Commit 68fda7c2 authored by Bartlomiej Kocot's avatar Bartlomiej Kocot
Browse files

Add support for groups in Img2Col/Col2Img

parent bec84efb
......@@ -19,7 +19,7 @@ using OutDataType = ck::half_t;
using ImageLayout = ck::tensor_layout::convolution::GNHWC;
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t G = 2;
static constexpr ck::index_t N = 32; // batch size
static constexpr ck::index_t C = 32; // input channel (per group)
static constexpr ck::index_t Y = 3; // filter H
......@@ -52,7 +52,7 @@ int main()
std::array<ck::index_t, 2> wei_spatial_lengths{Y, X};
std::array<ck::index_t, 2> out_spatial_lengths{Ho, Wo};
// We have NHWGC in memory space (G is dummy)
// We have NHWGC in memory space
// However, CK's API only accept length and stride with order of GNCHW
// Hence, we need to adjust the order of stride
std::array<ck::index_t, 5> image_strides{C, Hi * Wi * G * C, 1, Wi * G * C, G * C};
......@@ -63,7 +63,7 @@ int main()
std::array<ck::index_t, NumDimSpatial> input_left_pads{1, 1};
std::array<ck::index_t, NumDimSpatial> input_right_pads{1, 1};
SimpleDeviceMem in(sizeof(InDataType) * N * Ho * Wo * Y * X * C);
SimpleDeviceMem in(sizeof(InDataType) * G * N * Ho * Wo * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * N * Hi * Wi * G * C);
using namespace ck::conv_tensor_rearrange_op;
......@@ -93,6 +93,7 @@ int main()
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
out.GetDeviceBuffer(),
G,
N,
C,
in_spatial_lengths,
......@@ -112,7 +113,7 @@ int main()
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t num_bytes = sizeof(InDataType) * N * Hi * Wi * G * C +
sizeof(OutDataType) * N * Ho * Wo * Y * X * C;
sizeof(OutDataType) * G * N * Ho * Wo * Y * X * C;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
......@@ -149,6 +150,7 @@ int main()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
out.GetDeviceBuffer(),
G,
N,
C,
in_spatial_lengths,
......
......@@ -19,7 +19,7 @@ using OutDataType = ck::half_t;
using ImageLayout = ck::tensor_layout::convolution::GNHWC;
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t G = 2;
static constexpr ck::index_t N = 32; // batch size
static constexpr ck::index_t C = 32; // input channel (per group)
static constexpr ck::index_t Y = 3; // filter H
......@@ -64,7 +64,7 @@ int main()
std::array<ck::index_t, NumDimSpatial> input_right_pads{1, 1};
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * G * C);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * G * N * Ho * Wo * Y * X * C);
using namespace ck::conv_tensor_rearrange_op;
......@@ -93,6 +93,7 @@ int main()
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
out.GetDeviceBuffer(),
G,
N,
C,
in_spatial_lengths,
......@@ -112,7 +113,7 @@ int main()
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t num_bytes = sizeof(InDataType) * N * Hi * Wi * G * C +
sizeof(OutDataType) * N * Ho * Wo * Y * X * C;
sizeof(OutDataType) * G * N * Ho * Wo * Y * X * C;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
......@@ -149,6 +150,7 @@ int main()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
out.GetDeviceBuffer(),
G,
N,
C,
in_spatial_lengths,
......
......@@ -20,18 +20,19 @@ using DeviceColToImgInstance = ck::tensor_operation::device::DeviceColumnToImage
bool RunColumnToImage(const ExecutionConfig& config, const ck::utils::conv::ConvParam& conv_params)
{
const auto G = conv_params.G_;
const auto N = conv_params.N_;
const auto C = conv_params.C_;
const ck::index_t NDoHoWo =
N * ck::accumulate_n<ck::index_t>(
const ck::index_t GNDoHoWo =
G * N *
ck::accumulate_n<ck::index_t>(
conv_params.output_spatial_lengths_.begin(), NDimSpatial, 1, std::multiplies<>());
const ck::index_t CZYX =
C * ck::accumulate_n<ck::index_t>(
conv_params.filter_spatial_lengths_.begin(), NDimSpatial, 1, std::multiplies<>());
const auto in_desc = HostTensorDescriptor({NDoHoWo, CZYX});
const auto in_desc = HostTensorDescriptor({GNDoHoWo, CZYX});
const auto out_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<ImLayout>(conv_params);
......@@ -86,6 +87,7 @@ bool RunColumnToImage(const ExecutionConfig& config, const ck::utils::conv::Conv
auto invoker = col2img.MakeInvoker();
auto argument = col2img.MakeArgument(in_device_buf.GetDeviceBuffer(),
out_device_buf.GetDeviceBuffer(),
G,
N,
C,
input_spatial_lengths,
......@@ -108,7 +110,7 @@ bool RunColumnToImage(const ExecutionConfig& config, const ck::utils::conv::Conv
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
std::size_t num_btype = NDoHoWo * CZYX * (sizeof(OutDataType) + sizeof(InDataType));
std::size_t num_btype = GNDoHoWo * CZYX * (sizeof(OutDataType) + sizeof(InDataType));
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << gb_per_sec << " GB/s" << std::endl;
......
......@@ -20,12 +20,13 @@ using DeviceImgToColInstance = ck::tensor_operation::device::DeviceImageToColumn
bool RunImageToColumn(const ExecutionConfig& config, const ck::utils::conv::ConvParam& conv_params)
{
const auto G = conv_params.G_;
const auto N = conv_params.N_;
const auto C = conv_params.C_;
const ck::index_t NDoHoWo =
N * ck::accumulate_n<ck::index_t>(
const ck::index_t GNDoHoWo =
G * N *
ck::accumulate_n<ck::index_t>(
conv_params.output_spatial_lengths_.begin(), NDimSpatial, 1, std::multiplies<>());
const ck::index_t CZYX =
C * ck::accumulate_n<ck::index_t>(
......@@ -33,7 +34,7 @@ bool RunImageToColumn(const ExecutionConfig& config, const ck::utils::conv::Conv
const auto in_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<ImLayout>(conv_params);
const auto out_desc = HostTensorDescriptor({NDoHoWo, CZYX});
const auto out_desc = HostTensorDescriptor({GNDoHoWo, CZYX});
std::array<ck::index_t, NDimSpatial> input_spatial_lengths{};
std::array<ck::index_t, NDimSpatial> filter_spatial_lengths{};
......@@ -86,6 +87,7 @@ bool RunImageToColumn(const ExecutionConfig& config, const ck::utils::conv::Conv
auto invoker = img2col.MakeInvoker();
auto argument = img2col.MakeArgument(in_device_buf.GetDeviceBuffer(),
out_device_buf.GetDeviceBuffer(),
G,
N,
C,
input_spatial_lengths,
......@@ -108,7 +110,7 @@ bool RunImageToColumn(const ExecutionConfig& config, const ck::utils::conv::Conv
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
std::size_t num_btype = NDoHoWo * CZYX * (sizeof(OutDataType) + sizeof(InDataType));
std::size_t num_btype = GNDoHoWo * CZYX * (sizeof(OutDataType) + sizeof(InDataType));
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << gb_per_sec << " GB/s" << std::endl;
......
......@@ -14,11 +14,12 @@ namespace device {
/**
* \brief Convolution Tensor Rearrange.
*
* This Device operator supports conversion image ([G, N, Di, Hi, Wi, C]) to
* the gemm problem([N * Do * Ho * Wo, Z * Y * X * C]) (Image to Column) and
* This Device operator supports conversion image to
* the gemm problem (Image to Column) and
* conversion gemm form to the image (Column to Image).
*
* Note that G must be equal to 1.
* Supported layouts:
* [G, N, Di, Hi, Wi, C] <-> [G * N * Do * Ho * Wo, Z * Y * X * C]
* [N, Di, Hi, Wi, G, C] <-> [N * Do * Ho * Wo * G, Z * Y * X * C]
*
* \tparam NDimSpatial Number of spatial dimensions.
* \tparam ImageLayout Input Layout.
......@@ -39,6 +40,7 @@ struct DeviceConvTensorRearrange : public BaseOperator
*
* \param p_in A pointer to the device memory of the input image.
* \param p_out A pointer to the device memory of the output.
* \param G Convolution number of groups.
* \param N Convolution batch size.
* \param C Convolution number of channels.
* \param input_spatial_lengths Input spatial lengths.
......@@ -55,6 +57,7 @@ struct DeviceConvTensorRearrange : public BaseOperator
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in,
void* p_out,
const ck::index_t G,
const ck::index_t N,
const ck::index_t C,
const std::array<index_t, NDimSpatial>& input_spatial_lengths,
......
......@@ -17,15 +17,18 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/conv_tensor_rearrange_op.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/host_utility/io.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// Image to column for input layout NDHWC:
// input : image converted to the gemm problem [N * Do * Ho * Wo, Z * Y * X * C]
// output : image [N, Di, Hi, Wi, C]
// Column to Image:
// input : gemm form [G * N * Do * Ho * Wo, Z * Y * X * C]
// output : input image [G, N, Di, Hi, Wi, C]
// input : gemm form [N * Do * Ho * Wo * G, Z * Y * X * C]
// output : input image [N, Di, Hi, Wi, G, C]
template <index_t NDimSpatial,
typename ImageLayout,
typename InputDataType,
......@@ -43,6 +46,14 @@ struct DeviceColumnToImageImpl
OutputDataType,
conv_tensor_rearrange_op::ColumnToImage>
{
static constexpr bool is_NSpatialGC =
std::is_same_v<ImageLayout, tensor_layout::convolution::NWGC> ||
std::is_same_v<ImageLayout, tensor_layout::convolution::NHWGC> ||
std::is_same_v<ImageLayout, tensor_layout::convolution::NDHWGC>;
static constexpr bool is_GNSpatialC =
std::is_same_v<ImageLayout, tensor_layout::convolution::GNWC> ||
std::is_same_v<ImageLayout, tensor_layout::convolution::GNHWC> ||
std::is_same_v<ImageLayout, tensor_layout::convolution::GNDHWC>;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
......@@ -85,7 +96,8 @@ struct DeviceColumnToImageImpl
// Make column form descriptor
static auto
MakeInputDescriptor_M_K(const ck::index_t N,
MakeInputDescriptor_M_K(const ck::index_t G,
const ck::index_t N,
const ck::index_t C,
const std::array<index_t, NDimSpatial>& filter_spatial_lengths,
const std::array<index_t, NDimSpatial>& output_spatial_lengths,
......@@ -100,16 +112,19 @@ struct DeviceColumnToImageImpl
C * ck::accumulate_n<index_t>(
filter_spatial_lengths.begin(), NDimSpatial, 1, std::multiplies<>());
const index_t NStride = DoHoWo * gemm_m_k_strides[I0] * gemm_m_k_strides[I1];
const index_t AdditionalGroupStride = is_NSpatialGC ? G : 1;
const index_t NStride =
DoHoWo * gemm_m_k_strides[I0] * gemm_m_k_strides[I1] * AdditionalGroupStride;
// Calculate the appropriate stride for each set of independent filters
// in each dimension
const index_t WStride =
math::integer_divide_ceil(effs[XIdx], conv_filter_strides[XIdx]) * gemm_m_k_strides[I0];
const index_t WStride = math::integer_divide_ceil(effs[XIdx], conv_filter_strides[XIdx]) *
gemm_m_k_strides[I0] * AdditionalGroupStride;
const index_t HStride = math::integer_divide_ceil(effs[YIdx], conv_filter_strides[YIdx]) *
output_spatial_lengths[XIdx] * gemm_m_k_strides[I0];
output_spatial_lengths[XIdx] * gemm_m_k_strides[I0] *
AdditionalGroupStride;
const index_t DStride = math::integer_divide_ceil(effs[ZIdx], conv_filter_strides[ZIdx]) *
output_spatial_lengths[YIdx] * output_spatial_lengths[XIdx] *
gemm_m_k_strides[I0];
gemm_m_k_strides[I0] * AdditionalGroupStride;
// Create descriptor for independent filters in each dimension and
// then merge them into column form
if constexpr(NDimSpatial == 1)
......@@ -244,7 +259,7 @@ struct DeviceColumnToImageImpl
}
using InputGridDesc =
remove_cvref_t<decltype(MakeInputDescriptor_M_K(1, 1, {}, {}, {}, {}, {}, {}))>;
remove_cvref_t<decltype(MakeInputDescriptor_M_K(1, 1, 1, {}, {}, {}, {}, {}, {}))>;
using OutputGridDesc = remove_cvref_t<decltype(MakeOutDescriptor_M_K(
1, 1, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}))>;
......@@ -252,7 +267,8 @@ struct DeviceColumnToImageImpl
decltype(BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, KPerBlock, InputGridDesc>(
InputGridDesc{}))>;
using GridwiseTensorRearrangeKernel = GridwiseTensorRearrange<InputGridDesc,
using GridwiseTensorRearrangeKernel =
GridwiseTensorRearrange<InputGridDesc,
InputDataType,
OutputGridDesc,
OutputDataType,
......@@ -262,12 +278,14 @@ struct DeviceColumnToImageImpl
ThreadClusterLengths,
ScalarPerVector,
InMemoryDataOperationEnum::Add,
Block2ETileMap>;
Block2ETileMap,
ComputePtrOffsetOfStridedBatch<I0>>;
struct Argument : public BaseArgument
{
Argument(const void* p_in, // input image
void* p_out, // output image
const ck::index_t G,
const ck::index_t N,
const ck::index_t C,
const std::array<index_t, NDimSpatial>& input_spatial_lengths,
......@@ -279,7 +297,8 @@ struct DeviceColumnToImageImpl
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
: C_(C),
: G_(G),
C_(C),
X_(filter_spatial_lengths[NDimSpatial - I1]),
p_in_{static_cast<const InputDataType*>(p_in)},
p_out_{static_cast<OutputDataType*>(p_out)},
......@@ -289,6 +308,23 @@ struct DeviceColumnToImageImpl
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads}
{
using namespace tensor_layout::convolution;
if constexpr(is_NSpatialGC)
{
compute_ptr_offset_of_batch_.BatchStrideA_ =
gemm_m_k_strides[I0] * gemm_m_k_strides[I1];
}
else if constexpr(is_GNSpatialC)
{
const index_t NDoHoWo =
N * ck::accumulate_n<index_t>(
output_spatial_lengths.begin(), NDimSpatial, 1, std::multiplies<>());
compute_ptr_offset_of_batch_.BatchStrideA_ =
NDoHoWo * gemm_m_k_strides[I0] * gemm_m_k_strides[I1];
}
compute_ptr_offset_of_batch_.BatchStrideC_ = image_g_n_c_wis_strides[I0];
const index_t x_eff =
(filter_spatial_lengths[XIdx] - 1) * conv_filter_dilations[XIdx] + 1;
const index_t y_eff =
......@@ -349,7 +385,8 @@ struct DeviceColumnToImageImpl
continue;
const auto in_grid_desc_m_k =
MakeInputDescriptor_M_K(N,
MakeInputDescriptor_M_K(G,
N,
C,
filter_spatial_lengths,
output_spatial_lengths,
......@@ -384,13 +421,13 @@ struct DeviceColumnToImageImpl
const index_t z_offset_with_pad =
math::max(0, z_img_offset - input_left_pads[ZIdx]);
const index_t AdditionalGroupStride = is_NSpatialGC ? G : 1;
// Memory offsets to next set of independent filters,
// move to independent filters in each dimension
const index_t in_offset =
x_idx * gemm_m_k_strides[0] +
y_idx * gemm_m_k_strides[0] * output_spatial_lengths[XIdx] +
z_idx * gemm_m_k_strides[0] * output_spatial_lengths[YIdx] *
output_spatial_lengths[XIdx];
(x_idx + y_idx * output_spatial_lengths[XIdx] +
z_idx * output_spatial_lengths[YIdx] * output_spatial_lengths[XIdx]) *
gemm_m_k_strides[0] * AdditionalGroupStride;
// Move to independent filters in appropriate dimensions
const index_t out_offset =
x_offset_with_pad * image_g_n_c_wis_strides[spatial_offset + XIdx] +
......@@ -417,6 +454,7 @@ struct DeviceColumnToImageImpl
}
}
const ck::index_t G_;
const ck::index_t C_;
const ck::index_t X_;
......@@ -434,6 +472,8 @@ struct DeviceColumnToImageImpl
std::vector<const InputDataType*> p_in_container_;
std::vector<OutputDataType*> p_out_container_;
ComputePtrOffsetOfStridedBatch<I0> compute_ptr_offset_of_batch_;
};
struct Invoker : public BaseInvoker
......@@ -451,6 +491,7 @@ struct DeviceColumnToImageImpl
OutputGridDesc,
OutputDataType,
Block2ETileMap,
ComputePtrOffsetOfStridedBatch<I0>,
GridwiseTensorRearrangeKernel>;
// Execute each set of independent filters
......@@ -470,7 +511,9 @@ struct DeviceColumnToImageImpl
arg.p_in_container_[i],
arg.out_grid_desc_m_k_container_[i],
arg.p_out_container_[i],
block_2_tile_map);
arg.G_,
block_2_tile_map,
arg.compute_ptr_offset_of_batch_);
}
return elapsed_time;
}
......@@ -485,8 +528,7 @@ struct DeviceColumnToImageImpl
bool IsSupportedArgument(const Argument& arg)
{
using namespace tensor_layout::convolution;
if constexpr(!(std::is_same_v<ImageLayout, GNWC> || std::is_same_v<ImageLayout, GNHWC> ||
std::is_same_v<ImageLayout, GNDHWC>))
if constexpr(!(is_NSpatialGC || is_GNSpatialC))
{
return false;
}
......@@ -534,6 +576,7 @@ struct DeviceColumnToImageImpl
static auto MakeArgument(const void* p_in, // input image
void* p_out, // output image
const ck::index_t G,
const ck::index_t N,
const ck::index_t C,
const std::array<index_t, NDimSpatial>& input_spatial_lengths,
......@@ -548,6 +591,7 @@ struct DeviceColumnToImageImpl
{
return Argument{static_cast<const InputDataType*>(p_in),
static_cast<OutputDataType*>(p_out),
G,
N,
C,
input_spatial_lengths,
......@@ -566,6 +610,7 @@ struct DeviceColumnToImageImpl
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in, // input image
void* p_out, // output image
const ck::index_t G,
const ck::index_t N,
const ck::index_t C,
const std::array<index_t, NDimSpatial>& input_spatial_lengths,
......@@ -580,6 +625,7 @@ struct DeviceColumnToImageImpl
{
return std::make_unique<Argument>(static_cast<const InputDataType*>(p_in),
static_cast<OutputDataType*>(p_out),
G,
N,
C,
input_spatial_lengths,
......
......@@ -15,15 +15,18 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/conv_tensor_rearrange_op.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/host_utility/io.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// Image to column for input layout NDHWC:
// input : input image [N, Di, Hi, Wi, C]
// output : gemm form [N * Do * Ho * Wo, Z * Y * X * C]
// Image to column:
// input : input image [G, N, Di, Hi, Wi, C]
// output : gemm form [G * N * Do * Ho * Wo, Z * Y * X * C]
// input : input image [N, Di, Hi, Wi, G, C]
// output : gemm form [N * Do * Ho * Wo * G, Z * Y * X * C]
template <index_t NDimSpatial,
typename ImageLayout,
typename InputDataType,
......@@ -41,6 +44,14 @@ struct DeviceImageToColumnImpl
OutputDataType,
conv_tensor_rearrange_op::ImageToColumn>
{
static constexpr bool is_NSpatialGC =
std::is_same_v<ImageLayout, tensor_layout::convolution::NWGC> ||
std::is_same_v<ImageLayout, tensor_layout::convolution::NHWGC> ||
std::is_same_v<ImageLayout, tensor_layout::convolution::NDHWGC>;
static constexpr bool is_GNSpatialC =
std::is_same_v<ImageLayout, tensor_layout::convolution::GNWC> ||
std::is_same_v<ImageLayout, tensor_layout::convolution::GNHWC> ||
std::is_same_v<ImageLayout, tensor_layout::convolution::GNDHWC>;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
......@@ -105,7 +116,8 @@ struct DeviceImageToColumnImpl
}
static auto
MakeOutDescriptor_M_K(const ck::index_t N,
MakeOutDescriptor_M_K(const ck::index_t G,
const ck::index_t N,
const ck::index_t C,
const std::array<index_t, NDimSpatial>& filter_spatial_lengths,
const std::array<index_t, NDimSpatial>& output_spatial_lengths,
......@@ -117,22 +129,32 @@ struct DeviceImageToColumnImpl
const index_t CZYX =
C * ck::accumulate_n<index_t>(
filter_spatial_lengths.begin(), NDimSpatial, 1, std::multiplies<>());
if constexpr(is_NSpatialGC)
{
const auto desc_mraw_kraw = make_naive_tensor_descriptor(
make_tuple(NDoHoWo, CZYX),
make_tuple(gemm_m_k_strides[I0] * G, gemm_m_k_strides[I1]));
return matrix_padder.PadADescriptor_M_K(desc_mraw_kraw);
}
else if constexpr(is_GNSpatialC)
{
const auto desc_mraw_kraw = make_naive_tensor_descriptor(
make_tuple(NDoHoWo, CZYX), make_tuple(gemm_m_k_strides[I0], gemm_m_k_strides[I1]));
const auto desc_m_k = matrix_padder.PadADescriptor_M_K(desc_mraw_kraw);
return desc_m_k;
return matrix_padder.PadADescriptor_M_K(desc_mraw_kraw);
}
}
using InputGridDesc =
remove_cvref_t<decltype(MakeInputDescriptor_M_K(1, 1, {}, {}, {}, {}, {}, {}, {}, {}))>;
using OutputGridDesc = remove_cvref_t<decltype(MakeOutDescriptor_M_K(1, 1, {}, {}, {}))>;
using OutputGridDesc = remove_cvref_t<decltype(MakeOutDescriptor_M_K(1, 1, 1, {}, {}, {}))>;
using Block2ETileMap = remove_cvref_t<
decltype(BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, KPerBlock, OutputGridDesc>(
OutputGridDesc{}))>;
using GridwiseTensorRearrangeKernel = GridwiseTensorRearrange<InputGridDesc,
using GridwiseTensorRearrangeKernel =
GridwiseTensorRearrange<InputGridDesc,
InputDataType,
OutputGridDesc,
OutputDataType,
......@@ -142,12 +164,14 @@ struct DeviceImageToColumnImpl
ThreadClusterLengths,
ScalarPerVector,
InMemoryDataOperationEnum::Set,
Block2ETileMap>;
Block2ETileMap,
ComputePtrOffsetOfStridedBatch<I0>>;
struct Argument : public BaseArgument
{
Argument(const void* p_in, // input image
void* p_out, // gemm form
const ck::index_t G,
const ck::index_t N,
const ck::index_t C,
const std::array<index_t, NDimSpatial>& input_spatial_lengths,
......@@ -159,7 +183,8 @@ struct DeviceImageToColumnImpl
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
: C_(C),
: G_(G),
C_(C),
X_(filter_spatial_lengths[NDimSpatial - I1]),
p_in_{static_cast<const InputDataType*>(p_in)},
p_out_{static_cast<OutputDataType*>(p_out)},
......@@ -176,14 +201,28 @@ struct DeviceImageToColumnImpl
filter_spatial_lengths,
output_spatial_lengths,
image_g_n_c_wis_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
out_grid_desc_m_k_ = MakeOutDescriptor_M_K(
N, C, filter_spatial_lengths, output_spatial_lengths, gemm_m_k_strides);
G, N, C, filter_spatial_lengths, output_spatial_lengths, gemm_m_k_strides);
compute_ptr_offset_of_batch_.BatchStrideA_ = image_g_n_c_wis_strides[I0];
if constexpr(is_NSpatialGC)
{
compute_ptr_offset_of_batch_.BatchStrideC_ =
gemm_m_k_strides[I0] * gemm_m_k_strides[I1];
}
else if constexpr(is_GNSpatialC)
{
const index_t NDoHoWo =
N * ck::accumulate_n<index_t>(
output_spatial_lengths.begin(), NDimSpatial, 1, std::multiplies<>());
compute_ptr_offset_of_batch_.BatchStrideC_ =
NDoHoWo * gemm_m_k_strides[I0] * gemm_m_k_strides[I1];
}
}
void Print() const
......@@ -192,6 +231,7 @@ struct DeviceImageToColumnImpl
std::cout << out_grid_desc_m_k_ << std::endl;
}
const ck::index_t G_;
const ck::index_t C_;
const ck::index_t X_;
......@@ -206,6 +246,8 @@ struct DeviceImageToColumnImpl
InputGridDesc in_grid_desc_m_k_;
OutputGridDesc out_grid_desc_m_k_;
ComputePtrOffsetOfStridedBatch<I0> compute_ptr_offset_of_batch_;
};
struct Invoker : public BaseInvoker
......@@ -226,6 +268,7 @@ struct DeviceImageToColumnImpl
OutputGridDesc,
OutputDataType,
Block2ETileMap,
ComputePtrOffsetOfStridedBatch<I0>,
GridwiseTensorRearrangeKernel>;
float elapsed_time = launch_and_time_kernel(stream_config,
......@@ -237,7 +280,9 @@ struct DeviceImageToColumnImpl
arg.p_in_,
arg.out_grid_desc_m_k_,
arg.p_out_,
block_2_tile_map);
arg.G_,
block_2_tile_map,
arg.compute_ptr_offset_of_batch_);
return elapsed_time;
}
......@@ -250,9 +295,7 @@ struct DeviceImageToColumnImpl
bool IsSupportedArgument(const Argument& arg)
{
using namespace tensor_layout::convolution;
if constexpr(!(std::is_same_v<ImageLayout, GNWC> || std::is_same_v<ImageLayout, GNHWC> ||
std::is_same_v<ImageLayout, GNDHWC>))
if constexpr(!(is_NSpatialGC || is_GNSpatialC))
{
return false;
}
......@@ -295,6 +338,7 @@ struct DeviceImageToColumnImpl
static auto MakeArgument(const void* p_in, // input image
void* p_out, // gemm form
const ck::index_t G,
const ck::index_t N,
const ck::index_t C,
const std::array<index_t, NDimSpatial>& input_spatial_lengths,
......@@ -309,6 +353,7 @@ struct DeviceImageToColumnImpl
{
return Argument{static_cast<const InputDataType*>(p_in),
static_cast<OutputDataType*>(p_out),
G,
N,
C,
input_spatial_lengths,
......@@ -327,6 +372,7 @@ struct DeviceImageToColumnImpl
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in, // input image
void* p_out, // gemm form
const ck::index_t G,
const ck::index_t N,
const ck::index_t C,
const std::array<index_t, NDimSpatial>& input_spatial_lengths,
......@@ -341,6 +387,7 @@ struct DeviceImageToColumnImpl
{
return std::make_unique<Argument>(static_cast<const InputDataType*>(p_in),
static_cast<OutputDataType*>(p_out),
G,
N,
C,
input_spatial_lengths,
......
......@@ -21,6 +21,7 @@ template <typename InputGridDesc,
typename OutputGridDesc,
typename OutputDataType,
typename Block2ETileMap,
typename ComputePtrOffsetOfStridedBatch,
typename GridwiseTensorRearrangeKernel>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
......@@ -30,13 +31,20 @@ __global__ void
const InputDataType* __restrict__ p_in_global,
const OutputGridDesc out_grid_desc,
OutputDataType* __restrict__ p_out_global,
const Block2ETileMap block_2_tile_map)
const index_t batch_count,
const Block2ETileMap block_2_tile_map,
const ComputePtrOffsetOfStridedBatch compute_ptr_offset_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx1030__) || defined(__gfx1100__) || \
defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx941__) || defined(__gfx942__))
GridwiseTensorRearrangeKernel::Run(
in_grid_desc, p_in_global, out_grid_desc, p_out_global, block_2_tile_map);
GridwiseTensorRearrangeKernel::Run(in_grid_desc,
p_in_global,
out_grid_desc,
p_out_global,
batch_count,
block_2_tile_map,
compute_ptr_offset_of_batch);
#else
ignore = in_grid_desc;
ignore = p_in_global;
......@@ -56,7 +64,8 @@ template <typename InputGridDesc,
typename ThreadClusterLengths,
index_t ScalarPerVector,
InMemoryDataOperationEnum DstInMemOp,
typename Block2ETileMap>
typename Block2ETileMap,
typename ComputePtrOffsetOfStridedBatch>
struct GridwiseTensorRearrange
{
......@@ -69,7 +78,9 @@ struct GridwiseTensorRearrange
const InputDataType* __restrict__ p_in_global,
const OutputGridDesc& out_grid_desc,
OutputDataType* __restrict__ p_out_global,
const Block2ETileMap& block_2_tile_map)
const index_t batch_count,
const Block2ETileMap& block_2_tile_map,
const ComputePtrOffsetOfStridedBatch& compute_ptr_offset_of_batch)
{
const auto block_work_idx =
block_2_tile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
......@@ -80,12 +91,6 @@ struct GridwiseTensorRearrange
const index_t k_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I1] * KPerBlock);
// Global Memory
const auto in_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_in_global, in_grid_desc.GetElementSpaceSize());
auto out_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_out_global, out_grid_desc.GetElementSpaceSize());
auto copy_global_to_global =
ThreadGroupTensorSliceTransfer_v7<ThisThreadBlock,
Tuple<InputDataType>,
......@@ -108,9 +113,23 @@ struct GridwiseTensorRearrange
make_tuple(make_multi_index(m_block_data_idx_on_grid, k_block_data_idx_on_grid)),
tensor_operation::element_wise::PassThrough{}};
for(index_t idx = 0; idx < batch_count; idx++)
{
// Global Memory
const index_t a_batch_offset =
__builtin_amdgcn_readfirstlane(compute_ptr_offset_of_batch.GetAPtrOffset(idx));
const index_t c_batch_offset =
__builtin_amdgcn_readfirstlane(compute_ptr_offset_of_batch.GetCPtrOffset(idx));
const auto in_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_in_global + a_batch_offset, in_grid_desc.GetElementSpaceSize());
auto out_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_out_global + c_batch_offset, out_grid_desc.GetElementSpaceSize());
copy_global_to_global.Run(
tie(in_grid_desc), tie(in_global_buf), tie(out_grid_desc), tie(out_global_buf));
}
}
__host__ static constexpr bool CheckValidity(const InputGridDesc& in_grid_desc,
const OutputGridDesc& out_grid_desc)
......
......@@ -19,9 +19,7 @@ namespace host {
* \brief Reference implementation for column to image.
*
* Input tensor descriptor has [N * Do * Ho * Wo, Z * Y * X * C] data layout.
* Memory layout is the same.
* Output tensor descriptor has [G, N, C, Di, Hi, Wi] data layout.
* G must be equal to 1. Memory layout is [G, N, Di, Hi, Wi, C].
*
* \tparam NDimSpatial Number of spatial dimensions.
* \tparam ImageLayout Image Layout.
......@@ -94,23 +92,33 @@ struct ReferenceColumnToImage : public device::BaseOperator
float Run(const Argument& arg)
{
using namespace ck::tensor_layout::convolution;
if(!(arg.output_.GetNumOfDimension() == NDimSpatial + 3 &&
arg.input_.GetNumOfDimension() == 2))
{
throw std::runtime_error("wrong! inconsistent dimension");
}
const index_t G = arg.output_.GetLengths()[0];
const index_t N = arg.output_.GetLengths()[1];
const index_t C = arg.output_.GetLengths()[2];
if constexpr(NDimSpatial == 1)
{
const index_t Wo = arg.output_spatial_lengths_[0];
auto func = [&](auto n) {
auto func = [&](auto g, auto n) {
for(index_t wo = 0; wo < Wo; ++wo)
{
index_t row = n * Wo + wo;
index_t column = 0;
if constexpr(std::is_same_v<ImageLayout, GNWC>)
{
row = g * N * Wo + n * Wo + wo;
}
else if constexpr(std::is_same_v<ImageLayout, NWGC>)
{
row = n * Wo * G + wo * G + g;
}
for(index_t x = 0; x < arg.filter_spatial_lengths_[0]; ++x)
{
......@@ -124,8 +132,8 @@ struct ReferenceColumnToImage : public device::BaseOperator
ck::type_convert<std::size_t>(wi) < arg.output_.GetLengths()[3])
{
float v_in = ck::type_convert<float>(arg.input_(row, column));
float v_out = ck::type_convert<float>(arg.output_(0, n, c, wi));
arg.output_(0, n, c, wi) =
float v_out = ck::type_convert<float>(arg.output_(g, n, c, wi));
arg.output_(g, n, c, wi) =
ck::type_convert<OutDataType>(v_in + v_out);
}
column++;
......@@ -134,7 +142,7 @@ struct ReferenceColumnToImage : public device::BaseOperator
}
};
make_ParallelTensorFunctor(func, N)(std::thread::hardware_concurrency());
make_ParallelTensorFunctor(func, G, N)(std::thread::hardware_concurrency());
return 0;
}
......@@ -143,13 +151,21 @@ struct ReferenceColumnToImage : public device::BaseOperator
const index_t Ho = arg.output_spatial_lengths_[0];
const index_t Wo = arg.output_spatial_lengths_[1];
auto func = [&](auto n) {
auto func = [&](auto g, auto n) {
for(index_t ho = 0; ho < Ho; ++ho)
{
for(index_t wo = 0; wo < Wo; ++wo)
{
index_t row = n * Ho * Wo + ho * Wo + wo;
index_t row = 0;
index_t column = 0;
if constexpr(std::is_same_v<ImageLayout, GNHWC>)
{
row = g * N * Ho * Wo + n * Ho * Wo + ho * Wo + wo;
}
else if constexpr(std::is_same_v<ImageLayout, NHWGC>)
{
row = n * Ho * Wo * G + ho * Wo * G + wo * G + g;
}
for(index_t y = 0; y < arg.filter_spatial_lengths_[0]; ++y)
{
......@@ -178,8 +194,8 @@ struct ReferenceColumnToImage : public device::BaseOperator
float v_in =
ck::type_convert<float>(arg.input_(row, column));
float v_out = ck::type_convert<float>(
arg.output_(0, n, c, hi, wi));
arg.output_(0, n, c, hi, wi) =
arg.output_(g, n, c, hi, wi));
arg.output_(g, n, c, hi, wi) =
ck::type_convert<OutDataType>(v_in + v_out);
}
column++;
......@@ -190,7 +206,7 @@ struct ReferenceColumnToImage : public device::BaseOperator
}
};
make_ParallelTensorFunctor(func, N)(std::thread::hardware_concurrency());
make_ParallelTensorFunctor(func, G, N)(std::thread::hardware_concurrency());
return 0;
}
......@@ -200,15 +216,25 @@ struct ReferenceColumnToImage : public device::BaseOperator
const index_t Ho = arg.output_spatial_lengths_[1];
const index_t Wo = arg.output_spatial_lengths_[2];
auto func = [&](auto n) {
auto func = [&](auto g, auto n) {
for(index_t d_o = 0; d_o < Do; ++d_o)
{
for(index_t ho = 0; ho < Ho; ++ho)
{
for(index_t wo = 0; wo < Wo; ++wo)
{
index_t row = n * Do * Ho * Wo + d_o * Ho * Wo + ho * Wo + wo;
index_t row = 0;
index_t column = 0;
if constexpr(std::is_same_v<ImageLayout, GNDHWC>)
{
row = g * N * Do * Ho * Wo + n * Do * Ho * Wo + d_o * Ho * Wo +
ho * Wo + wo;
}
else if constexpr(std::is_same_v<ImageLayout, NDHWGC>)
{
row = n * Do * Ho * Wo * G + d_o * Ho * Wo * G + ho * Wo * G +
wo * G + g;
}
for(index_t z = 0; z < arg.filter_spatial_lengths_[0]; ++z)
{
......@@ -247,8 +273,8 @@ struct ReferenceColumnToImage : public device::BaseOperator
float v_in = ck::type_convert<float>(
arg.input_(row, column));
float v_out = ck::type_convert<float>(
arg.output_(0, n, c, di, hi, wi));
arg.output_(0, n, c, di, hi, wi) =
arg.output_(g, n, c, di, hi, wi));
arg.output_(g, n, c, di, hi, wi) =
ck::type_convert<OutDataType>(v_in + v_out);
}
column++;
......@@ -261,7 +287,7 @@ struct ReferenceColumnToImage : public device::BaseOperator
}
};
make_ParallelTensorFunctor(func, N)(std::thread::hardware_concurrency());
make_ParallelTensorFunctor(func, G, N)(std::thread::hardware_concurrency());
return 0;
}
......
......@@ -19,9 +19,7 @@ namespace host {
* \brief Reference implementation for image to column.
*
* Input tensor descriptor has [G, N, C, Di, Hi, Wi] data layout.
* G must be equal to 1. Memory layout is [G, N, Di, Hi, Wi, C].
* Output tensor descriptor has [N * Do * Ho * Wo, Z * Y * X * C] data layout.
* Memory layout is the same.
* Output tensor descriptor has [G * N * Do * Ho * Wo, Z * Y * X * C] data layout.
*
* \tparam NDimSpatial Number of spatial dimensions.
* \tparam ImageLayout Image Layout.
......@@ -94,21 +92,31 @@ struct ReferenceImageToColumn : public device::BaseOperator
float Run(const Argument& arg)
{
using namespace ck::tensor_layout::convolution;
if(!(arg.input_.GetNumOfDimension() == NDimSpatial + 3 &&
arg.output_.GetNumOfDimension() == 2))
{
throw std::runtime_error("wrong! inconsistent dimension");
}
const index_t G = arg.input_.GetLengths()[0];
const index_t N = arg.input_.GetLengths()[1];
const index_t C = arg.input_.GetLengths()[2];
if constexpr(NDimSpatial == 1)
{
const index_t Wo = arg.output_spatial_lengths_[0];
auto func = [&](auto n, auto wo) {
index_t row = n * Wo + wo;
auto func = [&](auto g, auto n, auto wo) {
index_t row = 0;
index_t column = 0;
if constexpr(std::is_same_v<ImageLayout, GNWC>)
{
row = g * N * Wo + n * Wo + wo;
}
else if constexpr(std::is_same_v<ImageLayout, NWGC>)
{
row = n * Wo * G + wo * G + g;
}
for(index_t x = 0; x < arg.filter_spatial_lengths_[0]; ++x)
{
......@@ -121,7 +129,7 @@ struct ReferenceImageToColumn : public device::BaseOperator
if(wi >= 0 &&
ck::type_convert<std::size_t>(wi) < arg.input_.GetLengths()[3])
{
InDataType v_in = arg.input_(0, n, c, wi);
InDataType v_in = arg.input_(g, n, c, wi);
arg.output_(row, column) = ck::type_convert<OutDataType>(v_in);
}
column++;
......@@ -129,7 +137,7 @@ struct ReferenceImageToColumn : public device::BaseOperator
}
};
make_ParallelTensorFunctor(func, N, Wo)(std::thread::hardware_concurrency());
make_ParallelTensorFunctor(func, G, N, Wo)(std::thread::hardware_concurrency());
return 0;
}
......@@ -138,9 +146,17 @@ struct ReferenceImageToColumn : public device::BaseOperator
const index_t Ho = arg.output_spatial_lengths_[0];
const index_t Wo = arg.output_spatial_lengths_[1];
auto func = [&](auto n, auto ho, auto wo) {
index_t row = n * Ho * Wo + ho * Wo + wo;
auto func = [&](auto g, auto n, auto ho, auto wo) {
index_t row = 0;
index_t column = 0;
if constexpr(std::is_same_v<ImageLayout, GNHWC>)
{
row = g * N * Ho * Wo + n * Ho * Wo + ho * Wo + wo;
}
else if constexpr(std::is_same_v<ImageLayout, NHWGC>)
{
row = n * Ho * Wo * G + ho * Wo * G + wo * G + g;
}
for(index_t y = 0; y < arg.filter_spatial_lengths_[0]; ++y)
{
......@@ -162,7 +178,7 @@ struct ReferenceImageToColumn : public device::BaseOperator
wi >= 0 &&
ck::type_convert<std::size_t>(wi) < arg.input_.GetLengths()[4])
{
InDataType v_in = arg.input_(0, n, c, hi, wi);
InDataType v_in = arg.input_(g, n, c, hi, wi);
arg.output_(row, column) = ck::type_convert<OutDataType>(v_in);
}
column++;
......@@ -171,7 +187,7 @@ struct ReferenceImageToColumn : public device::BaseOperator
}
};
make_ParallelTensorFunctor(func, N, Ho, Wo)(std::thread::hardware_concurrency());
make_ParallelTensorFunctor(func, G, N, Ho, Wo)(std::thread::hardware_concurrency());
return 0;
}
......@@ -181,9 +197,18 @@ struct ReferenceImageToColumn : public device::BaseOperator
const index_t Ho = arg.output_spatial_lengths_[1];
const index_t Wo = arg.output_spatial_lengths_[2];
auto func = [&](auto n, auto d_o, auto ho, auto wo) {
index_t row = n * Do * Ho * Wo + d_o * Ho * Wo + ho * Wo + wo;
auto func = [&](auto g, auto n, auto d_o, auto ho, auto wo) {
index_t row = 0;
index_t column = 0;
if constexpr(std::is_same_v<ImageLayout, GNDHWC>)
{
row =
g * N * Do * Ho * Wo + n * Do * Ho * Wo + d_o * Ho * Wo + ho * Wo + wo;
}
else if constexpr(std::is_same_v<ImageLayout, NDHWGC>)
{
row = n * Do * Ho * Wo * G + d_o * Ho * Wo * G + ho * Wo * G + wo * G + g;
}
for(index_t z = 0; z < arg.filter_spatial_lengths_[0]; ++z)
{
......@@ -213,7 +238,7 @@ struct ReferenceImageToColumn : public device::BaseOperator
ck::type_convert<std::size_t>(wi) <
arg.input_.GetLengths()[5])
{
InDataType v_in = arg.input_(0, n, c, di, hi, wi);
InDataType v_in = arg.input_(g, n, c, di, hi, wi);
arg.output_(row, column) =
ck::type_convert<OutDataType>(v_in);
}
......@@ -224,7 +249,7 @@ struct ReferenceImageToColumn : public device::BaseOperator
}
};
make_ParallelTensorFunctor(func, N, Do, Ho, Wo)(
make_ParallelTensorFunctor(func, G, N, Do, Ho, Wo)(
std::thread::hardware_concurrency());
return 0;
......
add_instance_library(device_column_to_image_instance
device_column_to_image_nhwc_1d_instance.cpp
device_column_to_image_nhwc_2d_instance.cpp
device_column_to_image_nhwc_3d_instance.cpp
device_column_to_image_gnwc_1d_instance.cpp
device_column_to_image_gnhwc_2d_instance.cpp
device_column_to_image_gndhwc_3d_instance.cpp
device_column_to_image_nwgc_1d_instance.cpp
device_column_to_image_nhwgc_2d_instance.cpp
device_column_to_image_ndhwgc_3d_instance.cpp
)
......@@ -11,7 +11,7 @@ namespace instance {
using namespace ck::conv_tensor_rearrange_op;
void add_device_column_to_image_ndhwc_3d_bf16_instances(
void add_device_column_to_image_gndhwc_3d_bf16_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<3, GNDHWC, BF16, BF16, ColumnToImage>>>&
instances)
{
......@@ -22,7 +22,7 @@ void add_device_column_to_image_ndhwc_3d_bf16_instances(
#endif
}
void add_device_column_to_image_ndhwc_3d_f16_instances(
void add_device_column_to_image_gndhwc_3d_f16_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<3, GNDHWC, F16, F16, ColumnToImage>>>&
instances)
{
......@@ -33,7 +33,7 @@ void add_device_column_to_image_ndhwc_3d_f16_instances(
#endif
}
void add_device_column_to_image_ndhwc_3d_f32_instances(
void add_device_column_to_image_gndhwc_3d_f32_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<3, GNDHWC, F32, F32, ColumnToImage>>>&
instances)
{
......@@ -44,7 +44,7 @@ void add_device_column_to_image_ndhwc_3d_f32_instances(
#endif
}
void add_device_column_to_image_ndhwc_3d_i8_instances(
void add_device_column_to_image_gndhwc_3d_i8_instances(
std::vector<
std::unique_ptr<DeviceConvTensorRearrange<3, GNDHWC, int8_t, int8_t, ColumnToImage>>>&
instances)
......
......@@ -11,7 +11,7 @@ namespace instance {
using namespace ck::conv_tensor_rearrange_op;
void add_device_column_to_image_nhwc_2d_bf16_instances(
void add_device_column_to_image_gnhwc_2d_bf16_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<2, GNHWC, BF16, BF16, ColumnToImage>>>&
instances)
{
......@@ -22,7 +22,7 @@ void add_device_column_to_image_nhwc_2d_bf16_instances(
#endif
}
void add_device_column_to_image_nhwc_2d_f16_instances(
void add_device_column_to_image_gnhwc_2d_f16_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<2, GNHWC, F16, F16, ColumnToImage>>>&
instances)
{
......@@ -33,7 +33,7 @@ void add_device_column_to_image_nhwc_2d_f16_instances(
#endif
}
void add_device_column_to_image_nhwc_2d_f32_instances(
void add_device_column_to_image_gnhwc_2d_f32_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<2, GNHWC, F32, F32, ColumnToImage>>>&
instances)
{
......@@ -44,7 +44,7 @@ void add_device_column_to_image_nhwc_2d_f32_instances(
#endif
}
void add_device_column_to_image_nhwc_2d_i8_instances(
void add_device_column_to_image_gnhwc_2d_i8_instances(
std::vector<
std::unique_ptr<DeviceConvTensorRearrange<2, GNHWC, int8_t, int8_t, ColumnToImage>>>&
instances)
......
......@@ -11,7 +11,7 @@ namespace instance {
using namespace ck::conv_tensor_rearrange_op;
void add_device_column_to_image_nwc_1d_bf16_instances(
void add_device_column_to_image_gnwc_1d_bf16_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<1, GNWC, BF16, BF16, ColumnToImage>>>&
instances)
{
......@@ -22,7 +22,7 @@ void add_device_column_to_image_nwc_1d_bf16_instances(
#endif
}
void add_device_column_to_image_nwc_1d_f16_instances(
void add_device_column_to_image_gnwc_1d_f16_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<1, GNWC, F16, F16, ColumnToImage>>>&
instances)
{
......@@ -33,7 +33,7 @@ void add_device_column_to_image_nwc_1d_f16_instances(
#endif
}
void add_device_column_to_image_nwc_1d_f32_instances(
void add_device_column_to_image_gnwc_1d_f32_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<1, GNWC, F32, F32, ColumnToImage>>>&
instances)
{
......@@ -44,7 +44,7 @@ void add_device_column_to_image_nwc_1d_f32_instances(
#endif
}
void add_device_column_to_image_nwc_1d_i8_instances(
void add_device_column_to_image_gnwc_1d_i8_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<1, GNWC, int8_t, int8_t, ColumnToImage>>>&
instances)
{
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/conv_tensor_rearrange/device_column_to_image_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using namespace ck::conv_tensor_rearrange_op;
void add_device_column_to_image_ndhwgc_3d_bf16_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<3, NDHWGC, BF16, BF16, ColumnToImage>>>&
instances)
{
#ifdef CK_ENABLE_BF16
add_device_operation_instances(instances, device_column_to_image_bf16_instances<3, NDHWGC>{});
#else
ignore = instances;
#endif
}
void add_device_column_to_image_ndhwgc_3d_f16_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<3, NDHWGC, F16, F16, ColumnToImage>>>&
instances)
{
#ifdef CK_ENABLE_FP16
add_device_operation_instances(instances, device_column_to_image_f16_instances<3, NDHWGC>{});
#else
ignore = instances;
#endif
}
void add_device_column_to_image_ndhwgc_3d_f32_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<3, NDHWGC, F32, F32, ColumnToImage>>>&
instances)
{
#ifdef CK_ENABLE_FP32
add_device_operation_instances(instances, device_column_to_image_f32_instances<3, NDHWGC>{});
#else
ignore = instances;
#endif
}
void add_device_column_to_image_ndhwgc_3d_i8_instances(
std::vector<
std::unique_ptr<DeviceConvTensorRearrange<3, NDHWGC, int8_t, int8_t, ColumnToImage>>>&
instances)
{
#ifdef CK_ENABLE_INT8
add_device_operation_instances(instances, device_column_to_image_i8_instances<3, NDHWGC>{});
#else
ignore = instances;
#endif
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/conv_tensor_rearrange/device_column_to_image_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using namespace ck::conv_tensor_rearrange_op;
void add_device_column_to_image_nhwgc_2d_bf16_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<2, NHWGC, BF16, BF16, ColumnToImage>>>&
instances)
{
#ifdef CK_ENABLE_BF16
add_device_operation_instances(instances, device_column_to_image_bf16_instances<2, NHWGC>{});
#else
ignore = instances;
#endif
}
void add_device_column_to_image_nhwgc_2d_f16_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<2, NHWGC, F16, F16, ColumnToImage>>>&
instances)
{
#ifdef CK_ENABLE_FP16
add_device_operation_instances(instances, device_column_to_image_f16_instances<2, NHWGC>{});
#else
ignore = instances;
#endif
}
void add_device_column_to_image_nhwgc_2d_f32_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<2, NHWGC, F32, F32, ColumnToImage>>>&
instances)
{
#ifdef CK_ENABLE_FP32
add_device_operation_instances(instances, device_column_to_image_f32_instances<2, NHWGC>{});
#else
ignore = instances;
#endif
}
void add_device_column_to_image_nhwgc_2d_i8_instances(
std::vector<
std::unique_ptr<DeviceConvTensorRearrange<2, NHWGC, int8_t, int8_t, ColumnToImage>>>&
instances)
{
#ifdef CK_ENABLE_INT8
add_device_operation_instances(instances, device_column_to_image_i8_instances<2, NHWGC>{});
#else
ignore = instances;
#endif
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/conv_tensor_rearrange/device_column_to_image_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using namespace ck::conv_tensor_rearrange_op;
void add_device_column_to_image_nwgc_1d_bf16_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<1, NWGC, BF16, BF16, ColumnToImage>>>&
instances)
{
#ifdef CK_ENABLE_BF16
add_device_operation_instances(instances, device_column_to_image_bf16_instances<1, NWGC>{});
#else
ignore = instances;
#endif
}
void add_device_column_to_image_nwgc_1d_f16_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<1, NWGC, F16, F16, ColumnToImage>>>&
instances)
{
#ifdef CK_ENABLE_FP16
add_device_operation_instances(instances, device_column_to_image_f16_instances<1, NWGC>{});
#else
ignore = instances;
#endif
}
void add_device_column_to_image_nwgc_1d_f32_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<1, NWGC, F32, F32, ColumnToImage>>>&
instances)
{
#ifdef CK_ENABLE_FP32
add_device_operation_instances(instances, device_column_to_image_f32_instances<1, NWGC>{});
#else
ignore = instances;
#endif
}
void add_device_column_to_image_nwgc_1d_i8_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<1, NWGC, int8_t, int8_t, ColumnToImage>>>&
instances)
{
#ifdef CK_ENABLE_INT8
add_device_operation_instances(instances, device_column_to_image_i8_instances<1, NWGC>{});
#else
ignore = instances;
#endif
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
add_instance_library(device_image_to_column_instance
device_image_to_column_nhwc_1d_instance.cpp
device_image_to_column_nhwc_2d_instance.cpp
device_image_to_column_nhwc_3d_instance.cpp
device_image_to_column_gnwc_1d_instance.cpp
device_image_to_column_gnhwc_2d_instance.cpp
device_image_to_column_gndhwc_3d_instance.cpp
device_image_to_column_nwgc_1d_instance.cpp
device_image_to_column_nhwgc_2d_instance.cpp
device_image_to_column_ndhwgc_3d_instance.cpp
)
......@@ -11,7 +11,7 @@ namespace instance {
using namespace ck::conv_tensor_rearrange_op;
void add_device_image_to_column_ndhwc_3d_bf16_instances(
void add_device_image_to_column_gndhwc_3d_bf16_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<3, GNDHWC, BF16, BF16, ImageToColumn>>>&
instances)
{
......@@ -22,7 +22,7 @@ void add_device_image_to_column_ndhwc_3d_bf16_instances(
#endif
}
void add_device_image_to_column_ndhwc_3d_f16_instances(
void add_device_image_to_column_gndhwc_3d_f16_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<3, GNDHWC, F16, F16, ImageToColumn>>>&
instances)
{
......@@ -33,7 +33,7 @@ void add_device_image_to_column_ndhwc_3d_f16_instances(
#endif
}
void add_device_image_to_column_ndhwc_3d_f32_instances(
void add_device_image_to_column_gndhwc_3d_f32_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<3, GNDHWC, F32, F32, ImageToColumn>>>&
instances)
{
......@@ -44,7 +44,7 @@ void add_device_image_to_column_ndhwc_3d_f32_instances(
#endif
}
void add_device_image_to_column_ndhwc_3d_i8_instances(
void add_device_image_to_column_gndhwc_3d_i8_instances(
std::vector<
std::unique_ptr<DeviceConvTensorRearrange<3, GNDHWC, int8_t, int8_t, ImageToColumn>>>&
instances)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment