Commit 68ca5b3d authored by aska-0096's avatar aska-0096
Browse files

Merge branch 'develop' of...

Merge branch 'develop' of https://github.com/ROCmSoftwarePlatform/composable_kernel into navi3x_mD_batchedGEMM_GroupConvFwd
parents 55a01eef f73574ff
...@@ -60,7 +60,7 @@ RUN dpkg -i dumb-init_*.deb && rm dumb-init_*.deb ...@@ -60,7 +60,7 @@ RUN dpkg -i dumb-init_*.deb && rm dumb-init_*.deb
ARG PREFIX=/opt/rocm ARG PREFIX=/opt/rocm
# Install packages for processing the performance results # Install packages for processing the performance results
RUN pip3 install --upgrade pip RUN pip3 install --upgrade pip
RUN pip3 install sqlalchemy RUN pip3 install sqlalchemy==1.4.46
RUN pip3 install pymysql RUN pip3 install pymysql
RUN pip3 install pandas RUN pip3 install pandas
RUN pip3 install setuptools-rust RUN pip3 install setuptools-rust
......
...@@ -550,8 +550,9 @@ def process_results(Map conf=[:]){ ...@@ -550,8 +550,9 @@ def process_results(Map conf=[:]){
} }
//launch develop branch daily at 23:00 UT in FULL_QA mode and at 19:00 UT with latest staging compiler version //launch develop branch daily at 23:00 UT in FULL_QA mode and at 19:00 UT with latest staging compiler version
CRON_SETTINGS = BRANCH_NAME == "develop" ? '''0 23 * * * % RUN_FULL_QA=true;COMPILER_VERSION=release CRON_SETTINGS = BRANCH_NAME == "develop" ? '''0 23 * * * % RUN_FULL_QA=true
0 19 * * * % BUILD_DOCKER=true;COMPILER_VERSION=amd-stg-open''' : "" 0 21 * * * % RUN_FULL_QA=false;COMPILER_VERSION=release;COMPILER_COMMIT=""
0 19 * * * % BUILD_DOCKER=true;COMPILER_VERSION=amd-stg-open;COMPILER_COMMIT=""''' : ""
pipeline { pipeline {
agent none agent none
...@@ -568,16 +569,16 @@ pipeline { ...@@ -568,16 +569,16 @@ pipeline {
description: "Force building docker image (default: false), set to true if docker image needs to be updated.") description: "Force building docker image (default: false), set to true if docker image needs to be updated.")
string( string(
name: 'ROCMVERSION', name: 'ROCMVERSION',
defaultValue: '5.3', defaultValue: '5.4.3',
description: 'Specify which ROCM version to use: 5.2.3, or 5.3 (default), etc.') description: 'Specify which ROCM version to use: 5.4.3 (default).')
string( string(
name: 'COMPILER_VERSION', name: 'COMPILER_VERSION',
defaultValue: 'release', defaultValue: 'amd-stg-open',
description: 'Specify which version of compiler to use: ck-9110, release (default), or amd-stg-open.') description: 'Specify which version of compiler to use: ck-9110, release, or amd-stg-open (default).')
string( string(
name: 'COMPILER_COMMIT', name: 'COMPILER_COMMIT',
defaultValue: '', defaultValue: '5541927df00eabd6a110180170eca7785d436ee3',
description: 'Specify which commit of compiler branch to use: leave empty to use the latest commit (default), or use 8a82e4eb7ba28521ba9a9424a0315a8a16590424 commit of amd-stg-open branch.') description: 'Specify which commit of compiler branch to use: leave empty to use the latest commit, or use 5541927df00eabd6a110180170eca7785d436ee3 (default) commit of amd-stg-open branch.')
string( string(
name: 'BUILD_COMPILER', name: 'BUILD_COMPILER',
defaultValue: 'hipcc', defaultValue: 'hipcc',
......
## CK Hello world
## Motivation
This tutorial is aimed at engineers dealing with artificial intelligence and machine learning who would like to optimize their pipelines and squeeze every performance drop by adding Composable Kernel (CK) library to their projects. We would like to make the CK library approachable so the tutorial is not based on the latest release and doesn't have all the bleeding edge features, but it will be reproducible now and forever.
During this tutorial we will have an introduction to the CK library, we will build it and run some examples and tests, so to say we will run a "Hello world" example. In future tutorials we will go in depth and breadth and get familiar with other tools and ways to integrate CK into your project.
## Description
Modern AI technology solves more and more problems in all imaginable fields, but crafting fast and efficient workflows is still challenging. CK is one of the tools to make AI heavy lifting as fast and efficient as possible. CK is a collection of optimized AI operator kernels and tools to create new ones. The library has components required for majority of modern neural networks architectures including matrix multiplication, convolution, contraction, reduction, attention modules, variety of activation functions, fused operators and many more.
So how do we (almost) reach the speed of light? CK acceleration abilities are based on:
* Layered structure.
* Tile-based computation model.
* Tensor coordinate transformation.
* Hardware acceleration use.
* Support of low precision data types including fp16, bf16, int8 and int4.
If you are excited and need more technical details and benchmarking results - read this awesome blog [post](https://community.amd.com/t5/instinct-accelerators/amd-composable-kernel-library-efficient-fused-kernels-for-ai/ba-p/553224).
For more details visit our [github repo](https://github.com/ROCmSoftwarePlatform/composable_kernel).
## Hardware targets
CK library fully supports "gfx908" and "gfx90a" GPU architectures and only some operators are supported for "gfx1030". Let's check the hardware you have at hand and decide on the target GPU architecture
GPU Target AMD GPU
gfx908 Radeon Instinct MI100
gfx90a Radeon Instinct MI210, MI250, MI250X
gfx1030 Radeon PRO V620, W6800, W6800X, W6800X Duo, W6900X, RX 6800, RX 6800 XT, RX 6900 XT, RX 6900 XTX, RX 6950 XT
There are also [cloud options](https://aws.amazon.com/ec2/instance-types/g4/) you can find if you don't have an AMD GPU at hand.
## Build the library
First let's clone the library and rebase to the tested version:
```
git clone https://github.com/ROCmSoftwarePlatform/composable_kernel.git
cd composable_kernel/
git checkout tutorial_hello_world
```
To make our lives easier we prepared [docker images](https://hub.docker.com/r/rocm/composable_kernel) with all the necessary dependencies. Pick the right image and create a container. In this tutorial we use "rocm/composable_kernel:ck_ub20.04_rocm5.3_release" image, it is based on Ubuntu 20.04, ROCm v5.3, compiler release version.
If your current folder is ${HOME}, start the docker container with
```
docker run \
-it \
--privileged \
--group-add sudo \
-w /root/workspace \
-v ${HOME}:/root/workspace \
rocm/composable_kernel:ck_ub20.04_rocm5.3_release \
/bin/bash
```
If your current folder is different from ${HOME}, adjust the line `-v ${HOME}:/root/workspace` to fit your folder structure.
Inside the docker container current folder is "~/workspace", library path is "~/workspace/composable_kernel", navigate to the library
```
cd composable_kernel/
```
Create and go to the "build" directory
```
mkdir build && cd build
```
In the previous section we talked about target GPU architecture. Once you decide which one is right for you, run cmake using the right GPU_TARGETS flag
```
cmake \
-D CMAKE_PREFIX_PATH=/opt/rocm \
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-D CMAKE_CXX_FLAGS="-O3" \
-D CMAKE_BUILD_TYPE=Release \
-D BUILD_DEV=OFF \
-D GPU_TARGETS="gfx908;gfx90a;gfx1030" ..
```
If everything went well the cmake run will end up with:
```
-- Configuring done
-- Generating done
-- Build files have been written to: "/root/workspace/composable_kernel/build"
```
Finally, we can build examples and tests
```
make -j examples tests
```
If everything is smooth, you'll see
```
Scanning dependencies of target tests
[100%] Built target tests
```
## Run examples and tests
Examples are listed as test cases as well, so we can run all examples and tests with
```
ctest
```
You can check the list of all tests by running
```
ctest -N
```
We can also run them separately, here is a separate example execution.
```
./bin/example_gemm_xdl_fp16 1 1 1
```
The arguments "1 1 1" mean that we want to run this example in the mode: verify results with CPU, initialize matrices with integers and benchmark the kernel execution. You can play around with these parameters and see how output and execution results change.
If everything goes well and you have a device based on gfx908 or gfx90a architecture you should see something like
```
a_m_k: dim 2, lengths {3840, 4096}, strides {4096, 1}
b_k_n: dim 2, lengths {4096, 4096}, strides {1, 4096}
c_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
launch_and_time_kernel: grid_dim {480, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 1.10017 ms, 117.117 TFlops, 87.6854 GB/s, DeviceGemmXdl<256, 256, 128, 4, 8, 32, 32, 4, 2> NumPrefetch: 1, LoopScheduler: Default, PipelineVersion: v1
```
Meanwhile, running it on a gfx1030 device should result in
```
a_m_k: dim 2, lengths {3840, 4096}, strides {4096, 1}
b_k_n: dim 2, lengths {4096, 4096}, strides {1, 4096}
c_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
DeviceGemmXdl<256, 256, 128, 4, 8, 32, 32, 4, 2> NumPrefetch: 1, LoopScheduler: Default, PipelineVersion: v1 does not support this problem
```
But don't panic, some of the operators are supported on gfx1030 architecture, so you can run a separate example like
```
./bin/example_gemm_dl_fp16 1 1 1
```
and it should result in something nice similar to
```
a_m_k: dim 2, lengths {3840, 4096}, strides {1, 4096}
b_k_n: dim 2, lengths {4096, 4096}, strides {4096, 1}
c_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
arg.a_grid_desc_k0_m0_m1_k1_{2048, 3840, 2}
arg.b_grid_desc_k0_n0_n1_k1_{2048, 4096, 2}
arg.c_grid_desc_m_n_{ 3840, 4096}
launch_and_time_kernel: grid_dim {960, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 3.65695 ms, 35.234 TFlops, 26.3797 GB/s, DeviceGemmDl<256, 128, 128, 16, 2, 4, 4, 1>
```
Or we can run a separate test
```
ctest -R test_gemm_fp16
```
If everything goes well you should see something like
```
Start 121: test_gemm_fp16
1/1 Test #121: test_gemm_fp16 ................... Passed 51.81 sec
100% tests passed, 0 tests failed out of 1
```
## Summary
In this tutorial we took the first look at the Composable Kernel library, built it on your system and ran some examples and tests. Stay tuned, in the next tutorial we will run kernels with different configs to find out the best one for your hardware and task.
P.S.: Don't forget to switch out the cloud instance if you have launched one, you can find better ways to spend your money for sure!
...@@ -3,6 +3,7 @@ import os, io, argparse, datetime ...@@ -3,6 +3,7 @@ import os, io, argparse, datetime
#import numpy as np #import numpy as np
import sqlalchemy import sqlalchemy
from sqlalchemy.types import NVARCHAR, Float, Integer from sqlalchemy.types import NVARCHAR, Float, Integer
from sqlalchemy import text
import pymysql import pymysql
import pandas as pd import pandas as pd
from sshtunnel import SSHTunnelForwarder from sshtunnel import SSHTunnelForwarder
...@@ -141,8 +142,8 @@ def parse_logfile(logfile): ...@@ -141,8 +142,8 @@ def parse_logfile(logfile):
def get_baseline(table, connection): def get_baseline(table, connection):
query = '''SELECT * from '''+table+''' WHERE Datetime = (SELECT MAX(Datetime) FROM '''+table+''' where Branch_ID='develop' );''' query = text('''SELECT * from '''+table+''' WHERE Datetime = (SELECT MAX(Datetime) FROM '''+table+''' where Branch_ID='develop' );''')
return pd.read_sql_query(query, connection) return pd.read_sql(query, connection)
def store_new_test_result(table_name, test_results, testlist, branch_name, node_id, gpu_arch, compute_units, rocm_vers, hip_vers, environment, connection): def store_new_test_result(table_name, test_results, testlist, branch_name, node_id, gpu_arch, compute_units, rocm_vers, hip_vers, environment, connection):
params=[str(branch_name),str(node_id),str(gpu_arch),compute_units,str(rocm_vers),str(hip_vers),str(environment),str(datetime.datetime.now())] params=[str(branch_name),str(node_id),str(gpu_arch),compute_units,str(rocm_vers),str(hip_vers),str(environment),str(datetime.datetime.now())]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment