Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
6e01019b
Commit
6e01019b
authored
Aug 01, 2023
by
Jun Liu
Browse files
Merge branch 'develop' into amd-develop
parents
a8fafc3f
7761e523
Changes
86
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2351 additions
and
87 deletions
+2351
-87
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp
...n/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp
+1
-3
include/ck/tensor_operation/gpu/device/impl/device_gemm_reduce_xdl_cshuffle.hpp
...ation/gpu/device/impl/device_gemm_reduce_xdl_cshuffle.hpp
+5
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp
...or_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp
+1
-3
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_layernorm_cshuffle.hpp
...on/gpu/device/impl/device_gemm_xdl_layernorm_cshuffle.hpp
+1
-3
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_skip_b_lds.hpp
..._operation/gpu/device/impl/device_gemm_xdl_skip_b_lds.hpp
+5
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp
...tion/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp
+5
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_streamk.hpp
...sor_operation/gpu/device/impl/device_gemm_xdl_streamk.hpp
+357
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_waveletmodel_cshuffle.hpp
...gpu/device/impl/device_gemm_xdl_waveletmodel_cshuffle.hpp
+1
-3
include/ck/tensor_operation/gpu/device/impl/device_grouped_contraction_multiple_d_xdl_cshuffle.hpp
...pl/device_grouped_contraction_multiple_d_xdl_cshuffle.hpp
+1
-3
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
...vice_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
+5
-0
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
...device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
+1
-3
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp
...sor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp
+5
-0
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp
...u/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp
+5
-0
include/ck/tensor_operation/gpu/device/impl/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp
...mpl/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp
+1
-3
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
+404
-0
include/ck/tensor_operation/gpu/grid/gridwise_batched_gemm_multiple_d_gemm_multiple_d_xdl_cshuffle_v1.hpp
...tched_gemm_multiple_d_gemm_multiple_d_xdl_cshuffle_v1.hpp
+53
-65
include/ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v3.hpp
...k/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v3.hpp
+89
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_streamk.hpp
...ensor_operation/gpu/grid/gridwise_gemm_xdlops_streamk.hpp
+1183
-0
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v6r1r2.hpp
...on/gpu/thread/threadwise_tensor_slice_transfer_v6r1r2.hpp
+213
-0
include/ck/utility/amd_buffer_addressing.hpp
include/ck/utility/amd_buffer_addressing.hpp
+15
-1
No files found.
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp
View file @
6e01019b
...
...
@@ -491,9 +491,7 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
||
ck
::
get_device_name
()
==
"gfx940"
||
ck
::
get_device_name
()
==
"gfx941"
||
ck
::
get_device_name
()
==
"gfx942"
))
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_reduce_xdl_cshuffle.hpp
View file @
6e01019b
...
...
@@ -645,6 +645,11 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<0, ReduceOperatio
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_m_n_
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp
View file @
6e01019b
...
...
@@ -188,9 +188,7 @@ struct DeviceGemm_Xdl_CShuffle : public DeviceGemm<ALayout,
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
||
ck
::
get_device_name
()
==
"gfx940"
||
ck
::
get_device_name
()
==
"gfx941"
||
ck
::
get_device_name
()
==
"gfx942"
))
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_layernorm_cshuffle.hpp
View file @
6e01019b
...
...
@@ -648,9 +648,7 @@ struct DeviceGemmLayerNorm_Xdl_CShuffle : public BaseOperator
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
||
ck
::
get_device_name
()
==
"gfx940"
||
ck
::
get_device_name
()
==
"gfx941"
||
ck
::
get_device_name
()
==
"gfx942"
))
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_skip_b_lds.hpp
View file @
6e01019b
...
...
@@ -416,6 +416,11 @@ struct DeviceGemmXdlSkipBLds : public DeviceGemm<ALayout,
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m_n_
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp
View file @
6e01019b
...
...
@@ -231,6 +231,11 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
static
bool
IsSupportedArgument
(
const
Argument
&
karg
)
{
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
karg
);
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_streamk.hpp
0 → 100644
View file @
6e01019b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_streamk.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_streamk.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/hip_check_error.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AccDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
K0PerBlock
,
ck
::
index_t
K1
,
ck
::
index_t
MPerXDL
,
ck
::
index_t
NPerXDL
,
ck
::
index_t
MXdlPerWave
,
ck
::
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
ck
::
index_t
ABlockTransferSrcVectorDim
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
ABlockTransferDstScalarPerVector_K1
,
ck
::
index_t
ABlockLdsAddExtraM
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
ck
::
index_t
BBlockTransferSrcVectorDim
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferDstScalarPerVector_K1
,
ck
::
index_t
BBlockLdsAddExtraN
,
index_t
CShuffleMRepeatPerShuffle
,
index_t
CShuffleNRepeatPerShuffle
,
typename
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CBlockTransferScalarPerVector_NWaveNPerXDL
>
struct
DeviceGemmXdlStreamK
:
public
DeviceGemmStreamK
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
using
GridwiseGemm
=
GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_streamk
<
BlockSize
,
BlockToCTileMap_GemmStreamK
<
MPerBlock
,
NPerBlock
,
K0PerBlock
*
K1
,
StreamKReductionStrategy
::
Atomic
>
,
ADataType
,
// TODO: distinguish A/B datatype
AccDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
MPerBlock
,
NPerBlock
,
K0PerBlock
,
MPerXDL
,
NPerXDL
,
K1
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_K0_M_K1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
,
false
,
// AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM
,
BBlockTransferThreadClusterLengths_K0_N_K1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
,
false
,
// BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN
,
CShuffleMRepeatPerShuffle
,
CShuffleNRepeatPerShuffle
,
CBlockTransferScalarPerVector_NWaveNPerXDL
,
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
>
;
using
Argument
=
typename
GridwiseGemm
::
Argument
;
// Invoker
struct
Invoker
:
public
BaseInvoker
{
void
Print
(
const
Argument
&
karg
)
{
karg
.
Print
();
}
float
Run
(
const
Argument
&
karg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
stream_config
.
log_level_
>
0
)
{
Print
(
karg
);
}
if
(
!
GridwiseGemm
::
CheckValidity
(
karg
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2 has invalid "
"setting"
);
}
dim3
grid_dims
=
karg
.
block_mapping
.
get_grid_dims
();
float
ave_time
=
0
;
const
auto
kernel
=
kernel_gemm_xdlops_streamk
<
GridwiseGemm
>
;
// TODO: remove clear buffer for streamk kernels
if
constexpr
(
GridwiseGemm
::
Block2CTileMap
::
ReductionStrategy
==
StreamKReductionStrategy
::
Atomic
)
{
hipGetErrorString
(
hipMemset
(
karg
.
p_c_grid
,
0
,
karg
.
M
*
karg
.
N
*
sizeof
(
CDataType
)));
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
grid_dims
,
dim3
(
BlockSize
),
0
,
karg
.
p_a_grid
,
karg
.
p_b_grid
,
karg
.
p_c_grid
,
karg
.
p_workspace_
,
karg
.
M
,
karg
.
N
,
karg
.
K
,
karg
.
StrideA
,
karg
.
StrideB
,
karg
.
StrideC
,
karg
.
block_mapping
);
}
else
if
constexpr
(
GridwiseGemm
::
Block2CTileMap
::
ReductionStrategy
==
StreamKReductionStrategy
::
Reduction
)
{
char
*
workspace_semaphore
=
reinterpret_cast
<
char
*>
(
karg
.
p_workspace_
)
+
karg
.
block_mapping
.
get_workspace_size_for_acc
(
sizeof
(
typename
GridwiseGemm
::
FloatAcc
));
auto
preprocess
=
[
&
]()
{
hipGetErrorString
(
hipMemsetAsync
(
workspace_semaphore
,
0
,
karg
.
block_mapping
.
get_workspace_size_for_semaphore
(),
stream_config
.
stream_id_
));
};
ave_time
=
launch_and_time_kernel_with_preprocess
(
stream_config
,
preprocess
,
kernel
,
grid_dims
,
dim3
(
BlockSize
),
0
,
karg
.
p_a_grid
,
karg
.
p_b_grid
,
karg
.
p_c_grid
,
karg
.
p_workspace_
,
karg
.
M
,
karg
.
N
,
karg
.
K
,
karg
.
StrideA
,
karg
.
StrideB
,
karg
.
StrideC
,
karg
.
block_mapping
);
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
pArg
)
const
override
{
const
Argument
*
p_arg
=
dynamic_cast
<
const
Argument
*>
(
pArg
);
if
constexpr
(
GridwiseGemm
::
Block2CTileMap
::
ReductionStrategy
==
StreamKReductionStrategy
::
Reduction
)
{
return
p_arg
->
block_mapping
.
get_workspace_size
(
sizeof
(
typename
GridwiseGemm
::
FloatAcc
));
}
else
{
return
0
;
}
}
void
SetWorkSpacePointer
(
BaseArgument
*
pArg
,
void
*
p_workspace
)
const
override
{
Argument
*
pArg_
=
dynamic_cast
<
Argument
*>
(
pArg
);
pArg_
->
p_workspace_
=
p_workspace
;
}
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
karg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
||
ck
::
get_device_name
()
==
"gfx940"
||
ck
::
get_device_name
()
==
"gfx941"
||
ck
::
get_device_name
()
==
"gfx942"
))
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
karg
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
ADataType
*
p_a
,
const
BDataType
*
p_b
,
CDataType
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
uint32_t
NumSKBlocks
=
0xffffffff
)
{
const
auto
kernel
=
kernel_gemm_xdlops_streamk
<
GridwiseGemm
>
;
int
occupancy
,
num_cu
;
hipError_t
rtn
;
rtn
=
hipOccupancyMaxActiveBlocksPerMultiprocessor
(
&
occupancy
,
kernel
,
BlockSize
,
GridwiseGemm
::
GetSharedMemoryNumberOfByte
());
hip_check_error
(
rtn
);
hipDeviceProp_t
dev_prop
;
hipDevice_t
dev
;
rtn
=
hipGetDevice
(
&
dev
);
hip_check_error
(
rtn
);
rtn
=
hipGetDeviceProperties
(
&
dev_prop
,
dev
);
hip_check_error
(
rtn
);
num_cu
=
dev_prop
.
multiProcessorCount
;
return
Argument
{
p_a
,
p_b
,
p_c
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
static_cast
<
uint32_t
>
(
num_cu
),
static_cast
<
uint32_t
>
(
occupancy
),
NumSKBlocks
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
index_t
NumSKBlocks
=
0
)
override
{
const
auto
kernel
=
kernel_gemm_xdlops_streamk
<
GridwiseGemm
>
;
int
occupancy
,
num_cu
;
hipError_t
rtn
;
rtn
=
hipOccupancyMaxActiveBlocksPerMultiprocessor
(
&
occupancy
,
kernel
,
BlockSize
,
GridwiseGemm
::
GetSharedMemoryNumberOfByte
());
hip_check_error
(
rtn
);
hipDeviceProp_t
dev_prop
;
hipDevice_t
dev
;
rtn
=
hipGetDevice
(
&
dev
);
hip_check_error
(
rtn
);
rtn
=
hipGetDeviceProperties
(
&
dev_prop
,
dev
);
hip_check_error
(
rtn
);
num_cu
=
dev_prop
.
multiProcessorCount
;
return
std
::
make_unique
<
Argument
>
(
reinterpret_cast
<
const
ADataType
*>
(
p_a
),
reinterpret_cast
<
const
BDataType
*>
(
p_b
),
reinterpret_cast
<
CDataType
*>
(
p_c
),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
static_cast
<
uint32_t
>
(
num_cu
),
static_cast
<
uint32_t
>
(
occupancy
),
static_cast
<
uint32_t
>
(
NumSKBlocks
));
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
return
GridwiseGemm
::
GetTypeString
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_waveletmodel_cshuffle.hpp
View file @
6e01019b
...
...
@@ -417,9 +417,7 @@ struct DeviceGemm_Xdl_WaveletModel_CShuffle : public DeviceGemm<ALayout,
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
||
ck
::
get_device_name
()
==
"gfx940"
||
ck
::
get_device_name
()
==
"gfx941"
||
ck
::
get_device_name
()
==
"gfx942"
))
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_contraction_multiple_d_xdl_cshuffle.hpp
View file @
6e01019b
...
...
@@ -705,9 +705,7 @@ struct DeviceGroupedContractionMultipleD_Xdl_CShuffle
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
||
ck
::
get_device_name
()
==
"gfx940"
||
ck
::
get_device_name
()
==
"gfx941"
||
ck
::
get_device_name
()
==
"gfx942"
))
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
View file @
6e01019b
...
...
@@ -826,6 +826,11 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
const
index_t
ConvK
=
arg
.
b_g_k_c_xs_lengths_
[
1
];
const
index_t
ConvC
=
arg
.
b_g_k_c_xs_lengths_
[
2
];
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
View file @
6e01019b
...
...
@@ -681,9 +681,7 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
||
ck
::
get_device_name
()
==
"gfx940"
||
ck
::
get_device_name
()
==
"gfx941"
||
ck
::
get_device_name
()
==
"gfx942"
))
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp
View file @
6e01019b
...
...
@@ -600,6 +600,11 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
if
((
ck
::
type_convert
<
ck
::
index_t
>
(
arg
.
gemm_desc_kernel_arg_
.
size
())
+
arg
.
skipped_group_count_
)
!=
arg
.
group_count_
)
{
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp
View file @
6e01019b
...
...
@@ -502,6 +502,11 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
if
((
ck
::
type_convert
<
ck
::
index_t
>
(
arg
.
gemm_kernel_args_
.
size
())
+
arg
.
skipped_group_count_
)
!=
arg
.
group_count_
)
{
...
...
include/ck/tensor_operation/gpu/device/impl/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp
View file @
6e01019b
...
...
@@ -939,9 +939,7 @@ struct DeviceSplitKContractionMultipleD_Xdl_CShuffle
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
||
ck
::
get_device_name
()
==
"gfx940"
||
ck
::
get_device_name
()
==
"gfx941"
||
ck
::
get_device_name
()
==
"gfx942"
))
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
View file @
6e01019b
...
...
@@ -7,6 +7,8 @@
#include "ck/utility/number.hpp"
#include "ck/tensor_description/tensor_adaptor.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include <limits>
#include <stdlib.h>
namespace
ck
{
...
...
@@ -669,4 +671,406 @@ struct BlockToCTileMap_3DGrid_KSplit
}
};
enum
StreamKReductionStrategy
{
Atomic
=
0
,
// sk block use atomic to do reduction
Reduction
,
// let some workgroup responsible for doing the reduction operation
};
template
<
uint32_t
MPerBlock_
,
uint32_t
NPerBlock_
,
uint32_t
KPerBlock_
,
StreamKReductionStrategy
ReductionStrategy_
=
StreamKReductionStrategy
::
Atomic
,
uint32_t
TileSwizzleSubM_
=
8
>
struct
BlockToCTileMap_GemmStreamK
{
static
constexpr
uint32_t
min_k_iters_per_sk_block
=
2
;
static
constexpr
uint32_t
MPerBlock
=
MPerBlock_
;
static
constexpr
uint32_t
NPerBlock
=
NPerBlock_
;
static
constexpr
uint32_t
KPerBlock
=
KPerBlock_
;
static
constexpr
StreamKReductionStrategy
ReductionStrategy
=
ReductionStrategy_
;
static
constexpr
uint32_t
tile_swizzle_sub_m
=
TileSwizzleSubM_
;
//--------------------------------------
// pass to device
uint32_t
sk_num_blocks
;
uint32_t
sk_num_big_blocks
;
uint32_t
dp_start_block_idx
;
uint32_t
reduction_start_block_idx
;
uint32_t
k_iters_per_big_block
;
MDiv2
n_tiles
;
MDiv
k_iters_per_tile
;
MDiv
eqav_tiles_big
;
// for reduction
MDiv
eqav_tiles_little
;
// for reduction
// MDiv tile_swizzle_sub_m_rem;
//--------------------------------------
// prefer construct on host
BlockToCTileMap_GemmStreamK
(
uint32_t
m
,
uint32_t
n
,
uint32_t
k
,
uint32_t
num_cu
,
uint32_t
occupancy
,
uint32_t
sk_blocks
=
0xffffffff
)
{
uint32_t
num_tiles
=
math
::
integer_divide_ceil
(
m
,
MPerBlock
)
*
math
::
integer_divide_ceil
(
n
,
NPerBlock
);
k_iters_per_tile
=
MDiv
(
math
::
integer_divide_ceil
(
k
,
KPerBlock
));
// one cu can hold one wg at one time, from the whole chip's point of view
// if number of wg is same as num_cu, we call it 1 dispatch
// if number of wg is 2x num_cu, we call it 2 dispatches.
// one dispatch can deliver wg same as num_cu (full dispatch), or less than num_cu (partial
// dispatch)
//
uint32_t
full_dispatches
=
num_tiles
/
num_cu
;
uint32_t
full_dispatch_tiles
=
full_dispatches
*
num_cu
;
uint32_t
partial_dispatche_tiles
=
num_tiles
-
full_dispatch_tiles
;
uint32_t
sk_occupancy
=
occupancy
;
uint32_t
dp_tiles
=
full_dispatch_tiles
;
uint32_t
sk_tiles
=
partial_dispatche_tiles
;
if
(
full_dispatches
<
occupancy
)
{
// in this case, we allocate all blocks as sk blocks
// sk_occupancy = occupancy - full_dispatches;
sk_occupancy
=
1
;
// TODO: single occ seems better
dp_tiles
=
full_dispatch_tiles
;
sk_tiles
=
partial_dispatche_tiles
;
}
else
if
((
occupancy
>
1
)
&&
(
full_dispatches
%
occupancy
==
occupancy
-
1
))
{
// e.g. occupancy = 2, full_dispatches = 3, 5, 7 ...
// occupancy = 3, full_dispatches = 5, 8, 11 ...
// occupancy = 4, full_dispatches = 7, 11 ...
sk_occupancy
=
1
;
// left 1 slot for sk occupancy
dp_tiles
=
full_dispatch_tiles
;
sk_tiles
=
partial_dispatche_tiles
;
}
else
{
// others, we reduce 1 dispatch from dp, together with partial dispatch,
// to construct sk dispatch
sk_occupancy
=
occupancy
-
((
full_dispatches
-
1
)
%
occupancy
);
dp_tiles
=
full_dispatch_tiles
-
num_cu
;
sk_tiles
=
partial_dispatche_tiles
+
num_cu
;
}
// uint32_t dp_iters_per_block = k_iters_per_tile.get();
uint32_t
sk_total_iters
=
k_iters_per_tile
.
get
()
*
sk_tiles
;
uint32_t
dp_num_blocks
=
0
;
{
uint32_t
min_sk_tiles
=
(
sk_tiles
>=
num_cu
)
?
num_cu
:
(
sk_tiles
+
1
);
uint32_t
max_sk_tiles
=
(
sk_tiles
>=
num_cu
)
?
num_cu
*
sk_occupancy
:
math
::
min
(
num_cu
,
sk_total_iters
/
min_k_iters_per_sk_block
);
// if use dp for sk-block, how many iters do we need
uint32_t
dp_for_sk_iters
=
k_iters_per_tile
.
get
();
uint32_t
best_sk_score
=
std
::
numeric_limits
<
int
>::
max
();
// we need to find the smallest sk iters
for
(
uint32_t
tentative_sk_blocks
=
min_sk_tiles
;
tentative_sk_blocks
<
max_sk_tiles
;
tentative_sk_blocks
++
)
{
uint32_t
tentative_sk_iters_per_block
=
(
sk_total_iters
+
tentative_sk_blocks
-
1
)
/
tentative_sk_blocks
;
uint32_t
tentative_sk_iters
=
tentative_sk_iters_per_block
;
uint32_t
sk_blocks_per_tile
=
(
tentative_sk_blocks
+
sk_tiles
-
1
)
/
sk_tiles
;
// TODO: carefully adjust this parameter
// the more sk_blocks_per_tile, the worse the overhead
uint32_t
cross_sk_blocks_overhead
=
sk_blocks_per_tile
;
if
(
tentative_sk_blocks
%
sk_tiles
!=
0
)
{
// penalty for uneven divide
cross_sk_blocks_overhead
+=
sk_blocks_per_tile
*
tentative_sk_iters_per_block
/
50
;
}
uint32_t
tentative_sk_score
=
tentative_sk_iters
+
cross_sk_blocks_overhead
;
if
(
tentative_sk_score
<
best_sk_score
)
{
best_sk_score
=
tentative_sk_score
;
sk_num_blocks
=
tentative_sk_blocks
;
}
}
if
(
best_sk_score
>=
dp_for_sk_iters
)
{
sk_num_blocks
=
0
;
}
// give a chance to control num of sk blocks
sk_num_blocks
=
sk_blocks
!=
0xffffffff
?
sk_blocks
:
sk_num_blocks
;
if
(
sk_num_blocks
==
0
)
{
sk_num_big_blocks
=
0
;
k_iters_per_big_block
=
0
;
dp_num_blocks
=
num_tiles
;
// all tile to be dp block
dp_start_block_idx
=
0
;
sk_total_iters
=
0
;
// clear this tiles
}
else
{
// k_iters_per_sk_block is the floor of avg each ck block loop over tiles.
// we need to decide how many iters for each sk block
// let m = k_iters_per_sk_block
// some of the sk block (little) will cover m iters, some (big) will cover m+1
// we have
// 1) l + b = sk_blocks
// 2) l * m + b * (m + 1) = sk_total_iters
// => (l + b) * m + b = sk_total_iters
// => sk_blocks * m + b = sk_total_iters
// => b = sk_total_iters - m * sk_blocks
// NOTE: big could be zero
uint32_t
k_iters_per_sk_block
=
sk_total_iters
/
sk_num_blocks
;
sk_num_big_blocks
=
sk_total_iters
-
k_iters_per_sk_block
*
sk_num_blocks
;
k_iters_per_big_block
=
k_iters_per_sk_block
+
1
;
dp_num_blocks
=
dp_tiles
;
dp_start_block_idx
=
(
sk_num_blocks
+
num_cu
-
1
)
/
num_cu
*
num_cu
;
}
}
n_tiles
=
MDiv2
(
math
::
integer_divide_ceil
(
n
,
NPerBlock
));
reduction_start_block_idx
=
dp_start_block_idx
+
dp_num_blocks
;
if
constexpr
(
ReductionStrategy
==
StreamKReductionStrategy
::
Reduction
)
{
uint32_t
upper_big
=
math
::
lcm
(
k_iters_per_big_block
,
k_iters_per_tile
.
get
());
uint32_t
upper_little
=
math
::
lcm
(
k_iters_per_big_block
-
1
,
k_iters_per_tile
.
get
());
eqav_tiles_big
=
MDiv
(
upper_big
/
k_iters_per_tile
.
get
());
eqav_tiles_little
=
MDiv
(
upper_little
/
k_iters_per_tile
.
get
());
}
#if 0
printf("cu:%d, occupancy:%d, grids:%d, num_tiles:%d, dp_tiles:%d, sk_num_big_blocks:%d, "
"sk_num_blocks:%d, "
"sk_total_iters:%d, dp_start_block_idx:%d, dp_iters_per_block:%d, dp_num_blocks:%d, "
"k_iters_per_tile:%d, k_iters_per_big_block:%d, reduction_start_block_idx:%u, "
"sk_tiles:%u, workspace(acc float):%u\n",
num_cu,
occupancy,
get_grid_dims().x,
num_tiles,
dp_tiles,
sk_num_big_blocks,
sk_num_blocks,
sk_total_iters,
dp_start_block_idx,
dp_iters_per_block,
dp_num_blocks,
k_iters_per_tile.get(),
k_iters_per_big_block,
reduction_start_block_idx,
get_sk_tiles(),
get_workspace_size(sizeof(float)));
#endif
}
__host__
__device__
uint32_t
get_sk_total_iters
()
const
{
uint32_t
sk_total_iters
=
sk_num_big_blocks
*
k_iters_per_big_block
+
(
sk_num_blocks
-
sk_num_big_blocks
)
*
(
k_iters_per_big_block
-
1
);
return
sk_total_iters
;
}
__host__
__device__
uint32_t
get_sk_tiles
()
const
{
// tiles for sk
uint32_t
sk_total_iters
=
get_sk_total_iters
();
return
k_iters_per_tile
.
div
(
sk_total_iters
);
}
__host__
__device__
dim3
get_grid_dims
()
const
{
if
constexpr
(
ReductionStrategy
==
StreamKReductionStrategy
::
Reduction
)
{
return
dim3
(
reduction_start_block_idx
+
get_sk_tiles
(),
1
,
1
);
}
else
return
dim3
(
reduction_start_block_idx
,
1
,
1
);
}
__device__
uint32_t
get_block_idx
()
const
{
// TODO: swizzle block index for better locality
return
__builtin_amdgcn_readfirstlane
(
blockIdx
.
x
);
}
__device__
void
get_block_itr
(
uint32_t
block_idx
,
uint32_t
&
iter_start
,
uint32_t
&
iter_end
)
const
{
if
(
block_idx
<
sk_num_big_blocks
)
{
iter_start
=
block_idx
*
k_iters_per_big_block
;
iter_end
=
iter_start
+
k_iters_per_big_block
;
}
else
if
(
block_idx
<
sk_num_blocks
)
{
iter_start
=
(
sk_num_big_blocks
*
k_iters_per_big_block
)
+
(
block_idx
-
sk_num_big_blocks
)
*
(
k_iters_per_big_block
-
1
);
iter_end
=
iter_start
+
(
k_iters_per_big_block
-
1
);
}
else
if
(
block_idx
>=
dp_start_block_idx
)
{
uint32_t
sk_total_iters
=
get_sk_total_iters
();
uint32_t
dp_iters_per_block
=
k_iters_per_tile
.
get
();
iter_start
=
sk_total_iters
+
(
block_idx
-
dp_start_block_idx
)
*
dp_iters_per_block
;
iter_end
=
iter_start
+
dp_iters_per_block
;
}
}
__device__
uint32_t
get_current_iter_length
(
uint32_t
iter_start
,
uint32_t
iter_end
,
uint32_t
total_iter_length
)
const
{
uint32_t
iter_length_mod
,
iter_length_quo
/*unused*/
;
k_iters_per_tile
.
divmod
(
iter_end
,
iter_length_quo
,
iter_length_mod
);
uint32_t
current_iter_length
=
math
::
min
(
iter_length_mod
==
0
?
(
iter_end
-
iter_start
)
:
iter_length_mod
,
total_iter_length
);
return
current_iter_length
;
}
__device__
uint32_t
get_tile_idx
(
uint32_t
iter
)
const
{
return
k_iters_per_tile
.
div
(
iter
);
}
__device__
void
get_tile_idx_with_offset
(
uint32_t
iter
,
uint32_t
&
tile_idx
,
uint32_t
&
iter_offset
)
const
{
k_iters_per_tile
.
divmod
(
iter
,
tile_idx
,
iter_offset
);
}
__device__
auto
tile_to_spatial
(
uint32_t
tile_idx
,
uint32_t
m
,
uint32_t
n
)
const
{
uint32_t
m_tile_idx
,
n_tile_idx
;
uint32_t
n_tiles_value
=
math
::
integer_divide_ceil
(
n
,
NPerBlock
);
n_tiles
.
divmod
(
tile_idx
,
n_tiles_value
,
m_tile_idx
,
n_tile_idx
);
// swizzle tile
uint32_t
m_tiles
=
math
::
integer_divide_ceil
(
m
,
MPerBlock
);
uint32_t
tile_swizzle_sub_m_rem
=
m_tiles
%
tile_swizzle_sub_m
;
const
auto
sub_m_adapt
=
(
m_tile_idx
<
(
m_tiles
-
tile_swizzle_sub_m_rem
))
?
tile_swizzle_sub_m
:
tile_swizzle_sub_m_rem
;
uint32_t
m_tile_idx_sub0
,
m_tile_idx_sub1
;
m_tile_idx_sub0
=
m_tile_idx
/
tile_swizzle_sub_m
;
m_tile_idx_sub1
=
m_tile_idx
%
tile_swizzle_sub_m
;
uint32_t
tile_idx_local
=
n_tile_idx
+
m_tile_idx_sub1
*
n_tiles_value
;
uint32_t
m_tile_idx_with_adapt
,
n_tile_idx_with_adapt
;
n_tile_idx_with_adapt
=
tile_idx_local
/
sub_m_adapt
;
m_tile_idx_with_adapt
=
tile_idx_local
%
sub_m_adapt
;
return
make_tuple
(
m_tile_idx_with_adapt
+
m_tile_idx_sub0
*
tile_swizzle_sub_m
,
n_tile_idx_with_adapt
);
}
__host__
__device__
uint32_t
get_workspace_size_for_acc
(
uint32_t
acc_element_bytes
)
const
{
static
constexpr
uint32_t
alignment
=
128
;
uint32_t
acc_buffer_bytes
=
MPerBlock
*
NPerBlock
*
get_total_acc_buffers
()
*
acc_element_bytes
;
return
(
acc_buffer_bytes
+
alignment
-
1
)
/
alignment
*
alignment
;
}
__host__
__device__
uint32_t
get_workspace_size_for_semaphore
()
const
{
return
get_sk_tiles
()
*
sizeof
(
uint32_t
);
}
__host__
__device__
uint32_t
get_workspace_size
(
uint32_t
acc_element_bytes
)
const
{
return
get_workspace_size_for_acc
(
acc_element_bytes
)
+
get_workspace_size_for_semaphore
();
}
__host__
__device__
uint32_t
get_tile_intersections
(
uint32_t
tiles_
,
const
MDiv
&
eqav_tiles_
)
const
{
uint32_t
tile_idx_
=
tiles_
==
0
?
0
:
(
tiles_
-
1
);
uint32_t
max_eqav_tiles_
=
eqav_tiles_
.
get
()
-
1
;
uint32_t
quo_
,
rem_
;
eqav_tiles_
.
divmod
(
tile_idx_
,
quo_
,
rem_
);
return
quo_
*
max_eqav_tiles_
+
rem_
;
}
__host__
__device__
uint32_t
get_tiles_cover_sk_block
(
uint32_t
num_sk_blocks_
,
uint32_t
iters_per_sk_block_
)
const
{
return
k_iters_per_tile
.
div
(
num_sk_blocks_
*
iters_per_sk_block_
+
k_iters_per_tile
.
get
()
-
1
);
}
__host__
__device__
uint32_t
get_total_acc_buffers
()
const
{
uint32_t
tiles_cover_big_blocks
=
get_tiles_cover_sk_block
(
sk_num_big_blocks
,
k_iters_per_big_block
);
uint32_t
tiles_cover_little_blocks
=
get_tiles_cover_sk_block
(
sk_num_blocks
-
sk_num_big_blocks
,
k_iters_per_big_block
-
1
);
uint32_t
total_intersec_big
=
get_tile_intersections
(
tiles_cover_big_blocks
,
eqav_tiles_big
);
uint32_t
total_intersec_little
=
get_tile_intersections
(
tiles_cover_little_blocks
,
eqav_tiles_little
);
return
sk_num_blocks
+
total_intersec_big
+
total_intersec_little
;
}
__device__
uint32_t
get_acc_buffer_offset_from_tile
(
uint32_t
tile_idx_
)
const
{
// TODO: from big to little
uint32_t
tiles_cover_big_blocks
=
get_tiles_cover_sk_block
(
sk_num_big_blocks
,
k_iters_per_big_block
);
if
(
tile_idx_
<
tiles_cover_big_blocks
)
{
uint32_t
touched_sk_blocks
=
(
tile_idx_
*
k_iters_per_tile
.
get
()
+
k_iters_per_big_block
-
1
)
/
k_iters_per_big_block
;
uint32_t
current_intersec
=
get_tile_intersections
(
tile_idx_
,
eqav_tiles_big
);
return
touched_sk_blocks
+
current_intersec
;
}
else
{
uint32_t
iters_per_little_sk_block
=
k_iters_per_big_block
-
1
;
uint32_t
tile_idx_little_reverse
=
get_sk_tiles
()
-
tile_idx_
;
uint32_t
touched_sk_blocks
=
(
tile_idx_little_reverse
*
k_iters_per_tile
.
get
()
+
iters_per_little_sk_block
-
1
)
/
iters_per_little_sk_block
;
uint32_t
current_intersec
=
get_tile_intersections
(
tile_idx_little_reverse
,
eqav_tiles_little
);
return
get_total_acc_buffers
()
-
(
touched_sk_blocks
+
current_intersec
);
}
}
__device__
uint32_t
get_acc_buffer_offset_from_block
(
uint32_t
block_idx_
)
const
{
uint32_t
iters_per_big_sk_block
=
k_iters_per_big_block
;
uint32_t
iters_per_little_sk_block
=
k_iters_per_big_block
-
1
;
if
(
block_idx_
<
sk_num_big_blocks
)
{
uint32_t
touched_tiles
=
k_iters_per_tile
.
div
(
block_idx_
*
iters_per_big_sk_block
+
k_iters_per_tile
.
get
()
-
1
);
uint32_t
current_intersec
=
get_tile_intersections
(
touched_tiles
,
eqav_tiles_big
);
return
block_idx_
+
current_intersec
;
}
else
{
uint32_t
block_idx_little_reverse
=
sk_num_blocks
-
block_idx_
;
uint32_t
touched_tiles
=
k_iters_per_tile
.
div
(
block_idx_little_reverse
*
iters_per_little_sk_block
+
k_iters_per_tile
.
get
()
-
1
);
uint32_t
current_intersec
=
get_tile_intersections
(
touched_tiles
,
eqav_tiles_little
);
return
get_total_acc_buffers
()
-
(
block_idx_little_reverse
+
current_intersec
);
}
}
};
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_batched_gemm_multiple_d_gemm_multiple_d_xdl_cshuffle_v1.hpp
View file @
6e01019b
...
...
@@ -67,6 +67,8 @@ template <typename A0B0B1DataType, // FIXME: don't assume A0/B0/B1 have same dat
index_t
B0BlockTransferDstScalarPerVector_BK1
,
bool
B0ThreadTransferSrcResetCoordinateAfterRun
,
// ignored
index_t
B0BlockLdsExtraN
,
index_t
CDE0BlockTransferSrcVectorDim
,
index_t
CDE0BlockTransferSrcScalarPerVector
,
typename
B1BlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
B1BlockTransferThreadClusterArrangeOrder
,
typename
B1BlockTransferSrcAccessOrder
,
...
...
@@ -710,13 +712,13 @@ struct GridwiseBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
constexpr
auto
d0_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
// MBlockId
I1
,
// NBlockID
I1
,
// MRepeat
I1
,
// NRepeat
I
1
,
// MWaveId
I
1
,
// NWaveId
I1
,
// MPerXdl
I1
,
// NGroupNum
I1
,
// NInputNum
m0
,
// MRepeat
n0
,
// NRepeat
m
1
,
// MWaveId
n
1
,
// NWaveId
m2
,
// MPerXdl
n2
,
// NGroupNum
n3
,
// NInputNum
n4
));
// registerNum
auto
d0s_thread_buf
=
generate_tuple
(
...
...
@@ -732,8 +734,9 @@ struct GridwiseBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
const
auto
wave_id
=
GetGemm0WaveIdx
();
const
auto
wave_m_n_id
=
GetGemm0WaveMNIdx
(
wave_id
[
I2
]);
// I2: 0~63
constexpr
auto
acc0_thread_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
Gemm0MXdlPerWave
>
{},
Number
<
Gemm0NXdlPerWave
>
{},
n2
,
n4
));
static_assert
(
CDE0BlockTransferSrcScalarPerVector
<=
n4
,
"vector load must be not greater than n4"
);
static_assert
(
n4
%
CDE0BlockTransferSrcScalarPerVector
==
0
);
auto
d0s_threadwise_copy
=
generate_tuple
(
[
&
](
auto
i
)
{
...
...
@@ -742,10 +745,19 @@ struct GridwiseBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
A0B0B1DataType
,
decltype
(
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
[
i
]),
decltype
(
d0_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
),
Sequence
<
I1
,
I1
,
I1
,
I1
,
I1
,
I1
,
I1
,
I1
,
I1
,
n4
>
,
Sequence
<
I1
,
// MBlockId
I1
,
// NBlockID
m0
,
// MRepeat
n0
,
// NRepeat
m1
,
// MWaveId
n1
,
// NWaveId
m2
,
// MPerXdl
n2
,
// NGroupNum
n3
,
// NInputNum
n4
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
>
,
9
,
n4
,
9
,
// CDE0BlockTransferSrcVectorDim
CDE0BlockTransferSrcScalarPerVector
,
1
,
false
>
(
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
[
i
],
make_multi_index
(
block_work_idx
[
I0
],
// MBlockId
...
...
@@ -898,66 +910,42 @@ struct GridwiseBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
blockwise_gemm0
,
acc0_thread_buf
,
num_k_block_main_loop
);
// bias+gelu
// multiple d
if
constexpr
(
NumD0Tensor
)
{
static_for
<
0
,
Gemm0MXdlPerWave
,
1
>
{}([
&
](
auto
mr
)
{
static_for
<
0
,
Gemm0NXdlPerWave
,
1
>
{}([
&
](
auto
nr
)
{
static_for
<
0
,
n2
,
1
>
{}([
&
](
auto
groupid
)
{
static_for
<
0
,
NumD0Tensor
,
1
>
{}([
&
](
auto
i
)
{
d0s_threadwise_copy
(
i
).
Run
(
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
[
i
],
d0s_grid_buf
[
i
],
d0_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
d0s_thread_buf
(
i
));
});
static_for
<
0
,
n4
,
1
>
{}([
&
](
auto
i
)
{
constexpr
index_t
c_offset
=
acc0_thread_desc
.
CalculateOffset
(
make_tuple
(
mr
,
nr
,
groupid
,
i
));
// get reference to src data
const
auto
src_data_refs
=
generate_tie
(
// return type should be lvalue
[
&
](
auto
iSrc
)
->
const
auto
&
{
return
d0s_thread_buf
[
iSrc
][
i
];
},
Number
<
NumD0Tensor
>
{});
// get reference to dst data
auto
dst_data_refs
=
generate_tie
(
// return type should be lvalue
[
&
](
auto
)
->
auto
&
{
return
acc0_thread_buf
(
Number
<
c_offset
>
{});
},
Number
<
2
>
{});
unpack2
(
cde0_element_op
,
dst_data_refs
,
src_data_refs
);
});
static_for
<
0
,
NumD0Tensor
,
1
>
{}([
&
](
auto
i
)
{
d0s_threadwise_copy
(
i
).
MoveSrcSliceWindow
(
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
[
i
],
make_multi_index
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
0
,
0
));
});
});
static_for
<
0
,
NumD0Tensor
,
1
>
{}([
&
](
auto
i
)
{
d0s_threadwise_copy
(
i
).
MoveSrcSliceWindow
(
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
[
i
],
make_multi_index
(
0
,
0
,
0
,
1
,
0
,
0
,
0
,
-
n2
.
value
,
0
,
0
));
});
});
static_for
<
0
,
NumD0Tensor
,
1
>
{}([
&
](
auto
i
)
{
d0s_threadwise_copy
(
i
).
MoveSrcSliceWindow
(
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
[
i
],
make_multi_index
(
0
,
0
,
1
,
-
Gemm0NXdlPerWave
,
0
,
0
,
0
,
0
,
0
,
0
));
});
static_for
<
0
,
NumD0Tensor
,
1
>
{}([
&
](
auto
i
)
{
d0s_threadwise_copy
(
i
).
Run
(
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
[
i
],
d0s_grid_buf
[
i
],
d0_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
make_tuple
(
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
d0s_thread_buf
(
i
));
});
static_for
<
0
,
m0
*
n0
*
n2
*
n4
,
1
>
{}([
&
](
auto
i
)
{
// get reference to src data
const
auto
src_data_refs
=
generate_tie
(
// return type should be lvalue
[
&
](
auto
iSrc
)
->
const
auto
&
{
return
d0s_thread_buf
[
iSrc
][
i
];
},
Number
<
NumD0Tensor
>
{});
// get reference to dst data
auto
dst_data_refs
=
generate_tie
(
// return type should be lvalue
[
&
](
auto
)
->
auto
&
{
return
acc0_thread_buf
(
i
);
},
Number
<
2
>
{});
unpack2
(
cde0_element_op
,
dst_data_refs
,
src_data_refs
);
});
static_for
<
0
,
NumD0Tensor
,
1
>
{}([
&
](
auto
i
)
{
d0s_threadwise_copy
(
i
).
MoveSrcSliceWindow
(
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
[
i
],
make_multi_index
(
0
,
1
,
-
Gemm0MXdlPerWave
,
0
,
0
,
0
,
0
,
0
,
0
,
0
));
make_multi_index
(
0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
));
});
}
else
{
static_for
<
0
,
acc0_thread_buf
.
Size
(),
1
>
{}(
[
&
](
auto
i
)
{
cde0_element_op
(
acc_thread_buf
(
i
),
acc0_thread_buf
[
i
]);
});
}
// gemm1
{
// TODO: explore using dynamic buffer for a1 thread buffer
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v3.hpp
0 → 100644
View file @
6e01019b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
namespace
ck
{
struct
GridwiseGemmPipeline_v3
{
__host__
__device__
static
constexpr
bool
IsSupported
(
index_t
)
{
// TODO: improve applicability
return
true
;
}
template
<
typename
AGridDesc
,
typename
ABlockDesc
,
typename
ABlockTransfer
,
typename
AGridBuffer
,
typename
ABlockBuffer
,
typename
ABlockTransferStep
,
typename
BGridDesc
,
typename
BBlockDesc
,
typename
BBlockTransfer
,
typename
BGridBuffer
,
typename
BBlockBuffer
,
typename
BBlockTransferStep
,
typename
BlockwiseGemm
,
typename
CThreadBuffer
>
__device__
static
void
Run
(
const
AGridDesc
&
a_grid_desc
,
const
ABlockDesc
&
a_block_desc
,
ABlockTransfer
&
a_blockwise_copy
,
const
AGridBuffer
&
a_grid_buf
,
ABlockBuffer
&
a_block_buf
,
const
ABlockTransferStep
&
a_block_copy_step
,
const
BGridDesc
&
b_grid_desc
,
const
BBlockDesc
&
b_block_desc
,
BBlockTransfer
&
b_blockwise_copy
,
const
BGridBuffer
&
b_grid_buf
,
BBlockBuffer
&
b_block_buf
,
const
BBlockTransferStep
&
b_block_copy_step
,
const
BlockwiseGemm
&
blockwise_gemm
,
CThreadBuffer
&
c_thread_buf
,
index_t
num_loop
)
{
// global read 0
a_blockwise_copy
.
RunRead
(
a_grid_desc
,
a_grid_buf
);
b_blockwise_copy
.
RunRead
(
b_grid_desc
,
b_grid_buf
);
a_blockwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc
,
a_block_copy_step
);
b_blockwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc
,
b_block_copy_step
);
// Initialize C
c_thread_buf
.
Clear
();
// LDS write 0
a_blockwise_copy
.
RunWrite
(
a_block_desc
,
a_block_buf
);
b_blockwise_copy
.
RunWrite
(
b_block_desc
,
b_block_buf
);
num_loop
--
;
while
(
num_loop
>
0
)
{
a_blockwise_copy
.
RunRead
(
a_grid_desc
,
a_grid_buf
);
block_sync_lds
();
b_blockwise_copy
.
RunRead
(
b_grid_desc
,
b_grid_buf
);
blockwise_gemm
.
Run
(
a_block_buf
,
b_block_buf
,
c_thread_buf
);
block_sync_lds
();
a_blockwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc
,
a_block_copy_step
);
b_blockwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc
,
b_block_copy_step
);
a_blockwise_copy
.
RunWrite
(
a_block_desc
,
a_block_buf
);
b_blockwise_copy
.
RunWrite
(
b_block_desc
,
b_block_buf
);
num_loop
--
;
}
// tail
{
block_sync_lds
();
blockwise_gemm
.
Run
(
a_block_buf
,
b_block_buf
,
c_thread_buf
);
}
}
};
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_streamk.hpp
0 → 100644
View file @
6e01019b
This diff is collapsed.
Click to expand it.
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v6r1r2.hpp
0 → 100644
View file @
6e01019b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/tensor_space_filling_curve.hpp"
namespace
ck
{
// Do following things to avoid "alloca" in LLVM-IR, which would cause scratch memory
// and sometimes useless instructions:
// 1. Don't save a reference to tensor descriptor in class, pass in tensor descriptor as argument
// instead
// 2. Don't construct a new tensor coordinate everytime when using it, update and reuse the same
// tensor coordinate instead
// 3. Don't use a pointer to VGPR buffer, use vector instead
// Assume:
// 1. src_desc and dst_desc are not known at compile-time
// 2. SrcBuffer and DstBuffer are DynamicBuffer
// 3. src_slice_origin and dst_slice_origin are not known at compile-time,
template
<
typename
SrcData
,
typename
DstData
,
typename
SrcDesc
,
typename
DstDesc
,
typename
ElementwiseOperation
,
typename
SliceLengths
,
typename
DimAccessOrder
,
index_t
VectorDim
,
index_t
ScalarPerVector
,
bool
SrcResetCoordinateAfterRun
,
bool
DstResetCoordinateAfterRun
>
struct
ThreadwiseTensorSliceTransfer_v6r1r2
{
static
constexpr
index_t
nDim
=
SliceLengths
::
Size
();
using
Index
=
MultiIndex
<
nDim
>
;
using
SrcCoord
=
decltype
(
make_tensor_coordinate
(
SrcDesc
{},
Index
{}));
using
DstCoord
=
decltype
(
make_tensor_coordinate
(
DstDesc
{},
Index
{}));
static
constexpr
auto
I0
=
Number
<
0
>
{};
__device__
constexpr
ThreadwiseTensorSliceTransfer_v6r1r2
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_slice_origin
,
const
DstDesc
&
dst_desc
,
const
Index
&
dst_slice_origin
,
const
ElementwiseOperation
&
element_op
)
:
src_coord_
(
make_tensor_coordinate
(
src_desc
,
src_slice_origin
)),
dst_coord_
(
make_tensor_coordinate
(
dst_desc
,
dst_slice_origin
)),
element_op_
(
element_op
)
{
static_assert
(
SliceLengths
::
At
(
Number
<
VectorDim
>
{})
%
ScalarPerVector
==
0
,
"wrong! cannot evenly divide"
);
}
__device__
void
SetSrcSliceOrigin
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_slice_origin_idx
)
{
src_coord_
=
make_tensor_coordinate
(
src_desc
,
src_slice_origin_idx
);
}
__device__
void
SetDstSliceOrigin
(
const
DstDesc
&
dst_desc
,
const
Index
&
dst_slice_origin_idx
)
{
dst_coord_
=
make_tensor_coordinate
(
dst_desc
,
dst_slice_origin_idx
);
}
template
<
typename
SrcBuffer
,
typename
DstBuffer
,
InMemoryDataOperationEnum
DstInMemOp
>
__device__
void
Run
(
const
SrcDesc
&
src_desc
,
const
SrcBuffer
&
src_buf
,
const
DstDesc
&
dst_desc
,
DstBuffer
&
dst_buf
)
{
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
VectorDim
,
ScalarPerVector
>
{},
Number
<
nDim
>
{});
using
SpaceFillingCurve
=
SpaceFillingCurve
<
SliceLengths
,
DimAccessOrder
,
remove_cv_t
<
decltype
(
scalar_per_access
)
>>
;
// loop over space-filling curve
constexpr
auto
num_access
=
SpaceFillingCurve
::
GetNumOfAccess
();
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
idx_1d
)
{
using
src_vector_type
=
vector_type_maker_t
<
SrcData
,
ScalarPerVector
>
;
using
src_vector_t
=
typename
src_vector_type
::
type
;
using
dst_vector_type
=
vector_type_maker_t
<
DstData
,
ScalarPerVector
>
;
using
dst_vector_t
=
typename
dst_vector_type
::
type
;
const
bool
is_src_valid
=
coordinate_has_valid_offset_assuming_visible_index_is_valid
(
src_desc
,
src_coord_
);
// copy data from src_buf into src_vector_container
auto
src_vector_container
=
src_vector_type
{
src_buf
.
template
Get
<
src_vector_t
>(
src_coord_
.
GetOffset
(),
is_src_valid
)};
auto
dst_vector_container
=
dst_vector_type
{};
// apply pointwise operation
static_for
<
0
,
ScalarPerVector
,
1
>
{}([
&
](
auto
i
)
{
SrcData
v
;
// apply element-wise operation
element_op_
(
v
,
src_vector_container
.
template
AsType
<
SrcData
>()[
i
]);
// apply type convert
dst_vector_container
.
template
AsType
<
DstData
>()(
i
)
=
type_convert
<
DstData
>
(
v
);
});
const
bool
is_dst_valid
=
coordinate_has_valid_offset_assuming_visible_index_is_valid
(
dst_desc
,
dst_coord_
);
// copy data from dst_vector into dst_buf
dst_buf
.
template
Update
<
DstInMemOp
,
dst_vector_t
>(
dst_coord_
.
GetOffset
(),
is_dst_valid
,
dst_vector_container
.
template
AsType
<
dst_vector_t
>()[
I0
]);
// move coordinate
if
constexpr
(
idx_1d
.
value
!=
num_access
-
1
)
{
constexpr
auto
forward_step
=
SpaceFillingCurve
::
GetForwardStep
(
idx_1d
);
move_tensor_coordinate
(
src_desc
,
src_coord_
,
make_tensor_coordinate_step
(
src_desc
,
forward_step
));
move_tensor_coordinate
(
dst_desc
,
dst_coord_
,
make_tensor_coordinate_step
(
dst_desc
,
forward_step
));
}
});
// move coordinate back to slice origin (or not)
if
constexpr
(
SrcResetCoordinateAfterRun
)
{
const
auto
src_reset_step
=
make_tensor_coordinate_step
(
src_desc
,
GetCoordinateResetStep
());
move_tensor_coordinate
(
src_desc
,
src_coord_
,
src_reset_step
);
}
if
constexpr
(
DstResetCoordinateAfterRun
)
{
const
auto
dst_reset_step
=
make_tensor_coordinate_step
(
dst_desc
,
GetCoordinateResetStep
());
move_tensor_coordinate
(
dst_desc
,
dst_coord_
,
dst_reset_step
);
}
}
__device__
static
constexpr
auto
GetCoordinateResetStep
()
{
constexpr
auto
scalar_per_access
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
VectorDim
,
ScalarPerVector
>
{},
Number
<
nDim
>
{});
using
SpaceFillingCurve
=
SpaceFillingCurve
<
SliceLengths
,
DimAccessOrder
,
remove_cv_t
<
decltype
(
scalar_per_access
)
>>
;
constexpr
auto
num_access
=
SpaceFillingCurve
::
GetNumOfAccess
();
if
constexpr
(
num_access
==
0
)
{
return
typename
SpaceFillingCurve
::
Index
{};
}
else
{
constexpr
auto
reset_step
=
SpaceFillingCurve
::
GetStepBetween
(
Number
<
num_access
-
1
>
{},
Number
<
0
>
{});
return
reset_step
;
}
}
// src_slice_origin_step_idx need to be known at compile-time, for performance reason
__device__
void
MoveSrcSliceWindow
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_slice_origin_step_idx
)
{
// if src coord was not reset by RunRead(), then need to adjust the step here
const
auto
adjusted_step_idx
=
SrcResetCoordinateAfterRun
?
src_slice_origin_step_idx
:
src_slice_origin_step_idx
+
GetCoordinateResetStep
();
// is it OK to construct a new step every time?
const
auto
adjusted_step
=
make_tensor_coordinate_step
(
src_desc
,
adjusted_step_idx
);
move_tensor_coordinate
(
src_desc
,
src_coord_
,
adjusted_step
);
}
// dst_slice_origin_step_idx need to be known at compile-time, for performance reason
__device__
void
MoveDstSliceWindow
(
const
DstDesc
&
dst_desc
,
const
Index
&
dst_slice_origin_step_idx
)
{
// if dst coord was not reset by Run(), then need to adjust the step here
const
auto
adjusted_step_idx
=
DstResetCoordinateAfterRun
?
dst_slice_origin_step_idx
:
dst_slice_origin_step_idx
+
GetCoordinateResetStep
();
// is it OK to construct a new step every time?
const
auto
adjusted_step
=
make_tensor_coordinate_step
(
dst_desc
,
adjusted_step_idx
);
move_tensor_coordinate
(
dst_desc
,
dst_coord_
,
adjusted_step
);
}
private:
SrcCoord
src_coord_
;
DstCoord
dst_coord_
;
const
ElementwiseOperation
element_op_
;
};
}
// namespace ck
include/ck/utility/amd_buffer_addressing.hpp
View file @
6e01019b
...
...
@@ -629,7 +629,7 @@ __device__ void amd_buffer_store_impl(const typename vector_type<T, N>::type src
{
static_assert
(
(
is_same
<
T
,
double
>::
value
&&
(
N
==
1
||
N
==
2
))
||
(
is_same
<
T
,
float
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
))
||
(
is_same
<
T
,
float
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
))
||
(
is_same
<
T
,
half_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
))
||
(
is_same
<
T
,
bhalf_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
))
||
(
is_same
<
T
,
int32_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
))
||
...
...
@@ -682,6 +682,20 @@ __device__ void amd_buffer_store_impl(const typename vector_type<T, N>::type src
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
8
)
{
vector_type
<
float
,
8
>
tmp
{
src_thread_data
};
llvm_amdgcn_raw_buffer_store_fp32x4
(
tmp
.
AsType
<
float4_t
>
()[
Number
<
0
>
{}],
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
llvm_amdgcn_raw_buffer_store_fp32x4
(
tmp
.
AsType
<
float4_t
>
()[
Number
<
1
>
{}],
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
+
4
*
sizeof
(
float
),
static_cast
<
index_t
>
(
coherence
));
}
}
else
if
constexpr
(
is_same
<
T
,
half_t
>::
value
)
{
...
...
Prev
1
2
3
4
5
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment