Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
6aee6155
"examples/vscode:/vscode.git/clone" did not exist on "20e92586c1fda968ea3343ba0f44f2b21f3c09d2"
Commit
6aee6155
authored
Oct 12, 2023
by
Jing Zhang
Browse files
fixed scale logic
parent
3ba485b6
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
40 additions
and
381 deletions
+40
-381
example/01_gemm/CMakeLists.txt
example/01_gemm/CMakeLists.txt
+1
-1
example/01_gemm/gemm_xdl_input_i16_comp_i8_scale_ab.cpp
example/01_gemm/gemm_xdl_input_i16_comp_i8_scale_ab.cpp
+25
-6
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_fp16.cpp
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_fp16.cpp
+0
-362
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_scale_ab_xdl_cshuffle.hpp
...ice/impl/device_gemm_multiple_d_scale_ab_xdl_cshuffle.hpp
+14
-12
No files found.
example/01_gemm/CMakeLists.txt
View file @
6aee6155
...
@@ -82,4 +82,4 @@ if(result EQUAL 0)
...
@@ -82,4 +82,4 @@ if(result EQUAL 0)
endif
()
endif
()
add_example_executable
(
gemm_xdl_input_i16_comp_i8_scale_ab gemm_xdl_input_i16_comp_i8_scale_ab.cpp
)
add_example_executable
(
example_
gemm_xdl_input_i16_comp_i8_scale_ab gemm_xdl_input_i16_comp_i8_scale_ab.cpp
)
example/01_gemm/gemm_xdl_input_i16_comp_i8_scale_ab.cpp
View file @
6aee6155
...
@@ -44,16 +44,34 @@ struct i32_to_i8
...
@@ -44,16 +44,34 @@ struct i32_to_i8
{
{
__host__
__device__
void
operator
()(
I8
&
y
,
const
I32
&
x
)
const
__host__
__device__
void
operator
()(
I8
&
y
,
const
I32
&
x
)
const
{
{
y
=
ck
::
type_convert
<
I8
>
(
ck
::
type_convert
<
float
>
(
x
)
*
reduced_amex_scale
);
float
scale
=
(
1.0
/
reduced_amax
)
*
int8_max
;
y
=
ck
::
type_convert
<
I8
>
(
ck
::
type_convert
<
float
>
(
x
)
*
scale
);
}
}
static
constexpr
float
int8_max
=
127
;
// this attribute will trigger a reduction op of the tensor to get the true amax scalue
// this attribute will trigger a reduction op of the tensor to get the true amax scalue
float
reduced_amex_scale
=
1.0
;
float
reduced_amax
=
1.0
;
};
struct
i8_to_i32
{
__host__
__device__
void
operator
()(
I32
&
y
,
const
I8
&
x
)
const
{
float
a_scale
=
(
1.0
/
a_reduced_amax
)
*
int8_max
;
float
b_scale
=
(
1.0
/
b_reduced_amax
)
*
int8_max
;
float
c_scale
=
(
1.0
/
(
a_scale
*
b_scale
));
y
=
ck
::
type_convert
<
I32
>
(
ck
::
type_convert
<
float
>
(
x
)
*
c_scale
);
}
static
constexpr
float
int8_max
=
127
;
float
a_reduced_amax
=
1.0
;
float
b_reduced_amax
=
1.0
;
};
};
using
AElementOp
=
i32_to_i8
;
using
AElementOp
=
i32_to_i8
;
using
BElementOp
=
i32_to_i8
;
using
BElementOp
=
i32_to_i8
;
using
CDEElementOp
=
PassThrough
;
using
CDEElementOp
=
i8_to_i32
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
...
@@ -261,17 +279,18 @@ int main(int argc, char* argv[])
...
@@ -261,17 +279,18 @@ int main(int argc, char* argv[])
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
b_k_n
,
c_m_n
,
c_m_n
,
AElementOp
{
static_cast
<
float
>
(
1.0
)
/
amax
},
AElementOp
{
static_cast
<
float
>
(
amax
)
},
BElementOp
{
static_cast
<
float
>
(
1.0
)
/
bmax
},
BElementOp
{
static_cast
<
float
>
(
bmax
)
},
PassThrough
{});
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
auto
cde_element_op_
=
CDEElementOp
{
static_cast
<
float
>
(
amax
),
static_cast
<
float
>
(
bmax
)};
for
(
int
m
=
0
;
m
<
M
;
++
m
)
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
));
cde_element_op
_
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
));
}
}
}
}
...
...
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_fp16.cpp
deleted
100644 → 0
View file @
3ba485b6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DDataType
=
F16
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DLayout
=
Row
;
using
ELayout
=
Row
;
struct
AddScale
{
static
constexpr
auto
I0
=
ck
::
Number
<
0
>
{};
static
constexpr
auto
I1
=
ck
::
Number
<
1
>
{};
static
constexpr
auto
I2
=
ck
::
Number
<
2
>
{};
static
constexpr
auto
I3
=
ck
::
Number
<
3
>
{};
__host__
__device__
constexpr
void
operator
()(
ck
::
half4_t
&
a
,
const
ck
::
half4_t
&
a0
,
const
ck
::
half4_t
&
a1
)
const
{
const
auto
a0_v_t
=
ck
::
vector_type
<
ck
::
half_t
,
4
>
{
a0
};
const
auto
a1_v_t
=
ck
::
vector_type
<
ck
::
half_t
,
4
>
{
a1
};
auto
r_v_t
=
ck
::
vector_type
<
ck
::
half_t
,
4
>
{};
r_v_t
.
AsType
<
ck
::
half_t
>
()(
I0
)
=
scale
*
(
a0_v_t
.
AsType
<
ck
::
half_t
>
()[
I0
]
+
a1_v_t
.
AsType
<
ck
::
half_t
>
()[
I0
]);
r_v_t
.
AsType
<
ck
::
half_t
>
()(
I1
)
=
scale
*
(
a0_v_t
.
AsType
<
ck
::
half_t
>
()[
I1
]
+
a1_v_t
.
AsType
<
ck
::
half_t
>
()[
I1
]);
r_v_t
.
AsType
<
ck
::
half_t
>
()(
I2
)
=
scale
*
(
a0_v_t
.
AsType
<
ck
::
half_t
>
()[
I2
]
+
a1_v_t
.
AsType
<
ck
::
half_t
>
()[
I2
]);
r_v_t
.
AsType
<
ck
::
half_t
>
()(
I3
)
=
scale
*
(
a0_v_t
.
AsType
<
ck
::
half_t
>
()[
I3
]
+
a1_v_t
.
AsType
<
ck
::
half_t
>
()[
I3
]);
a
=
r_v_t
.
AsType
<
ck
::
half4_t
>
()[
I0
];
}
__host__
__device__
constexpr
void
operator
()(
ck
::
half_t
&
a
,
const
ck
::
half_t
&
a0
,
const
ck
::
half_t
&
a1
)
const
{
a
=
scale
*
(
a0
+
a1
);
}
// this attribute will force copy_function applying element_wise with vector_type
static
constexpr
ck
::
index_t
vec_len
=
4
;
float
scale
=
1.0
;
};
struct
AlphaBetaAdd
{
AlphaBetaAdd
(
float
alpha
,
float
beta
)
:
alpha_
(
alpha
),
beta_
(
beta
){};
template
<
typename
E
,
typename
C
,
typename
D
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D
&
d
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
ck
::
half_t
,
float
,
ck
::
half_t
>
(
ck
::
half_t
&
e
,
const
float
&
c
,
const
ck
::
half_t
&
d
)
const
{
e
=
ck
::
type_convert
<
ck
::
half_t
>
(
alpha_
*
c
+
beta_
*
ck
::
type_convert
<
float
>
(
d
));
};
float
alpha_
;
float
beta_
;
};
using
AElementOp
=
AddScale
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AlphaBetaAdd
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleABD_Xdl_CShuffle
<
ck
::
Tuple
<
ALayout
,
ALayout
>
,
ck
::
Tuple
<
BLayout
>
,
ck
::
Tuple
<
DLayout
>
,
ELayout
,
ck
::
Tuple
<
ADataType
,
ADataType
>
,
ck
::
Tuple
<
BDataType
>
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
DDataType
>
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideD
=
4096
;
ck
::
index_t
StrideE
=
4096
;
float
alpha
=
1.0
f
;
float
beta
=
1.0
f
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
6
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
alpha
=
std
::
stof
(
argv
[
4
]);
beta
=
std
::
stof
(
argv
[
5
]);
}
else
if
(
argc
==
13
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideD
=
std
::
stoi
(
argv
[
9
]);
StrideE
=
std
::
stoi
(
argv
[
10
]);
alpha
=
std
::
stof
(
argv
[
11
]);
beta
=
std
::
stof
(
argv
[
12
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE, alpha, "
"beta
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a0_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
ADataType
>
a1_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
DDataType
>
d_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD
,
DLayout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a0_m_k: "
<<
a0_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a1_m_k: "
<<
a1_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_m_n: "
<<
d_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
a1_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
DDataType
>
{
-
5
,
5
});
break
;
default:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
a1_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
DDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
a0_device_buf
(
sizeof
(
ADataType
)
*
a0_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a1_device_buf
(
sizeof
(
ADataType
)
*
a1_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_device_buf
.
ToDevice
(
a0_m_k
.
mData
.
data
());
a1_device_buf
.
ToDevice
(
a1_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_m_n
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_m_n_device_result
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{
0.2
};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{
alpha
,
beta
};
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
std
::
array
<
const
void
*
,
2
>
{
a0_device_buf
.
GetDeviceBuffer
(),
a1_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
1
>
{
b_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
std
::
array
<
ck
::
index_t
,
2
>
{
StrideA
,
StrideA
},
std
::
array
<
ck
::
index_t
,
1
>
{
StrideB
},
std
::
array
<
ck
::
index_t
,
1
>
{
StrideD
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_m_n
({
M
,
N
});
Tensor
<
ADataType
>
a_m_k
({
M
,
K
});
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
a_element_op
(
a_m_k
(
m
,
k
),
a0_m_k
(
m
,
k
),
a1_m_k
(
m
,
k
));
}
}
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
PassThrough
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
PassThrough
{},
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d_m_n
(
m
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
)
?
0
:
1
;
}
return
0
;
}
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_scale_ab_xdl_cshuffle.hpp
View file @
6aee6155
...
@@ -571,7 +571,7 @@ struct DeviceGemmMultipleDScaleAB_Xdl_CShuffle
...
@@ -571,7 +571,7 @@ struct DeviceGemmMultipleDScaleAB_Xdl_CShuffle
using
Argument
=
DeviceOp
::
Argument
;
using
Argument
=
DeviceOp
::
Argument
;
template
<
typename
T
>
template
<
typename
T
>
using
has_reduced_amex
_scale
=
decltype
(
std
::
declval
<
T
&>
().
reduced_am
ex_scale
);
using
has_reduced_amex
=
decltype
(
std
::
declval
<
T
&>
().
reduced_am
ax
);
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
{
...
@@ -586,9 +586,11 @@ struct DeviceGemmMultipleDScaleAB_Xdl_CShuffle
...
@@ -586,9 +586,11 @@ struct DeviceGemmMultipleDScaleAB_Xdl_CShuffle
float
kern_time
=
0
;
float
kern_time
=
0
;
AElementwiseOperation
a_element_op_
=
arg
.
a_element_op_
;
auto
a_element_op_
=
arg
.
a_element_op_
;
auto
b_element_op_
=
arg
.
b_element_op_
;
auto
cde_element_op_
=
arg
.
cde_element_op_
;
if
constexpr
(
is_detected
<
has_reduced_amex
_scale
,
AElementwiseOperation
>::
value
)
if
constexpr
(
is_detected
<
has_reduced_amex
,
AElementwiseOperation
>::
value
)
{
{
ADataType
amax_a
;
ADataType
amax_a
;
...
@@ -608,19 +610,18 @@ struct DeviceGemmMultipleDScaleAB_Xdl_CShuffle
...
@@ -608,19 +610,18 @@ struct DeviceGemmMultipleDScaleAB_Xdl_CShuffle
hipMemcpyDeviceToHost
,
hipMemcpyDeviceToHost
,
stream_config
.
stream_id_
));
stream_config
.
stream_id_
));
static_assert
(
is_same
<
decltype
(
arg
.
a_element_op_
.
reduced_am
ex_scale
),
float
>::
value
,
static_assert
(
is_same
<
decltype
(
arg
.
a_element_op_
.
reduced_am
ax
),
float
>::
value
,
"scale is not float!"
);
"scale is not float!"
);
a_element_op_
.
reduced_am
ex_scale
=
1.0
/
amax_a
;
a_element_op_
.
reduced_am
ax
=
amax_a
;
// std::cout << " amax_a: " << amax_a << std::endl;
// std::cout << " amax_a: " << amax_a << std::endl;
cde_element_op_
.
a_reduced_amax
=
a_element_op_
.
reduced_amax
;
}
}
BElementwiseOperation
b_element_op_
=
arg
.
b_element_op_
;
if
constexpr
(
is_detected
<
has_reduced_amex
,
BElementwiseOperation
>::
value
)
if
constexpr
(
is_detected
<
has_reduced_amex_scale
,
BElementwiseOperation
>::
value
)
{
{
A
DataType
amax_b
;
B
DataType
amax_b
;
auto
reduce_b
=
Reduce2D
<
BDataType
,
BLayout
>
{};
auto
reduce_b
=
Reduce2D
<
BDataType
,
BLayout
>
{};
kern_time
+=
reduce_b
.
Run
({
arg
.
KRaw_
,
arg
.
NRaw_
},
kern_time
+=
reduce_b
.
Run
({
arg
.
KRaw_
,
arg
.
NRaw_
},
...
@@ -638,12 +639,13 @@ struct DeviceGemmMultipleDScaleAB_Xdl_CShuffle
...
@@ -638,12 +639,13 @@ struct DeviceGemmMultipleDScaleAB_Xdl_CShuffle
hipMemcpyDeviceToHost
,
hipMemcpyDeviceToHost
,
stream_config
.
stream_id_
));
stream_config
.
stream_id_
));
static_assert
(
is_same
<
decltype
(
arg
.
b_element_op_
.
reduced_am
ex_scale
),
float
>::
value
,
static_assert
(
is_same
<
decltype
(
arg
.
b_element_op_
.
reduced_am
ax
),
float
>::
value
,
"scale is not float!"
);
"scale is not float!"
);
b_element_op_
.
reduced_am
ex_scale
=
1.0
/
amax_b
;
b_element_op_
.
reduced_am
ax
=
amax_b
;
// std::cout << " amax_b: " << amax_b << std::endl;
// std::cout << " amax_b: " << amax_b << std::endl;
cde_element_op_
.
b_reduced_amax
=
b_element_op_
.
reduced_amax
;
}
}
const
index_t
grid_size
=
const
index_t
grid_size
=
...
@@ -679,7 +681,7 @@ struct DeviceGemmMultipleDScaleAB_Xdl_CShuffle
...
@@ -679,7 +681,7 @@ struct DeviceGemmMultipleDScaleAB_Xdl_CShuffle
arg
.
p_e_grid_
,
arg
.
p_e_grid_
,
a_element_op_
,
a_element_op_
,
b_element_op_
,
b_element_op_
,
arg
.
cde_element_op_
,
cde_element_op_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment