchStrideB_
(
BatchStrideB
),
BatchStrideC_
(
BatchStrideC
)
:
BatchStrideA_
(
BatchStrideA
),
BatchStrideB_
(
BatchStrideB
),
BatchStrideC_
(
BatchStrideC
)
{
{
}
}
...
...
library/include/ck/library/host_tensor/host_tensor.hpp
View file @
75126813
...
@@ -317,7 +317,7 @@ float bf16_to_f32_(ck::bhalf_t src_val);
...
@@ -317,7 +317,7 @@ float bf16_to_f32_(ck::bhalf_t src_val);
void
bf16_to_f32_
(
const
Tensor
<
ck
::
bhalf_t
>&
src
,
Tensor
<
float
>&
dst
);
void
bf16_to_f32_
(
const
Tensor
<
ck
::
bhalf_t
>&
src
,
Tensor
<
float
>&
dst
);
template
<
typename
T
>
template
<
typename
T
>
void
check_error
(
const
Tensor
<
T
>&
ref
,
const
Tensor
<
T
>&
result
)
float
check_error
(
const
Tensor
<
T
>&
ref
,
const
Tensor
<
T
>&
result
)
{
{
float
error
=
0
;
float
error
=
0
;
float
max_diff
=
-
1
;
float
max_diff
=
-
1
;
...
@@ -354,6 +354,7 @@ void check_error(const Tensor<T>& ref, const Tensor<T>& result)
...
@@ -354,6 +354,7 @@ void check_error(const Tensor<T>& ref, const Tensor<T>& result)
std
::
cout
<<
"error: "
<<
error
<<
std
::
endl
;
std
::
cout
<<
"error: "
<<
error
<<
std
::
endl
;
std
::
cout
<<
"max_diff: "
<<
max_diff
<<
", "
<<
ref_value
<<
", "
<<
result_value
<<
std
::
endl
;
std
::
cout
<<
"max_diff: "
<<
max_diff
<<
", "
<<
ref_value
<<
", "
<<
result_value
<<
std
::
endl
;
return
max_diff
;
}
}
template
<
typename
T
>
template
<
typename
T
>
...
...
library/src/tensor_operation_instance/gpu/batched_gemm/device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instance.cpp
View file @
75126813
...
@@ -21,9 +21,8 @@ using S = ck::Sequence<Is...>;
...
@@ -21,9 +21,8 @@ using S = ck::Sequence<Is...>;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using
device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instances
=
using
device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instances
=
std
::
tuple
<
std
::
tuple
<
// clang-format off
// clang-format off
//#################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//#################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//#################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//#################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//#################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//#################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
...
@@ -45,8 +44,8 @@ using device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instances =
...
@@ -45,8 +44,8 @@ using device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instances =
DeviceBatchedGemmXdl
<
F16
,
F16
,
F16
,
F32
,
Row
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
128
,
16
,
64
,
4
,
8
,
16
,
16
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
true
,
7
,
1
>
,
DeviceBatchedGemmXdl
<
F16
,
F16
,
F16
,
F32
,
Row
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
128
,
16
,
64
,
4
,
8
,
16
,
16
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
true
,
7
,
1
>
,
DeviceBatchedGemmXdl
<
F16
,
F16
,
F16
,
F32
,
Row
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
128
,
16
,
32
,
4
,
8
,
16
,
16
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
true
,
7
,
1
>
,
DeviceBatchedGemmXdl
<
F16
,
F16
,
F16
,
F32
,
Row
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
128
,
16
,
32
,
4
,
8
,
16
,
16
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
true
,
7
,
1
>
,
DeviceBatchedGemmXdl
<
F16
,
F16
,
F16
,
F32
,
Row
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
64
,
16
,
16
,
4
,
8
,
16
,
16
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
true
,
7
,
1
>
DeviceBatchedGemmXdl
<
F16
,
F16
,
F16
,
F32
,
Row
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
64
,
16
,
16
,
4
,
8
,
16
,
16
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
true
,
7
,
1
>
// clang-format on
// clang-format on
>
;
>
;
void
add_device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instances
(
void
add_device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instances
(
std
::
vector
<
DeviceGemmPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
)
std
::
vector
<
DeviceGemmPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
)
...
...
test/CMakeLists.txt
View file @
75126813
...
@@ -39,3 +39,4 @@ add_subdirectory(gemm_split_k)
...
@@ -39,3 +39,4 @@ add_subdirectory(gemm_split_k)
add_subdirectory
(
conv2d_fwd
)
add_subdirectory
(
conv2d_fwd
)
add_subdirectory
(
convnd_fwd
)
add_subdirectory
(
convnd_fwd
)
add_subdirectory
(
conv2d_bwd_data
)
add_subdirectory
(
conv2d_bwd_data
)
add_subdirectory
(
batched_gemm
)
test/batched_gemm/CMakeLists.txt
0 → 100644
View file @
75126813
add_test_executable
(
test_batched_gemm_fp16 batched_gemm_fp16.cpp
)
target_link_libraries
(
test_batched_gemm_fp16 PRIVATE host_tensor
)
target_link_libraries
(
test_batched_gemm_fp16 PRIVATE device_batched_gemm_instance
)
test/batched_gemm/batched_gemm_fp16.cpp
0 → 100644
View file @
75126813
#include <half.hpp>
#include <tuple>
#include <vector>
#include "batched_gemm_util.hpp"
#include "reference_batched_gemm.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_batched_gemm_xdl.hpp"
#include "element_wise_operation.hpp"
#include "test_util.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceBatchedGemmPtr
=
ck
::
tensor_operation
::
device
::
DeviceGemmPtr
<
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
;
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_batched_gemm_instance
{
void
add_device_batched_gemm_xdl_f16_f16_f16_gmk_gnk_gmn_instances
(
std
::
vector
<
DeviceBatchedGemmPtr
>&
instances
);
}
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
namespace
{
using
ADataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
auto
PrepareGemmTensor
(
const
std
::
size_t
batch_count
,
const
ck
::
batched_gemm_util
::
GemmParams
&
params
)
{
auto
f_host_tensor_descriptor
=
[
batch_count
](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
row
*
stride
,
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
col
*
stride
,
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
params
.
M
,
params
.
K
,
params
.
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
params
.
K
,
params
.
N
,
params
.
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_g_m_n_host_result
(
f_host_tensor_descriptor
(
params
.
M
,
params
.
N
,
params
.
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_g_m_n_device_result
(
f_host_tensor_descriptor
(
params
.
M
,
params
.
N
,
params
.
StrideC
,
CLayout
{}));
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
0.5
,
0.5
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
return
std
::
make_tuple
(
a_g_m_k
,
b_g_k_n
,
c_g_m_n_host_result
,
c_g_m_n_device_result
);
}
bool
TestBatchedGemm
(
const
std
::
size_t
batch_count
,
DeviceBatchedGemmPtr
&
gemmPtr
)
{
// Arrange
ck
::
batched_gemm_util
::
GemmParams
params
;
params
.
M
=
1024
;
params
.
N
=
1024
;
params
.
K
=
1024
;
params
.
StrideA
=
1024
;
params
.
StrideB
=
1024
;
params
.
StrideC
=
1024
;
auto
host_tensors
=
PrepareGemmTensor
(
batch_count
,
params
);
const
Tensor
<
ADataType
>&
a
=
std
::
get
<
0
>
(
host_tensors
);
const
Tensor
<
BDataType
>&
b
=
std
::
get
<
1
>
(
host_tensors
);
Tensor
<
CDataType
>&
c_host
=
std
::
get
<
2
>
(
host_tensors
);
Tensor
<
CDataType
>&
c_device
=
std
::
get
<
3
>
(
host_tensors
);
auto
a_element_op
=
PassThrough
{};
auto
b_element_op
=
PassThrough
{};
auto
c_element_op
=
PassThrough
{};
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
ck
::
batched_gemm_util
::
RunHostBatchedGemm
<
ReferenceBatchedGemmInstance
>
(
a
,
b
,
c_host
,
a_element_op
,
b_element_op
,
c_element_op
);
// Act
ck
::
batched_gemm_util
::
RunDeviceBatchedGemm
(
gemmPtr
,
params
,
a
,
b
,
c_device
,
a_element_op
,
b_element_op
,
c_element_op
);
// Assert
// bool res = test_util::check_err(
// c_device.mData, c_host.mData, "Error: incorrect results!", 1e-5f, 1e-4f);
bool
res
=
check_error
(
c_device
,
c_host
)
<
0.007815
f
;
std
::
cout
<<
(
res
?
"SUCCESS"
:
"FAILURE"
)
<<
std
::
endl
;
return
res
;
}
}
// namespace
int
main
()
{
std
::
vector
<
DeviceBatchedGemmPtr
>
batched_gemm_ptrs
;
ck
::
tensor_operation
::
device
::
device_batched_gemm_instance
::
add_device_batched_gemm_xdl_f16_f16_f16_gmk_gnk_gmn_instances
(
batched_gemm_ptrs
);
bool
res
=
true
;
const
std
::
size_t
batch_count
=
4
;
for
(
auto
&
gemmPtr
:
batched_gemm_ptrs
)
{
res
&=
TestBatchedGemm
(
batch_count
,
gemmPtr
);
}
std
::
cout
<<
"TestGemm ..... "
<<
(
res
?
"SUCCESS"
:
"FAILURE"
)
<<
std
::
endl
;
}
test/batched_gemm/batched_gemm_util.hpp
0 → 100644
View file @
75126813
#ifndef BATCHED_GEMM_UTILS_HPP
#define BATCHED_GEMM_UTILS_HPP
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
namespace
ck
{
namespace
batched_gemm_util
{
struct
GemmParams
{
GemmParams
()
:
M
(
1024
),
N
(
1024
),
K
(
1024
),
StrideA
(
1024
),
StrideB
(
1024
),
StrideC
(
1024
),
alpha
(
1
),
beta
(
0
)
{
}
ck
::
index_t
M
;
ck
::
index_t
N
;
ck
::
index_t
K
;
ck
::
index_t
StrideA
;
ck
::
index_t
StrideB
;
ck
::
index_t
StrideC
;
float
alpha
;
float
beta
;
};
template
<
typename
BatchedGemmInstance
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
void
RunHostBatchedGemm
(
const
Tensor
<
ADataType
>&
A
,
const
Tensor
<
BDataType
>&
B
,
Tensor
<
CDataType
>&
C
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
auto
ref_batched_gemm
=
BatchedGemmInstance
{};
auto
ref_invoker
=
ref_batched_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_batched_gemm
.
MakeArgument
(
A
,
B
,
C
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
}
template
<
typename
DeviceGemmPtr
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
void
RunDeviceBatchedGemm
(
DeviceGemmPtr
&
batched_gemm_ptr
,
const
ck
::
batched_gemm_util
::
GemmParams
&
params
,
const
Tensor
<
ADataType
>&
A
,
const
Tensor
<
BDataType
>&
B
,
Tensor
<
CDataType
>&
C
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
DeviceMem
a_g_m_k_device_buf
(
sizeof
(
ADataType
)
*
A
.
mDesc
.
GetElementSpace
());
DeviceMem
b_g_k_n_device_buf
(
sizeof
(
BDataType
)
*
B
.
mDesc
.
GetElementSpace
());
DeviceMem
c_g_m_n_device_buf
(
sizeof
(
CDataType
)
*
C
.
mDesc
.
GetElementSpace
());
a_g_m_k_device_buf
.
ToDevice
(
A
.
mData
.
data
());
b_g_k_n_device_buf
.
ToDevice
(
B
.
mData
.
data
());
const
auto
batch_count
=
A
.
mDesc
.
GetLengths
()[
0
];
auto
invoker_ptr
=
batched_gemm_ptr
->
MakeInvokerPointer
();
auto
argument_ptr
=
batched_gemm_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_g_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_g_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_g_m_n_device_buf
.
GetDeviceBuffer
()),
params
.
M
,
params
.
N
,
params
.
K
,
params
.
StrideA
,
params
.
StrideB
,
params
.
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
,
batch_count
);
if
(
!
batched_gemm_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
invoker_ptr
->
Run
(
argument_ptr
.
get
());
c_g_m_n_device_buf
.
FromDevice
(
C
.
mData
.
data
());
}
}
// namespace batched_gemm_util
}
// namespace ck
#endif
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment