Commit 68903d4d authored by Qianfeng Zhang's avatar Qianfeng Zhang
Browse files

Simplification by removing some templates in DeviceBatchedDropout

parent 3c1d5412
......@@ -301,31 +301,25 @@ using DeviceGemmInstance =
Deterministic>;
#endif
using DeviceDropoutInstance =
ck::tensor_operation::device::DeviceBatchedDropout<NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
GemmDataType,
ZDataType,
GemmDataType,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
256, // BlockSize
64, // MPerBlock
128, // NPerBlock
32, // KPerBlock
128, // Gemm1NPerBlock
8, // AK1
8, // BK1
32, // MPerXDL
32, // NPerXDL
2, // MXdlPerWave
1>; // NXdlPerWave
using DeviceDropoutInstance = ck::tensor_operation::device::DeviceBatchedDropout<NumDimG,
GemmDataType,
ZDataType,
GemmDataType,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
256, // BlockSize
64, // MPerBlock
128, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXDL
32, // NPerXDL
2, // MXdlPerWave
1>; // NXdlPerWave
#include "run_batched_multihead_attention_bias_forward_zcheck.inc"
......
......@@ -85,10 +85,6 @@ __global__ void
// ^^^^^^ (Acc0)
// ^^^^^^^^^^^ (Acc1)
template <index_t NumDimG,
index_t NumDimM,
index_t NumDimN,
index_t NumDimK,
index_t NumDimO, // NumDimGemm1N
typename GemmDataType,
typename ZDataType,
typename GemmAccDataType,
......@@ -101,7 +97,6 @@ template <index_t NumDimG,
index_t MPerBlock,
index_t NPerBlock, // Gemm0NPerBlock
index_t KPerBlock, // Gemm0KPerBlock
index_t Gemm1NPerBlock,
index_t AK1,
index_t BK1,
index_t MPerXDL,
......@@ -110,17 +105,18 @@ template <index_t NumDimG,
index_t NXdlPerWave>
struct DeviceBatchedDropout : public ck::tensor_operation::device::BaseOperator
{
static_assert(NumDimG > 0 && NumDimM > 0 && NumDimN > 0 && NumDimK > 0 && NumDimO > 0,
"Number of dimension must be greater than 0");
static_assert(NumDimG > 0, "Number of dimension must be greater than 0");
using DeviceOp = DeviceBatchedDropout;
static constexpr index_t Gemm1NPerBlock = 128;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
using Transform = TransformBatchedContractionContractionToBatchedGemmGemm<
Sequence<NumDimG, NumDimM, NumDimN, NumDimK, NumDimO>,
Sequence<NumDimG, 1, 1, 1, 1>, // NumDimM, NumDimN, NumDimK, NumDimO
Sequence<MPerBlock, NPerBlock, KPerBlock, Gemm1NPerBlock>,
GemmSpec,
ASpec,
......@@ -128,31 +124,19 @@ struct DeviceBatchedDropout : public ck::tensor_operation::device::BaseOperator
B1Spec,
CSpec>;
/*
Descriptors for inputs:
Q, K, V, Y, dY, per-row softmax stats
Descriptors for outputs:
dQ, dK, dV
*/
// Q in Gemm A position
static auto MakeAGridDescriptor_AK0_M_AK1(const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides)
static auto MakeAGridDescriptor_AK0_M_AK1(const std::vector<index_t>& a_gs_m_k_lengths,
const std::vector<index_t>& a_gs_m_k_strides)
{
return Transform::MakeAGridDescriptor_AK0_M_AK1(
Transform::MakeAGridDescriptor_M_K(a_gs_ms_ks_lengths, a_gs_ms_ks_strides),
Number<AK1>{});
Transform::MakeAGridDescriptor_M_K(a_gs_m_k_lengths, a_gs_m_k_strides), Number<AK1>{});
}
// Z in Gemm0 C position
static auto MakeZGridDescriptor_M_N(const std::vector<index_t>& z_gs_ms_ns_lengths,
const std::vector<index_t>& z_gs_ms_ns_strides)
static auto MakeZGridDescriptor_M_N(const std::vector<index_t>& z_gs_m_n_lengths,
const std::vector<index_t>& z_gs_m_n_strides)
{
return Transform::MakeCGridDescriptor_M_N(z_gs_ms_ns_lengths, z_gs_ms_ns_strides);
return Transform::MakeCGridDescriptor_M_N(z_gs_m_n_lengths, z_gs_m_n_strides);
}
using ZGridDesc_G_M_N = decltype(Transform::MakeCGridDescriptor_G_M_N({}, {}));
......@@ -198,23 +182,23 @@ struct DeviceBatchedDropout : public ck::tensor_operation::device::BaseOperator
struct Argument : public BaseArgument
{
Argument(ZDataType* p_z_grid,
const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_lengths,
const std::vector<index_t>& b_gs_ns_ks_strides,
const std::vector<index_t>& z_gs_ms_ns_lengths,
const std::vector<index_t>& z_gs_ms_ns_strides,
const std::vector<index_t>& a_gs_m_k_lengths,
const std::vector<index_t>& a_gs_m_k_strides,
const std::vector<index_t>& b_gs_n_k_lengths,
const std::vector<index_t>& b_gs_n_k_strides,
const std::vector<index_t>& z_gs_m_n_lengths,
const std::vector<index_t>& z_gs_m_n_strides,
std::tuple<unsigned long long, unsigned long long> seeds)
: p_z_grid_{p_z_grid},
z_grid_desc_m_n_{MakeZGridDescriptor_M_N(z_gs_ms_ns_lengths, z_gs_ms_ns_strides)},
z_grid_desc_m_n_{MakeZGridDescriptor_M_N(z_gs_m_n_lengths, z_gs_m_n_strides)},
k_grid_desc_n_k_{
Transform::MakeB0GridDescriptor_N_K(b_gs_ns_ks_lengths, b_gs_ns_ks_strides)},
Transform::MakeB0GridDescriptor_N_K(b_gs_n_k_lengths, b_gs_n_k_strides)},
z_grid_desc_g_m_n_{
Transform::MakeCGridDescriptor_G_M_N(z_gs_ms_ns_lengths, z_gs_ms_ns_strides)},
Transform::MakeCGridDescriptor_G_M_N(z_gs_m_n_lengths, z_gs_m_n_strides)},
block_2_ctile_map_{GridwiseDropout::MakeDefaultBlock2CTileMap(k_grid_desc_n_k_)},
raw_lengths_mz_nz_kz_gemm1nz_{a_gs_ms_ks_lengths[NumDimG + NumDimM - 1],
b_gs_ns_ks_lengths[NumDimG + NumDimN - 1],
b_gs_ns_ks_lengths[NumDimG + NumDimN + NumDimK - 1]},
raw_lengths_mz_nz_kz_gemm1nz_{a_gs_m_k_lengths[NumDimG],
b_gs_n_k_lengths[NumDimG],
b_gs_n_k_lengths[NumDimG + 1]},
batch_count_{z_grid_desc_g_m_n_.GetLength(I0)}
{
......@@ -229,7 +213,7 @@ struct DeviceBatchedDropout : public ck::tensor_operation::device::BaseOperator
// Print();
auto a_grid_desc_k0_m_k1 =
DeviceOp::MakeAGridDescriptor_AK0_M_AK1(a_gs_ms_ks_lengths, a_gs_ms_ks_strides);
DeviceOp::MakeAGridDescriptor_AK0_M_AK1(a_gs_m_k_lengths, a_gs_m_k_strides);
num_gemm0_m_block_outer_loop_ = a_grid_desc_k0_m_k1.GetLength(I1) / MPerBlock;
......@@ -348,21 +332,21 @@ struct DeviceBatchedDropout : public ck::tensor_operation::device::BaseOperator
}
static auto MakeArgument(ZDataType* p_z,
const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_lengths,
const std::vector<index_t>& b_gs_ns_ks_strides,
const std::vector<index_t>& z_gs_ms_ns_lengths,
const std::vector<index_t>& z_gs_ms_ns_strides,
const std::vector<index_t>& a_gs_m_k_lengths,
const std::vector<index_t>& a_gs_m_k_strides,
const std::vector<index_t>& b_gs_n_k_lengths,
const std::vector<index_t>& b_gs_n_k_strides,
const std::vector<index_t>& z_gs_m_n_lengths,
const std::vector<index_t>& z_gs_m_n_strides,
std::tuple<unsigned long long, unsigned long long> seeds)
{
return Argument{p_z,
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b_gs_ns_ks_lengths,
b_gs_ns_ks_strides,
z_gs_ms_ns_lengths,
z_gs_ms_ns_strides,
a_gs_m_k_lengths,
a_gs_m_k_strides,
b_gs_n_k_lengths,
b_gs_n_k_strides,
z_gs_m_n_lengths,
z_gs_m_n_strides,
seeds};
}
......@@ -372,21 +356,21 @@ struct DeviceBatchedDropout : public ck::tensor_operation::device::BaseOperator
// FIXME: constness
std::unique_ptr<BaseArgument>
MakeArgumentPointer(void* p_z,
const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_lengths,
const std::vector<index_t>& b_gs_ns_ks_strides,
const std::vector<index_t>& z_gs_ms_ns_lengths,
const std::vector<index_t>& z_gs_ms_ns_strides,
const std::vector<index_t>& a_gs_m_k_lengths,
const std::vector<index_t>& a_gs_m_k_strides,
const std::vector<index_t>& b_gs_n_k_lengths,
const std::vector<index_t>& b_gs_n_k_strides,
const std::vector<index_t>& z_gs_m_n_lengths,
const std::vector<index_t>& z_gs_m_n_strides,
std::tuple<unsigned long long, unsigned long long> seeds) // override
{
return std::make_unique<Argument>(static_cast<ZDataType*>(p_z),
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b_gs_ns_ks_lengths,
b_gs_ns_ks_strides,
z_gs_ms_ns_lengths,
z_gs_ms_ns_strides,
a_gs_m_k_lengths,
a_gs_m_k_strides,
b_gs_n_k_lengths,
b_gs_n_k_strides,
z_gs_m_n_lengths,
z_gs_m_n_strides,
seeds);
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment