Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
6cbb0a13
Commit
6cbb0a13
authored
Mar 05, 2022
by
Jing Zhang
Browse files
init of grouped_gemm
parent
6d4450ef
Changes
7
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
1526 additions
and
0 deletions
+1526
-0
composable_kernel/include/config.hpp
composable_kernel/include/config.hpp
+7
-0
composable_kernel/include/tensor_operation/gridwise_grouped_gemm_xdlops_v2r3.hpp
...de/tensor_operation/gridwise_grouped_gemm_xdlops_v2r3.hpp
+610
-0
device_operation/include/device_gemm.hpp
device_operation/include/device_gemm.hpp
+17
-0
device_operation/include/device_grouped_gemm_xdl.hpp
device_operation/include/device_grouped_gemm_xdl.hpp
+518
-0
example/12_grouped_gemm_xdl/README.md
example/12_grouped_gemm_xdl/README.md
+56
-0
example/12_grouped_gemm_xdl/grouped_gemm_xdl.cpp
example/12_grouped_gemm_xdl/grouped_gemm_xdl.cpp
+315
-0
example/CMakeLists.txt
example/CMakeLists.txt
+3
-0
No files found.
composable_kernel/include/config.hpp
View file @
6cbb0a13
...
...
@@ -171,5 +171,12 @@ enum ActivTypeEnum_t
using
index_t
=
int32_t
;
using
long_index_t
=
int64_t
;
struct
gemm_desc
{
ck
::
index_t
M
,
N
,
K
;
ck
::
index_t
StrideA
,
StrideB
,
StrideC
;
ck
::
index_t
OffsetA
,
OffsetB
,
OffsetC
;
};
}
// namespace ck
#endif
composable_kernel/include/tensor_operation/gridwise_grouped_gemm_xdlops_v2r3.hpp
0 → 100644
View file @
6cbb0a13
This diff is collapsed.
Click to expand it.
device_operation/include/device_gemm.hpp
View file @
6cbb0a13
...
...
@@ -59,6 +59,23 @@ struct DeviceGemm : public BaseOperator
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
struct
DeviceGroupedGemm
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
std
::
vector
<
gemm_desc
>
gemm_shapes
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
ck
::
index_t
KBatch
=
1
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
...
...
device_operation/include/device_grouped_gemm_xdl.hpp
0 → 100644
View file @
6cbb0a13
This diff is collapsed.
Click to expand it.
example/12_grouped_gemm_xdl/README.md
0 → 100644
View file @
6cbb0a13
# Instructions for ```gemm_xdl``` Example
## Docker script
```
bash
docker run
\
-it
\
--rm
\
--privileged
\
--group-add
sudo
\
-w
/root/workspace
\
-v
${
PATH_TO_LOCAL_WORKSPACE
}
:/root/workspace
\
rocm/tensorflow:rocm4.3.1-tf2.6-dev
\
/bin/bash
```
## Build ```gemm_xdl```
```
bash
mkdir
build
&&
cd
build
```
```
bash
# Need to specify target ID, example below is gfx908
cmake
\
-D
BUILD_DEV
=
OFF
\
-D
CMAKE_BUILD_TYPE
=
Release
\
-D
CMAKE_CXX_FLAGS
=
"-DCK_AMD_GPU_GFX908 --amdgpu-target=gfx908 -O3 "
\
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_PREFIX_PATH
=
/opt/rocm
\
..
```
```
bash
make
-j
gemm_xdl
```
## Run ```gemm_xdl```
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
./example/gemm_xdl 0 1 5
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
a_m_k: dim 2, lengths {3840, 4096}, strides {4096, 1}
b_k_n: dim 2, lengths {4096, 4096}, strides {1, 4096}
c_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
arg.a_grid_desc_k0_m_k1_{512, 3840, 8}
arg.b_grid_desc_k0_n_k1_{512, 4096, 8}
arg.c_grid_desc_m_n_{ 3840, 4096}
launch_and_time_kernel: grid_dim {480, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 1.19685 ms, 107.657 TFlops, 78.8501 GB/s
```
example/12_grouped_gemm_xdl/grouped_gemm_xdl.cpp
0 → 100644
View file @
6cbb0a13
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_grouped_gemm_xdl.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization_t
::
Default
;
// static constexpr auto GemmMNPadding =
// ck::tensor_operation::device::GemmSpecialization_t::MNPadding;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmXdl
//######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer| Num|
//######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar| Prefetch|
//######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector| |
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
F16
,
F16
,
F16
,
F32
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
7
,
1
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
0
;
int
init_method
=
0
;
int
nrepeat
=
5
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
exit
(
0
);
}
int
group_count
=
1
;
// GEMM shape
std
::
vector
<
ck
::
gemm_desc
>
gemm_shapes
;
int
A_size
=
0
,
B_size
=
0
,
C_size
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
int
M
=
256
;
int
N
=
512
;
int
K
=
1024
;
gemm_shapes
.
push_back
({
M
,
N
,
K
,
K
,
K
,
N
,
A_size
,
B_size
,
C_size
});
A_size
+=
M
*
K
;
B_size
+=
N
*
K
;
C_size
+=
M
*
N
;
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
std
::
vector
<
Tensor
<
BDataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
CDataType
>>
c_host_tensors
;
std
::
vector
<
Tensor
<
CDataType
>>
c_device_tensors
;
for
(
int
i
=
0
;
i
<
gemm_shapes
.
size
();
i
++
)
{
a_tensors
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
gemm_shapes
[
i
].
M
,
gemm_shapes
[
i
].
K
,
gemm_shapes
[
i
].
StrideA
,
ALayout
{})));
b_tensors
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
gemm_shapes
[
i
].
K
,
gemm_shapes
[
i
].
N
,
gemm_shapes
[
i
].
StrideB
,
BLayout
{})));
c_host_tensors
.
push_back
(
Tensor
<
CDataType
>
(
f_host_tensor_descriptor
(
gemm_shapes
[
i
].
M
,
gemm_shapes
[
i
].
N
,
gemm_shapes
[
i
].
StrideC
,
CLayout
{})));
c_device_tensors
.
push_back
(
Tensor
<
CDataType
>
(
f_host_tensor_descriptor
(
gemm_shapes
[
i
].
M
,
gemm_shapes
[
i
].
N
,
gemm_shapes
[
i
].
StrideC
,
CLayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
c_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
}
for
(
int
i
=
0
;
i
<
gemm_shapes
.
size
();
i
++
)
{
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
}
DeviceMem
a_tensors_device_buf
(
sizeof
(
ADataType
)
*
A_size
);
DeviceMem
b_tensors_device_buf
(
sizeof
(
BDataType
)
*
B_size
);
DeviceMem
c_tensors_device_buf
(
sizeof
(
CDataType
)
*
C_size
);
std
::
vector
<
ADataType
>
a_tensors_data
,
b_tensors_data
,
c_tensors_data
;
for
(
int
i
=
0
;
i
<
gemm_shapes
.
size
();
i
++
)
{
a_tensors_data
.
insert
(
a_tensors_data
.
end
(),
a_tensors
[
i
].
mData
.
begin
(),
a_tensors
[
i
].
mData
.
end
());
b_tensors_data
.
insert
(
b_tensors_data
.
end
(),
b_tensors
[
i
].
mData
.
begin
(),
b_tensors
[
i
].
mData
.
end
());
}
a_tensors_device_buf
.
ToDevice
(
a_tensors_data
.
data
());
b_tensors_device_buf
.
ToDevice
(
b_tensors_data
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_tensors_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_tensors_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_tensors_device_buf
.
GetDeviceBuffer
()),
gemm_shapes
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
nrepeat
);
c_tensors_data
.
resize
(
C_size
);
c_tensors_device_buf
.
FromDevice
(
c_tensors_data
.
data
());
for
(
int
i
=
0
;
i
<
gemm_shapes
.
size
();
i
++
)
{
memcpy
(
c_device_tensors
[
i
].
mData
.
data
(),
c_tensors_data
.
data
()
+
gemm_shapes
[
i
].
OffsetC
,
c_device_tensors
[
i
].
mData
.
size
()
*
sizeof
(
CDataType
));
}
if
(
do_verification
)
{
for
(
int
i
=
0
;
i
<
gemm_shapes
.
size
();
i
++
)
{
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
c_host_tensors
[
i
],
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
check_error
(
c_host_tensors
[
i
],
c_device_tensors
[
i
]);
}
}
#if 0
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
case 2:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
}
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, nrepeat);
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
if(do_verification)
{
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
check_error(c_m_n_host_result, c_m_n_device_result);
}
#endif
return
0
;
}
example/CMakeLists.txt
View file @
6cbb0a13
...
...
@@ -24,8 +24,10 @@ set(GEMM_XDL_ALPHA_BETA_SOURCE 8_gemm_xdl_alpha_beta/gemm_xdl_alpha_beta.cpp)
set
(
CONV2D_FWD_XDL_INT8_SOURCE 9_conv2d_fwd_xdl_int8/conv2d_fwd_xdl_int8.cpp
)
set
(
CONV3D_FWD_XDL_SOURCE 10_conv3d_fwd_xdl/conv3d_fwd_xdl.cpp
)
set
(
CONVND_FWD_XDL_SOURCE 11_convnd_fwd_xdl/convnd_fwd_xdl.cpp
)
set
(
GROUPED_GEMM_XDL_SOURCE 12_grouped_gemm_xdl/grouped_gemm_xdl.cpp
)
add_executable
(
gemm_xdl
${
GEMM_XDL_SOURCE
}
)
add_executable
(
grouped_gemm_xdl
${
GROUPED_GEMM_XDL_SOURCE
}
)
add_executable
(
gemm_xdl_bias_relu
${
GEMM_XDL_BIAS_RELU_SOURCE
}
)
add_executable
(
gemm_xdl_bias_relu_add
${
GEMM_XDL_BIAS_RELU_ADD_SOURCE
}
)
add_executable
(
conv2d_fwd_xdl
${
CONV2D_FWD_XDL_SOURCE
}
)
...
...
@@ -38,6 +40,7 @@ add_executable(conv3d_fwd_xdl ${CONV3D_FWD_XDL_SOURCE})
add_executable
(
convnd_fwd_xdl
${
CONVND_FWD_XDL_SOURCE
}
)
target_link_libraries
(
gemm_xdl PRIVATE host_tensor
)
target_link_libraries
(
grouped_gemm_xdl PRIVATE host_tensor
)
target_link_libraries
(
gemm_xdl_bias_relu PRIVATE host_tensor
)
target_link_libraries
(
gemm_xdl_bias_relu_add PRIVATE host_tensor
)
target_link_libraries
(
conv2d_fwd_xdl PRIVATE host_tensor
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment