Commit 61510f0a authored by Chao Liu's avatar Chao Liu
Browse files

clean

parent 65c56e56
add_example_executable(example_conv2d_fwd_bias_relu_xdl_fp16 conv2d_fwd_bias_relu_xdl_fp16.cpp)
target_link_libraries(example_conv2d_fwd_bias_relu_xdl_fp16 PRIVATE utility)
add_example_executable(example_convnd_fwd_bias_relu_xdl_fp16 convnd_fwd_bias_relu_xdl_fp16.cpp)
target_link_libraries(example_convnd_fwd_bias_relu_xdl_fp16 PRIVATE utility)
# Instructions for ```example_conv_xdl_bias_relu```
## Run ```example_conv_xdl_bias_relu```
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx
./bin/example_conv_xdl_bias_relu 0 1 5
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
wei_k_c_y_x: dim 4, lengths {256, 192, 3, 3}, strides {1728, 1, 576, 192}
out_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
bias_k: dim 1, lengths {256}, strides {1}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 1.39009 ms, 105.581 TFlops, 239.981 GB/s
```
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv2d_fwd_xdl_c_shuffle_bias_activation_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
namespace {
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InLayout = ck::tensor_layout::convolution::NHWC;
using WeiLayout = ck::tensor_layout::convolution::KYXC;
using OutLayout = ck::tensor_layout::convolution::NHWK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::AddRelu;
static constexpr auto MemorySet = ck::InMemoryDataOperationEnum::Set;
static constexpr auto ConvFwdDefault =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
// clang-format off
using DeviceConvFwdInstance = ck::tensor_operation::device::
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<
InDataType, // InDataType
WeiDataType, // WeiDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
InElementOp, // InElementwiseOperation
WeiElementOp, // WeiElementwiseOperation
OutElementOp, // OutElementwiseOperation
MemorySet, // OutGlobalMemoryDataOperation
ConvFwdDefault, // ConvForwardSpecialization
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
4, // K0PerBlock
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 1, 32, 1, 1, 8>, // CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
8>; // CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
void print_helper_msg()
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: time kernel (0=no, 1=yes)\n"
<< "arg4: N spatial dimensions (default 2)\n"
<< "Following arguments (depending on number of spatial dims):\n"
<< " N, K, C, \n"
<< " <filter spatial dimensions>, (ie Y, X for 2D)\n"
<< " <input image spatial dimensions>, (ie Hi, Wi for 2D)\n"
<< " <strides>, (ie Sy, Sx for 2D)\n"
<< " <dilations>, (ie Dy, Dx for 2D)\n"
<< " <left padding>, (ie LeftPy, LeftPx for 2D)\n"
<< " <right padding>, (ie RightPy, RightPx for 2D)\n"
<< std::endl;
}
ck::utils::conv::ConvParam parse_conv_param(int num_dim_spatial, int arg_idx, char* const argv[])
{
const ck::index_t N = std::stoi(argv[arg_idx++]);
const ck::index_t K = std::stoi(argv[arg_idx++]);
const ck::index_t C = std::stoi(argv[arg_idx++]);
std::vector<ck::index_t> filter_spatial_lengths(num_dim_spatial);
std::vector<ck::index_t> input_spatial_lengths(num_dim_spatial);
std::vector<ck::index_t> conv_filter_strides(num_dim_spatial);
std::vector<ck::index_t> conv_filter_dilations(num_dim_spatial);
std::vector<ck::index_t> input_left_pads(num_dim_spatial);
std::vector<ck::index_t> input_right_pads(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
filter_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
}
for(int i = 0; i < num_dim_spatial; ++i)
{
input_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
}
for(int i = 0; i < num_dim_spatial; ++i)
{
conv_filter_strides[i] = std::stoi(argv[arg_idx++]);
}
for(int i = 0; i < num_dim_spatial; ++i)
{
conv_filter_dilations[i] = std::stoi(argv[arg_idx++]);
}
for(int i = 0; i < num_dim_spatial; ++i)
{
input_left_pads[i] = std::stoi(argv[arg_idx++]);
}
for(int i = 0; i < num_dim_spatial; ++i)
{
input_right_pads[i] = std::stoi(argv[arg_idx++]);
}
return ck::utils::conv::ConvParam{num_dim_spatial,
N,
K,
C,
filter_spatial_lengths,
input_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads};
}
} // namespace
int main(int argc, char* argv[])
{
print_helper_msg();
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
int num_dim_spatial = 2;
ck::utils::conv::ConvParam params{
2, 128, 256, 192, {3, 3}, {71, 71}, {2, 2}, {1, 1}, {1, 1}, {1, 1}};
if(argc == 1)
{
// use default
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
num_dim_spatial = std::stoi(argv[4]);
params = parse_conv_params(num_dim_spatial, 5, argv);
}
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{};
auto f_nhwc_host_tensor_descriptor =
[](ck::index_t n, ck::index_t c, std::vector<ck::index_t> spatial_lengths) {
std::vector<std::size_t> nhwc_lengths{static_cast<std::size_t>(n),
static_cast<std::size_t>(c)};
nhwc_lengths.insert(
nhwc_lengths.begin() + 1, spatial_lengths.begin(), spatial_lengths.end());
return HostTensorDescriptor(nhwc_lengths);
};
Tensor<InDataType> in_n_hi_wi_c(
f_nhwc_host_tensor_descriptor(params.N_, params.C_, params.input_spatial_lengths_));
Tensor<WeiDataType> wei_k_y_x_c(
f_nhwc_host_tensor_descriptor(params.K_, params.C_, params.filter_spatial_lengths_));
// bias: assume contiguous 1d vector
Tensor<OutDataType> bias_k(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(params.K_)})));
Tensor<OutDataType> out_n_ho_wo_k_host(
f_nhwc_host_tensor_descriptor(params.N_, params.K_, params.GetOutputSpatialLengths()));
Tensor<OutDataType> out_n_ho_wo_k_device(
f_nhwc_host_tensor_descriptor(params.N_, params.K_, params.GetOutputSpatialLengths()));
std::cout << "in_n_hi_wi_c: " << in_n_hi_wi_c.mDesc << std::endl;
std::cout << "wei_k_y_x_c: " << wei_k_y_x_c.mDesc << std::endl;
std::cout << "bias_k: " << bias_k.mDesc << std::endl;
std::cout << "output: " << out_n_ho_wo_k_host.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in_n_hi_wi_c.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei_k_y_x_c.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
bias_k.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
break;
default:
in_n_hi_wi_c.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
wei_k_y_x_c.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
bias_k.GenerateTensorValue(GeneratorTensor_3<OutDataType>{0.0, 1.0});
}
DeviceMem in_device_buf(sizeof(InDataType) * in_n_hi_wi_c.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_y_x_c.mDesc.GetElementSpaceSize());
DeviceMem bias_device_buf(sizeof(OutDataType) * bias_k.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) *
out_n_ho_wo_k_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in_n_hi_wi_c.mData.data());
wei_device_buf.ToDevice(wei_k_y_x_c.mData.data());
bias_device_buf.ToDevice(bias_k.mData.data());
// do GEMM
auto conv = DeviceConvFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument =
conv.MakeArgument(static_cast<const InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<const WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
static_cast<const OutDataType*>(bias_device_buf.GetDeviceBuffer()),
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
params.GetOutputSpatialLengths(),
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
in_element_op,
wei_element_op,
out_element_op);
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = params.GetFlops();
std::size_t num_btype = params.GetByte<InDataType, WeiDataType, OutDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
if(do_verification)
{
// use OutDataType for intermediate data
Tensor<OutDataType> tmp_n_ho_wo_k_host(
f_nhwc_host_tensor_descriptor(params.N_, params.K_, params.GetOutputSpatialLengths()));
auto ref_conv =
ck::tensor_operation::host::ReferenceConvFwd<2,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
PassThrough>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in_n_hi_wi_c,
wei_k_y_x_c,
tmp_n_ho_wo_k_host,
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
in_element_op,
wei_element_op,
PassThrough{});
ref_invoker.Run(ref_argument);
// FIXME: implement reference pointwise operation
for(int n = 0; n < params.N_; n++)
{
for(int ho = 0; ho < params.output_spatial_lengths_[0]; ho++)
{
for(int wo = 0; wo < params.output_spatial_lengths_[1]; wo++)
{
for(int k = 0; k < params.K_; k++)
{
out_element_op(out_n_ho_wo_k_host(n, ho, wo, k),
tmp_n_ho_wo_k_host(n, ho, wo, k),
bias_k(k));
}
}
}
}
out_device_buf.FromDevice(out_n_ho_wo_k_device.mData.data());
return ck::utils::check_err(out_n_ho_wo_k_host.mData,
out_n_ho_wo_k_device.mData,
"Error: incorrect results!",
1e-5f,
1e-4f)
? 0
: 1;
}
return 0;
}
add_example_executable(example_conv2d_fwd_bias_relu_add_xdl_fp16 conv2d_fwd_bias_relu_add_xdl_fp16.cpp)
target_link_libraries(example_conv2d_fwd_bias_relu_add_xdl_fp16 PRIVATE utility)
# Instructions for ```example_conv_xdl_bias_relu_add```
## Run ```example_conv_xdl_bias_relu_add```
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx
./bin/example_conv_xdl_bias_relu_add 0 1 5
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
wei_k_c_y_x: dim 4, lengths {256, 192, 3, 3}, strides {1728, 1, 576, 192}
out_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
bias_k: dim 1, lengths {256}, strides {1}
resi_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 1.44711 ms, 101.421 TFlops, 289.218 GB/s
```
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv2d_fwd_xdl_c_shuffle_bias_activation_add_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
namespace {
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InLayout = ck::tensor_layout::convolution::NHWC;
using WeiLayout = ck::tensor_layout::convolution::KYXC;
using OutLayout = ck::tensor_layout::convolution::NHWK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::AddReluAdd;
static constexpr auto ConvFwdDefault =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
// clang-format off
using DeviceConvFwdInstance = ck::tensor_operation::device::
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Add_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<
InDataType, // InDataType
WeiDataType, // WeiDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
InElementOp, // InElementwiseOperation
WeiElementOp, // WeiElementwiseOperation
OutElementOp, // OutElementwiseOperation
ConvFwdDefault, // ConvForwardSpecialization
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
4, // K0PerBlock
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 1, 32, 1, 1, 8>, // CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
8>; // CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
void print_helper_msg()
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: time kernel (0=no, 1=yes)\n"
<< "arg4: N spatial dimensions (default 2)\n"
<< "Following arguments (depending on number of spatial dims):\n"
<< " N, K, C, \n"
<< " <filter spatial dimensions>, (ie Y, X for 2D)\n"
<< " <in_n_hi_wi_c image spatial dimensions>, (ie Hi, Wi for 2D)\n"
<< " <strides>, (ie Sy, Sx for 2D)\n"
<< " <dilations>, (ie Dy, Dx for 2D)\n"
<< " <left padding>, (ie LeftPy, LeftPx for 2D)\n"
<< " <right padding>, (ie RightPy, RightPx for 2D)\n"
<< std::endl;
}
ck::utils::conv::ConvParam parse_conv_params(int num_dim_spatial, int arg_idx, char* const argv[])
{
const ck::index_t N = std::stoi(argv[arg_idx++]);
const ck::index_t K = std::stoi(argv[arg_idx++]);
const ck::index_t C = std::stoi(argv[arg_idx++]);
std::vector<ck::index_t> filter_spatial_lengths(num_dim_spatial);
std::vector<ck::index_t> input_spatial_lengths(num_dim_spatial);
std::vector<ck::index_t> conv_filter_strides(num_dim_spatial);
std::vector<ck::index_t> conv_filter_dilations(num_dim_spatial);
std::vector<ck::index_t> input_left_pads(num_dim_spatial);
std::vector<ck::index_t> input_right_pads(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
filter_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
}
for(int i = 0; i < num_dim_spatial; ++i)
{
input_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
}
for(int i = 0; i < num_dim_spatial; ++i)
{
conv_filter_strides[i] = std::stoi(argv[arg_idx++]);
}
for(int i = 0; i < num_dim_spatial; ++i)
{
conv_filter_dilations[i] = std::stoi(argv[arg_idx++]);
}
for(int i = 0; i < num_dim_spatial; ++i)
{
input_left_pads[i] = std::stoi(argv[arg_idx++]);
}
for(int i = 0; i < num_dim_spatial; ++i)
{
input_right_pads[i] = std::stoi(argv[arg_idx++]);
}
return ck::utils::conv::ConvParam{num_dim_spatial,
N,
K,
C,
filter_spatial_lengths,
input_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads};
}
} // anonymous namespace
int main(int argc, char* argv[])
{
print_helper_msg();
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
int num_dim_spatial = 2;
ck::utils::conv::ConvParam params{
2, 128, 256, 192, {3, 3}, {71, 71}, {2, 2}, {1, 1}, {1, 1}, {1, 1}};
if(argc == 1)
{
// use default
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
num_dim_spatial = std::stoi(argv[4]);
params = parse_conv_params(num_dim_spatial, 5, argv);
}
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{};
auto f_nhwc_host_tensor_descriptor =
[](ck::index_t n, ck::index_t c, std::vector<ck::index_t> spatial_lengths) {
std::vector<std::size_t> nhwc_lengths{static_cast<std::size_t>(n),
static_cast<std::size_t>(c)};
nhwc_lengths.insert(
nhwc_lengths.begin() + 1, spatial_lengths.begin(), spatial_lengths.end());
return HostTensorDescriptor(nhwc_lengths);
};
Tensor<InDataType> in_n_hi_wi_c(
f_nhwc_host_tensor_descriptor(params.N_, params.C_, params.input_spatial_lengths_));
Tensor<WeiDataType> wei_k_y_x_c(
f_nhwc_host_tensor_descriptor(params.K_, params.C_, params.filter_spatial_lengths_));
// bias: assume contiguous 1d vector
Tensor<OutDataType> bias_k(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(params.K_)})));
// resi: assume same layout as output tensor
Tensor<OutDataType> resi_n_ho_wo_k(
f_nhwc_host_tensor_descriptor(params.N_, params.K_, params.GetOutputSpatialLengths()));
Tensor<OutDataType> out_n_ho_wo_k_host(
f_nhwc_host_tensor_descriptor(params.N_, params.K_, params.GetOutputSpatialLengths()));
Tensor<OutDataType> out_n_ho_wo_k_device(
f_nhwc_host_tensor_descriptor(params.N_, params.K_, params.GetOutputSpatialLengths()));
std::cout << "in_n_hi_wi_c: " << in_n_hi_wi_c.mDesc << std::endl;
std::cout << "wei_k_y_x_c: " << wei_k_y_x_c.mDesc << std::endl;
std::cout << "bias_k: " << bias_k.mDesc << std::endl;
std::cout << "resi_n_ho_wo_k: " << resi_n_ho_wo_k.mDesc << std::endl;
std::cout << "out_n_ho_wo_k: " << out_n_ho_wo_k_host.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in_n_hi_wi_c.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei_k_y_x_c.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
bias_k.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
resi_n_ho_wo_k.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
break;
default:
in_n_hi_wi_c.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
wei_k_y_x_c.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
bias_k.GenerateTensorValue(GeneratorTensor_3<OutDataType>{0.0, 1.0});
resi_n_ho_wo_k.GenerateTensorValue(GeneratorTensor_3<OutDataType>{0.0, 1.0});
}
DeviceMem in_device_buf(sizeof(InDataType) * in_n_hi_wi_c.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_y_x_c.mDesc.GetElementSpaceSize());
DeviceMem bias_device_buf(sizeof(OutDataType) * bias_k.mDesc.GetElementSpaceSize());
DeviceMem resi_device_buf(sizeof(OutDataType) * resi_n_ho_wo_k.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) *
out_n_ho_wo_k_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in_n_hi_wi_c.mData.data());
wei_device_buf.ToDevice(wei_k_y_x_c.mData.data());
bias_device_buf.ToDevice(bias_k.mData.data());
resi_device_buf.ToDevice(resi_n_ho_wo_k.mData.data());
auto conv = DeviceConvFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument =
conv.MakeArgument(static_cast<const InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<const WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
static_cast<const OutDataType*>(bias_device_buf.GetDeviceBuffer()),
static_cast<const OutDataType*>(resi_device_buf.GetDeviceBuffer()),
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
params.output_spatial_lengths_,
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
in_element_op,
wei_element_op,
out_element_op);
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device operator with the specified compilation parameters does "
"not support this problem");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = params.GetFlops();
std::size_t num_btype = params.GetByte<InDataType, WeiDataType, OutDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
if(do_verification)
{
// use OutDataType for intermediate data
Tensor<OutDataType> tmp_n_ho_wo_k_host(
f_nhwc_host_tensor_descriptor(params.N_, params.K_, params.GetOutputSpatialLengths()));
auto ref_conv =
ck::tensor_operation::host::ReferenceConvFwd<2,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
PassThrough>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in_n_hi_wi_c,
wei_k_y_x_c,
tmp_n_ho_wo_k_host,
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
in_element_op,
wei_element_op,
PassThrough{});
ref_invoker.Run(ref_argument);
// FIXME: implement reference pointwise operation
for(int n = 0; n < params.N_; n++)
{
for(int ho = 0; ho < params.output_spatial_lengths_[0]; ho++)
{
for(int wo = 0; wo < params.output_spatial_lengths_[1]; wo++)
{
for(int k = 0; k < params.K_; k++)
{
out_element_op(out_n_ho_wo_k_host(n, ho, wo, k),
tmp_n_ho_wo_k_host(n, ho, wo, k),
bias_k(k),
resi_n_ho_wo_k(n, ho, wo, k));
}
}
}
}
out_device_buf.FromDevice(out_n_ho_wo_k_device.mData.data());
return ck::utils::check_err(out_n_ho_wo_k_host.mData,
out_n_ho_wo_k_device.mData,
"Error: incorrect results!",
1e-5f,
1e-4f)
? 0
: 1;
}
return 0;
}
add_example_executable(example_group_convnd_fwd_bias_relu_xdl_fp16 group_convnd_fwd_bias_relu_xdl_fp16.cpp)
add_example_executable(example_grouped_convnd_fwd_bias_relu_xdl_fp16 grouped_convnd_fwd_bias_relu_xdl_fp16.cpp)
target_link_libraries(example_grouped_convnd_fwd_bias_relu_xdl_fp16 PRIVATE utility)
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: time kernel (0=no, 1=yes)
#Following arguments (depending on number of spatial dims):
# N spatial dimensions
# G, N, K, C,
# <filter spatial dimensions>, (ie Y, X for 2D)
# <input image spatial dimensions>, (ie Hi, Wi for 2D)
# <strides>, (ie Sy, Sx for 2D)
# <dilations>, (ie Dy, Dx for 2D)
# <left padding>, (ie LeftPy, LeftPx for 2D)
# <right padding>, (ie RightPy, RightPx for 2D)
bin/example_grouped_convnd_fwd_bias_relu_xdl_fp16 1 1 1
```
Result (MI100)
```
in: dim 5, lengths {1, 128, 192, 71, 71}, strides {6912, 967872, 1, 13632, 192}
wei: dim 5, lengths {1, 256, 192, 3, 3}, strides {192, 1728, 1, 576, 192}
bias: dim 5, lengths {1, 128, 256, 36, 36}, strides {256, 0, 1, 0, 0}
out: dim 5, lengths {1, 128, 256, 36, 36}, strides {256, 331776, 1, 9216, 256}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 1.19215 ms, 123.112 TFlops, 279.827 GB/s, DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<256, 128, 256, 32, Default>
```
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "../09_convnd_fwd/convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_fwd_nwc_kxc_nwk_xdl.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_fwd_multiple_d_nwc_kxc_nwk_xdl_cshuffle.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::UnaryConvert;
using CShuffleDataType = ck::half_t;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial>
using DeviceConvNDFwdInstance =
ck::tensor_operation::device::DeviceConvNdFwdMultipleD_NwcKxcNwk_Xdl_CShuffle<
NDimSpatial, //
InDataType, //
WeiDataType, //
AccDataType, //
CShuffleDataType, //
ck::Tuple<>, //
OutDataType, //
InElementOp, // Input Elementwise Operation
WeiElementOp, // Weights Elementwise Operation
OutElementOp, // Output Elementwise Operation
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_K1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_K1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8>;
int main(int argc, char* argv[])
{
print_helper_msg();
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
int num_dim_spatial = 2;
ck::utils::conv::ConvParam params{
2, 128, 256, 192, {3, 3}, {71, 71}, {2, 2}, {1, 1}, {1, 1}, {1, 1}};
if(argc == 1)
{
// use default
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
num_dim_spatial = std::stoi(argv[4]);
params = parse_conv_params(num_dim_spatial, 5, argv);
}
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{};
if(num_dim_spatial == 1)
{
return run_conv_fwd<1,
ck::tensor_layout::convolution::NWC,
ck::tensor_layout::convolution::KXC,
ck::tensor_layout::convolution::NWK,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceConvNDFwdInstance<1>>(do_verification,
init_method,
time_kernel,
params,
in_element_op,
wei_element_op,
out_element_op);
}
else if(num_dim_spatial == 2)
{
return run_conv_fwd<2,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceConvNDFwdInstance<2>>(do_verification,
init_method,
time_kernel,
params,
in_element_op,
wei_element_op,
out_element_op);
}
else if(num_dim_spatial == 3)
{
return run_conv_fwd<3,
ck::tensor_layout::convolution::NDHWC,
ck::tensor_layout::convolution::KZYXC,
ck::tensor_layout::convolution::NDHWK,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceConvNDFwdInstance<3>>(do_verification,
init_method,
time_kernel,
params,
in_element_op,
wei_element_op,
out_element_op);
}
return 0;
}
......@@ -23,8 +23,8 @@ void print_helper_msg()
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: time kernel (0=no, 1=yes)\n"
<< "arg4: N spatial dimensions (default 2)\n"
<< "Following arguments (depending on number of spatial dims):\n"
<< " N spatial dimensions (1=Conv1d, 2=Conv2d, 3=Conv3d)\n"
<< " G, N, K, C, \n"
<< " <filter spatial dimensions>, (ie Y, X for 2D)\n"
<< " <input image spatial dimensions>, (ie Hi, Wi for 2D)\n"
......@@ -92,7 +92,6 @@ ck::utils::conv::ConvParam parse_conv_param(int num_dim_spatial, int arg_idx, ch
input_right_pads};
}
// FIXME: current implementation only support NCHW/NHWC layout
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
......@@ -101,17 +100,17 @@ template <ck::index_t NDimSpatial,
typename WeiElementOp,
typename OutElementOp,
typename DeviceConvNDFwdInstance>
int run_conv_fwd_bias(bool do_verification,
int init_method,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& bias_g_n_k_wos_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
int run_grouped_conv_fwd_bias(bool do_verification,
int init_method,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& bias_g_n_k_wos_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
{
Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
......@@ -175,7 +174,7 @@ int run_conv_fwd_bias(bool do_verification,
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
// do GEMM
// do Conv
auto conv = DeviceConvNDFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_bias_common.hpp"
#include "grouped_convnd_fwd_bias_common.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
......@@ -29,51 +29,52 @@ template <ck::index_t NDimSpatial,
typename WeiLayout,
typename BiasLayout,
typename OutLayout>
using DeviceConvNDFwdInstance = ck::tensor_operation::device::DeviceConvFwdMultipleD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<BiasLayout>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<BiasDataType>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_K1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_K1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8>;
using DeviceGroupledConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<BiasLayout>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<BiasDataType>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_K1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_K1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8>;
int main(int argc, char* argv[])
{
......@@ -155,7 +156,7 @@ int main(int argc, char* argv[])
conv_param.G_ * conv_param.K_ // wo
});
return run_conv_fwd_bias<
return run_grouped_conv_fwd_bias<
1,
InDataType,
WeiDataType,
......@@ -163,7 +164,7 @@ int main(int argc, char* argv[])
InElementOp,
WeiElementOp,
OutElementOp,
DeviceConvNDFwdInstance<1, InLayout, WeiLayout, BiasLayout, OutLayout>>(
DeviceGroupledConvNDFwdInstance<1, InLayout, WeiLayout, BiasLayout, OutLayout>>(
do_verification,
init_method,
time_kernel,
......@@ -242,7 +243,7 @@ int main(int argc, char* argv[])
conv_param.G_ * conv_param.K_ // wo
});
return run_conv_fwd_bias<
return run_grouped_conv_fwd_bias<
2,
InDataType,
WeiDataType,
......@@ -250,7 +251,7 @@ int main(int argc, char* argv[])
InElementOp,
WeiElementOp,
OutElementOp,
DeviceConvNDFwdInstance<2, InLayout, WeiLayout, BiasLayout, OutLayout>>(
DeviceGroupledConvNDFwdInstance<2, InLayout, WeiLayout, BiasLayout, OutLayout>>(
do_verification,
init_method,
time_kernel,
......@@ -340,7 +341,7 @@ int main(int argc, char* argv[])
conv_param.G_ * conv_param.K_ // wo
});
return run_conv_fwd_bias<
return run_grouped_conv_fwd_bias<
3,
InDataType,
WeiDataType,
......@@ -348,7 +349,7 @@ int main(int argc, char* argv[])
InElementOp,
WeiElementOp,
OutElementOp,
DeviceConvNDFwdInstance<3, InLayout, WeiLayout, BiasLayout, OutLayout>>(
DeviceGroupledConvNDFwdInstance<3, InLayout, WeiLayout, BiasLayout, OutLayout>>(
do_verification,
init_method,
time_kernel,
......
......@@ -25,8 +25,6 @@ add_subdirectory(01_gemm)
add_subdirectory(02_gemm_bilinear)
add_subdirectory(03_gemm_bias_relu)
add_subdirectory(04_gemm_add_add_fastgelu)
add_subdirectory(06_conv2d_fwd_bias_relu)
add_subdirectory(07_conv2d_fwd_bias_relu_add)
add_subdirectory(09_convnd_fwd)
add_subdirectory(12_reduce)
add_subdirectory(13_pool2d_fwd)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// Convolution Forward:
// input : input image A[N, C, Hi, Wi],
// input : weight B[K, C, Y, X],
// input : D0[N, K, Ho, Wo], D1[N, K, Ho, Wo], ...
// output : output image E[N, K, Ho, Wo]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
template <index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation>
struct DeviceConvFwdMultipleD : public BaseOperator
{
static constexpr index_t NumDTensor = DsDataType::Size();
virtual std::unique_ptr<BaseArgument> MakeArgumentPointer(
const void* p_a,
const void* p_b,
const std::array<const void*, NumDTensor>& p_ds,
void* p_e,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_lengths,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <functional>
#include <iostream>
#include <iterator>
#include <numeric>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/io.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace {
template <index_t NumDTensor>
struct ComputePtrOffsetOfStridedBatch
{
ComputePtrOffsetOfStridedBatch() = default;
ComputePtrOffsetOfStridedBatch(index_t BatchStrideA,
index_t BatchStrideB,
Array<ck::index_t, NumDTensor> BatchStrideDs,
index_t BatchStrideE)
: BatchStrideA_(BatchStrideA),
BatchStrideB_(BatchStrideB),
BatchStrideDs_(BatchStrideDs),
BatchStrideE_(BatchStrideE)
{
}
__host__ __device__ constexpr long_index_t GetAPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideA_);
}
__host__ __device__ constexpr long_index_t GetBPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideB_);
}
__host__ __device__ constexpr auto GetDsPtrOffset(index_t g_idx) const
{
Array<long_index_t, NumDTensor> ds_offset;
static_for<0, NumDTensor, 1>{}(
[&](auto i) { ds_offset(i) = g_idx * static_cast<long_index_t>(BatchStrideDs_[i]); });
return ds_offset;
}
__host__ __device__ constexpr long_index_t GetEPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideE_);
}
index_t BatchStrideA_;
index_t BatchStrideB_;
Array<ck::index_t, NumDTensor> BatchStrideDs_;
index_t BatchStrideE_;
};
/*
* \brief Wrapper function of GridwiseGemm::Run to realize BatchedGEMM.
*
* \tparam ComputePtrOffsetOfBatch Class that computes the base pointer offsets of A, B, C matrix
* given the batch. For example, ComputePtrOffsetOfStridedBatch() computes the offsets of evenly
* strided batched, but we can easily extend to other layouts. The returned offset can be either \p
* index_t or \p long_index_t. If it returns \p long_index_t, we are not subject to the 2GB
* limitations.
*
* \tparam Block2ETileMap Block2ETileMap::CalculateBottomIndex() takes in id of a workgroup and
* returns the 2D index of the tile that it computes. \see
* GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3::Run().
*
* \note Using \p ComputePtrOffsetOfBatch gives us the flexibility that 2 workgroups can compute 2
* tiles from different matrices. Keep in mind that these 2 matrices can share the same grid
* descriptor (like in BatchedGEMM), or use their own grid descriptors (in GroupedGemm). \link
* device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk.hpp kernel_gemm_xdlops_v2r3_for_conv3d \endlink for \link
* DeviceConv3d \endlink uses the same concept, but currently does NOT encapsulate the computing of
* pointer offset into \p ComputePtrOffsetOfStridedBatch.
*
* \note \p Block2ETileMap allows customized mapping between a workgroup and the C-tile it computes.
* Together with \p ComputePtrOffsetOfBatch, we can reuse GridwiseGemm (and GridwiseGemm fusion ) to
* realize BatchedGemm and GroupedGemm (and the corresponding GEMM fusion).
*
*/
template <typename GridwiseGemm,
typename ABDataType,
typename DsPointer,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename Block2ETileMap,
typename ComputePtrOffsetOfBatch,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_batch_gemm_multiple_d_xdl_cshuffle(
const ABDataType* __restrict__ p_a_grid,
const ABDataType* __restrict__ p_b_grid,
DsPointer p_ds_grid,
EDataType* __restrict__ p_e_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op,
const index_t batch_count,
const AGridDesc_AK0_M_AK1 a_grid_desc_k0_m_k1,
const BGridDesc_BK0_N_BK1 b_grid_desc_k0_n_k1,
const DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock,
const EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_,
const Block2ETileMap block_2_ctile_map,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if 1
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t e_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const auto ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
DsPointer p_ds_grid_grp;
static constexpr index_t NumDTensor =
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock::Size();
static_for<0, NumDTensor, 1>{}(
[&](auto i) { p_ds_grid_grp(i) = p_ds_grid[i] + ds_batch_offset[i]; });
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid + a_batch_offset,
p_b_grid + b_batch_offset,
p_ds_grid_grp,
p_e_grid + e_batch_offset,
p_shared,
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_k0_m_k1,
b_grid_desc_k0_n_k1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock_,
block_2_ctile_map);
#else
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
p_b_grid,
p_ds_grid,
p_e_grid,
p_shared,
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_k0_m_k1,
b_grid_desc_k0_n_k1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock_,
block_2_ctile_map);
#endif
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_ds_grid;
ignore = p_e_grid;
ignore = batch_count;
ignore = a_grid_desc_k0_m_k1;
ignore = b_grid_desc_k0_n_k1;
ignore = ds_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = e_grid_desc_mblock_mperblock_nblock_nperblock_;
ignore = a_element_op;
ignore = b_element_op;
ignore = cde_element_op;
ignore = compute_ptr_offset_of_batch;
ignore = block_2_ctile_map;
#endif
}
} // namespace
//
// @brief Device Convolution operation.
//
// Supports:
// @li Forward convolution with up to 3 spatial dimentions
// @li Input tensor in GNWC data format
// @li Weight tensor in GKXC data format
// @li Output tensor in GNWK data format
//
// 1D:
// out[N, Wo, K] = in[N, Wi, C] * wei[K, X, C]
// 2D:
// out[N, Ho, Wo, K] = in[N, Hi, Wi, C] * wei[K, Y, X, C]
// 3D:
// out[N, Do, Ho, Wo, K] = in[N, Di, Hi, Wi, C] * wei[K, Z, Y, X, C]
//
template <index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
ConvolutionForwardSpecialization ConvForwardSpecialization,
GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t K1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
index_t ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
index_t BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched = make_default_loop_scheduler()>
struct DeviceConvFwdMultipleD_Xdl_CShuffle : public DeviceConvFwdMultipleD<NDimSpatial,
ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>
{
using DeviceOp = DeviceConvFwdMultipleD_Xdl_CShuffle;
static constexpr index_t NumDTensor = DsDataType::Size();
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto K1Number = Number<K1>{};
static constexpr auto GemmK1Number = K1Number;
static constexpr auto matrix_padder =
MatrixPadder<GemmSpec, index_t, index_t, index_t>{MPerBlock, NPerBlock, KPerBlock};
template <typename ALay,
typename std::enable_if<NDimSpatial == 1 &&
is_same_v<ALay, tensor_layout::convolution::GNWC>,
bool>::type = false>
static auto
MakeAGridDescriptor_M_K(const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
{
const index_t N = a_g_n_c_wis_lengths[1];
const index_t C = a_g_n_c_wis_lengths[2];
const index_t Wi = a_g_n_c_wis_lengths[3];
const index_t Wo = e_g_n_k_wos_lengths[3];
const index_t ConvStrideW = conv_filter_strides[0];
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const index_t NWo = N * std::accumulate(e_g_n_k_wos_lengths.begin() + 3,
e_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const auto in_gemmmraw_gemmk_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(NWo, C));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmk_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Pad0)
{
const auto in_n_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Wi, C));
const auto in_n_wo_c_grid_desc = transform_tensor_descriptor(
in_n_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Wo), make_tuple(ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_gemmmraw_gemmkraw_grid_desc = transform_tensor_descriptor(
in_n_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, Wo)), make_pass_through_transform(C)),
make_tuple(Sequence<0, 1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
else
{
const index_t X = b_g_k_c_xs_lengths[3];
const index_t ConvDilationW = conv_filter_dilations[0];
const index_t InLeftPadW = input_left_pads[0];
const index_t InRightPadW = input_right_pads[0];
const auto in_n_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Wi, C));
const auto in_n_wip_c_grid_desc = transform_tensor_descriptor(
in_n_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_n_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
const auto in_gemmmraw_gemmk_grid_desc =
transform_tensor_descriptor(in_n_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, Wo)),
make_merge_transform(make_tuple(X, C))),
make_tuple(Sequence<0, 2>{}, Sequence<1, 3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmk_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
}
template <typename ALay,
typename std::enable_if<NDimSpatial == 2 &&
is_same_v<ALay, tensor_layout::convolution::GNHWC>,
bool>::type = false>
static auto
MakeAGridDescriptor_M_K(const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
{
const index_t N = a_g_n_c_wis_lengths[1];
const index_t C = a_g_n_c_wis_lengths[2];
const index_t Hi = a_g_n_c_wis_lengths[3];
const index_t Wi = a_g_n_c_wis_lengths[4];
const index_t Ho = e_g_n_k_wos_lengths[3];
const index_t Wo = e_g_n_k_wos_lengths[4];
const index_t ConvStrideH = conv_filter_strides[0];
const index_t ConvStrideW = conv_filter_strides[1];
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const index_t NHoWo = N * std::accumulate(e_g_n_k_wos_lengths.begin() + 3,
e_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const auto in_gemmmraw_gemmkraw_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(NHoWo, C));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Pad0)
{
const auto in_n_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Hi, Wi, C));
const auto in_n_ho_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Ho), make_tuple(ConvStrideH)),
make_embed_transform(make_tuple(Wo), make_tuple(ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_gemmmraw_gemmk_grid_desc =
transform_tensor_descriptor(in_n_ho_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, Ho, Wo)),
make_pass_through_transform(C)),
make_tuple(Sequence<0, 1, 2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmk_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
else
{
const index_t Y = b_g_k_c_xs_lengths[3];
const index_t X = b_g_k_c_xs_lengths[4];
const index_t ConvDilationH = conv_filter_dilations[0];
const index_t ConvDilationW = conv_filter_dilations[1];
const index_t InLeftPadH = input_left_pads[0];
const index_t InLeftPadW = input_left_pads[1];
const index_t InRightPadH = input_right_pads[0];
const index_t InRightPadW = input_right_pads[1];
const auto in_n_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Hi, Wi, C));
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_gemmmraw_gemmk_grid_desc =
transform_tensor_descriptor(in_n_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, Ho, Wo)),
make_merge_transform(make_tuple(Y, X, C))),
make_tuple(Sequence<0, 2, 4>{}, Sequence<1, 3, 5>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmk_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
}
template <typename ALay,
typename std::enable_if<NDimSpatial == 3 &&
is_same_v<ALay, tensor_layout::convolution::GNDHWC>,
bool>::type = false>
static auto
MakeAGridDescriptor_M_K(const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
{
const index_t N = a_g_n_c_wis_lengths[1];
const index_t C = a_g_n_c_wis_lengths[2];
const index_t Di = a_g_n_c_wis_lengths[3];
const index_t Hi = a_g_n_c_wis_lengths[4];
const index_t Wi = a_g_n_c_wis_lengths[5];
const index_t Do = e_g_n_k_wos_lengths[3];
const index_t Ho = e_g_n_k_wos_lengths[4];
const index_t Wo = e_g_n_k_wos_lengths[5];
const index_t ConvStrideD = conv_filter_strides[0];
const index_t ConvStrideH = conv_filter_strides[1];
const index_t ConvStrideW = conv_filter_strides[2];
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const index_t NDoHoWo =
N * std::accumulate(e_g_n_k_wos_lengths.begin() + 3,
e_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const auto in_gemmmraw_gemmkraw_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(NDoHoWo, C));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Pad0)
{
const auto in_n_di_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Di, Hi, Wi, C));
const auto in_n_do_ho_wo_c_grid_desc = transform_tensor_descriptor(
in_n_di_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Do), make_tuple(ConvStrideD)),
make_embed_transform(make_tuple(Ho), make_tuple(ConvStrideH)),
make_embed_transform(make_tuple(Wo), make_tuple(ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_gemmmraw_gemmkraw_grid_desc = transform_tensor_descriptor(
in_n_do_ho_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, Do, Ho, Wo)),
make_pass_through_transform(C)),
make_tuple(Sequence<0, 1, 2, 3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
else
{
const index_t Z = b_g_k_c_xs_lengths[3];
const index_t Y = b_g_k_c_xs_lengths[4];
const index_t X = b_g_k_c_xs_lengths[5];
const index_t ConvDilationD = conv_filter_dilations[0];
const index_t ConvDilationH = conv_filter_dilations[1];
const index_t ConvDilationW = conv_filter_dilations[2];
const index_t InLeftPadD = input_left_pads[0];
const index_t InLeftPadH = input_left_pads[1];
const index_t InLeftPadW = input_left_pads[2];
const index_t InRightPadD = input_right_pads[0];
const index_t InRightPadH = input_right_pads[1];
const index_t InRightPadW = input_right_pads[2];
const auto in_n_di_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Di, Hi, Wi, C));
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_di_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Di, InLeftPadD, InRightPadD),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_n_z_do_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Z, Do), make_tuple(ConvDilationD, ConvStrideD)),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{},
Sequence<1, 2>{},
Sequence<3, 4>{},
Sequence<5, 6>{},
Sequence<7>{}));
const auto in_gemmmraw_gemmkraw_grid_desc = transform_tensor_descriptor(
in_n_z_do_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, Do, Ho, Wo)),
make_merge_transform(make_tuple(Z, Y, X, C))),
make_tuple(Sequence<0, 2, 4, 6>{}, Sequence<1, 3, 5, 7>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
}
// TODO: implement ck::tensor_layout::convolution that describe packed/strided dimemsion as
// properties
template <typename ALay,
typename std::enable_if<NDimSpatial == 1 &&
(is_same_v<ALay, tensor_layout::convolution::G_NW_C> ||
is_same_v<ALay, tensor_layout::convolution::NWGC>),
bool>::type = false>
static auto
MakeAGridDescriptor_M_K(const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
{
const index_t N = a_g_n_c_wis_lengths[1];
const index_t C = a_g_n_c_wis_lengths[2];
const index_t Wi = a_g_n_c_wis_lengths[3];
const index_t Wo = e_g_n_k_wos_lengths[3];
const index_t ConvStrideW = conv_filter_strides[0];
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const index_t NHoWo = N * std::accumulate(e_g_n_k_wos_lengths.begin() + 3,
e_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
// This is different
const index_t WiStride = a_g_n_c_wis_strides[2 + NDimSpatial];
const auto CStride = I1;
const auto in_gemmmraw_gemmk_grid_desc =
make_naive_tensor_descriptor(make_tuple(NHoWo, C), make_tuple(WiStride, CStride));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmk_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Pad0)
{
// This is different
const index_t NStride = a_g_n_c_wis_strides[1];
const index_t WiStride = a_g_n_c_wis_strides[3];
const auto CStride = I1;
const auto in_n_wi_c_grid_desc = make_naive_tensor_descriptor(
make_tuple(N, Wi, C), make_tuple(NStride, WiStride, CStride));
const auto in_n_wo_c_grid_desc = transform_tensor_descriptor(
in_n_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Wo), make_tuple(ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_gemmmraw_gemmkraw_grid_desc = transform_tensor_descriptor(
in_n_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, Wo)), make_pass_through_transform(C)),
make_tuple(Sequence<0, 1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
else
{
const index_t X = b_g_k_c_xs_lengths[3];
const index_t ConvDilationW = conv_filter_dilations[0];
const index_t InLeftPadW = input_left_pads[0];
const index_t InRightPadW = input_right_pads[0];
// This is different
const index_t NStride = a_g_n_c_wis_strides[1];
const index_t WiStride = a_g_n_c_wis_strides[3];
const auto CStride = I1;
const auto in_n_wi_c_grid_desc = make_naive_tensor_descriptor(
make_tuple(N, Wi, C), make_tuple(NStride, WiStride, CStride));
const auto in_n_wip_c_grid_desc = transform_tensor_descriptor(
in_n_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_n_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
const auto in_gemmmraw_gemmk_grid_desc =
transform_tensor_descriptor(in_n_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, Wo)),
make_merge_transform(make_tuple(X, C))),
make_tuple(Sequence<0, 2>{}, Sequence<1, 3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmk_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
}
template <typename ALay,
typename std::enable_if<NDimSpatial == 2 &&
(is_same_v<ALay, tensor_layout::convolution::G_NHW_C> ||
is_same_v<ALay, tensor_layout::convolution::NHWGC>),
bool>::type = false>
static auto
MakeAGridDescriptor_M_K(const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
{
const index_t N = a_g_n_c_wis_lengths[1];
const index_t C = a_g_n_c_wis_lengths[2];
const index_t Hi = a_g_n_c_wis_lengths[3];
const index_t Wi = a_g_n_c_wis_lengths[4];
const index_t Ho = e_g_n_k_wos_lengths[3];
const index_t Wo = e_g_n_k_wos_lengths[4];
const index_t ConvStrideH = conv_filter_strides[0];
const index_t ConvStrideW = conv_filter_strides[1];
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const index_t NHoWo = N * std::accumulate(e_g_n_k_wos_lengths.begin() + 3,
e_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
// This is different
const index_t WiStride = a_g_n_c_wis_strides[2 + NDimSpatial];
const auto CStride = I1;
const auto in_gemmmraw_gemmkraw_grid_desc =
make_naive_tensor_descriptor(make_tuple(NHoWo, C), make_tuple(WiStride, CStride));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Pad0)
{
// This is different
const index_t NStride = a_g_n_c_wis_strides[1];
const index_t HiStride = a_g_n_c_wis_strides[3];
const index_t WiStride = a_g_n_c_wis_strides[4];
const auto CStride = I1;
const auto in_n_hi_wi_c_grid_desc = make_naive_tensor_descriptor(
make_tuple(N, Hi, Wi, C), make_tuple(NStride, HiStride, WiStride, CStride));
const auto in_n_ho_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Ho), make_tuple(ConvStrideH)),
make_embed_transform(make_tuple(Wo), make_tuple(ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_gemmmraw_gemmk_grid_desc =
transform_tensor_descriptor(in_n_ho_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, Ho, Wo)),
make_pass_through_transform(C)),
make_tuple(Sequence<0, 1, 2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmk_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
else
{
const index_t Y = b_g_k_c_xs_lengths[3];
const index_t X = b_g_k_c_xs_lengths[4];
const index_t ConvDilationH = conv_filter_dilations[0];
const index_t ConvDilationW = conv_filter_dilations[1];
const index_t InLeftPadH = input_left_pads[0];
const index_t InLeftPadW = input_left_pads[1];
const index_t InRightPadH = input_right_pads[0];
const index_t InRightPadW = input_right_pads[1];
// This is different
const index_t NStride = a_g_n_c_wis_strides[1];
const index_t HiStride = a_g_n_c_wis_strides[3];
const index_t WiStride = a_g_n_c_wis_strides[4];
const auto CStride = I1;
const auto in_n_hi_wi_c_grid_desc = make_naive_tensor_descriptor(
make_tuple(N, Hi, Wi, C), make_tuple(NStride, HiStride, WiStride, CStride));
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_gemmmraw_gemmk_grid_desc =
transform_tensor_descriptor(in_n_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, Ho, Wo)),
make_merge_transform(make_tuple(Y, X, C))),
make_tuple(Sequence<0, 2, 4>{}, Sequence<1, 3, 5>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmk_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
}
template <typename ALay,
typename std::enable_if<NDimSpatial == 3 &&
(is_same_v<ALay, tensor_layout::convolution::G_NDHW_C> ||
is_same_v<ALay, tensor_layout::convolution::NDHWGC>),
bool>::type = false>
static auto
MakeAGridDescriptor_M_K(const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
{
const index_t N = a_g_n_c_wis_lengths[1];
const index_t C = a_g_n_c_wis_lengths[2];
const index_t Di = a_g_n_c_wis_lengths[3];
const index_t Hi = a_g_n_c_wis_lengths[4];
const index_t Wi = a_g_n_c_wis_lengths[5];
const index_t Do = e_g_n_k_wos_lengths[3];
const index_t Ho = e_g_n_k_wos_lengths[4];
const index_t Wo = e_g_n_k_wos_lengths[5];
const index_t ConvStrideD = conv_filter_strides[0];
const index_t ConvStrideH = conv_filter_strides[1];
const index_t ConvStrideW = conv_filter_strides[2];
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const index_t NDoHoWo =
N * std::accumulate(e_g_n_k_wos_lengths.begin() + 3,
e_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
// This is different
const index_t WiStride = a_g_n_c_wis_strides[2 + NDimSpatial];
const auto CStride = I1;
const auto in_gemmmraw_gemmkraw_grid_desc =
make_naive_tensor_descriptor(make_tuple(NDoHoWo, C), make_tuple(WiStride, CStride));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Pad0)
{
// This is different
const index_t NStride = a_g_n_c_wis_strides[1];
const index_t DiStride = a_g_n_c_wis_strides[3];
const index_t HiStride = a_g_n_c_wis_strides[4];
const index_t WiStride = a_g_n_c_wis_strides[5];
const auto CStride = I1;
const auto in_n_di_hi_wi_c_grid_desc = make_naive_tensor_descriptor(
make_tuple(N, Di, Hi, Wi, C),
make_tuple(NStride, DiStride, HiStride, WiStride, CStride));
const auto in_n_do_ho_wo_c_grid_desc = transform_tensor_descriptor(
in_n_di_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Do), make_tuple(ConvStrideD)),
make_embed_transform(make_tuple(Ho), make_tuple(ConvStrideH)),
make_embed_transform(make_tuple(Wo), make_tuple(ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_gemmmraw_gemmkraw_grid_desc = transform_tensor_descriptor(
in_n_do_ho_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, Do, Ho, Wo)),
make_pass_through_transform(C)),
make_tuple(Sequence<0, 1, 2, 3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
else
{
const index_t Z = b_g_k_c_xs_lengths[3];
const index_t Y = b_g_k_c_xs_lengths[4];
const index_t X = b_g_k_c_xs_lengths[5];
const index_t ConvDilationD = conv_filter_dilations[0];
const index_t ConvDilationH = conv_filter_dilations[1];
const index_t ConvDilationW = conv_filter_dilations[2];
const index_t InLeftPadD = input_left_pads[0];
const index_t InLeftPadH = input_left_pads[1];
const index_t InLeftPadW = input_left_pads[2];
const index_t InRightPadD = input_right_pads[0];
const index_t InRightPadH = input_right_pads[1];
const index_t InRightPadW = input_right_pads[2];
// This is different
const index_t NStride = a_g_n_c_wis_strides[1];
const index_t DiStride = a_g_n_c_wis_strides[3];
const index_t HiStride = a_g_n_c_wis_strides[4];
const index_t WiStride = a_g_n_c_wis_strides[5];
const auto CStride = I1;
const auto in_n_di_hi_wi_c_grid_desc = make_naive_tensor_descriptor(
make_tuple(N, Di, Hi, Wi, C),
make_tuple(NStride, DiStride, HiStride, WiStride, CStride));
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_di_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Di, InLeftPadD, InRightPadD),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_n_z_do_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Z, Do), make_tuple(ConvDilationD, ConvStrideD)),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{},
Sequence<1, 2>{},
Sequence<3, 4>{},
Sequence<5, 6>{},
Sequence<7>{}));
const auto in_gemmmraw_gemmkraw_grid_desc = transform_tensor_descriptor(
in_n_z_do_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, Do, Ho, Wo)),
make_merge_transform(make_tuple(Z, Y, X, C))),
make_tuple(Sequence<0, 2, 4, 6>{}, Sequence<1, 3, 5, 7>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
}
template <typename BLay,
typename std::enable_if<is_same_v<BLay, tensor_layout::convolution::GKXC> ||
is_same_v<BLay, tensor_layout::convolution::GKYXC> ||
is_same_v<BLay, tensor_layout::convolution::GKZYXC>,
bool>::type = false>
static auto
MakeBGridDescriptor_N_K(const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides)
{
const index_t K = b_g_k_c_xs_lengths[1];
const index_t C = b_g_k_c_xs_lengths[2];
const index_t YX = std::accumulate(b_g_k_c_xs_lengths.begin() + 3,
b_g_k_c_xs_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const auto wei_k_yxc_grid_desc = make_naive_tensor_descriptor_packed(make_tuple(K, YX * C));
const auto wei_gemmn_gemmk_grid_desc =
matrix_padder.PadBDescriptor_N_K(wei_k_yxc_grid_desc);
return wei_gemmn_gemmk_grid_desc;
}
template <typename BLay,
typename std::enable_if<is_same_v<BLay, tensor_layout::convolution::G_K_X_C> ||
is_same_v<BLay, tensor_layout::convolution::G_K_YX_C> ||
is_same_v<BLay, tensor_layout::convolution::G_K_ZYX_C> ||
is_same_v<BLay, tensor_layout::convolution::KXGC> ||
is_same_v<BLay, tensor_layout::convolution::KYXGC> ||
is_same_v<BLay, tensor_layout::convolution::KZYXGC>,
bool>::type = false>
static auto
MakeBGridDescriptor_N_K(const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides)
{
const index_t K = b_g_k_c_xs_lengths[1];
const index_t C = b_g_k_c_xs_lengths[2];
const index_t YX = std::accumulate(b_g_k_c_xs_lengths.begin() + 3,
b_g_k_c_xs_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const index_t KStride = b_g_k_c_xs_strides[1];
const index_t XStride = b_g_k_c_xs_strides[2 + NDimSpatial];
const auto CStride = I1;
const auto wei_k_yx_c_grid_desc = make_naive_tensor_descriptor(
make_tuple(K, YX, C), make_tuple(KStride, XStride, CStride));
const auto wei_gemmnraw_gemmkraw_grid_desc = transform_tensor_descriptor(
wei_k_yx_c_grid_desc,
make_tuple(make_pass_through_transform(K), make_merge_transform(make_tuple(YX, C))),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto wei_gemmn_gemmk_grid_desc =
matrix_padder.PadBDescriptor_N_K(wei_gemmnraw_gemmkraw_grid_desc);
return wei_gemmn_gemmk_grid_desc;
}
template <typename ELay,
typename std::enable_if<is_same_v<ELay, tensor_layout::convolution::GNWK> ||
is_same_v<ELay, tensor_layout::convolution::GNHWK> ||
is_same_v<ELay, tensor_layout::convolution::GNDHWK>,
bool>::type = false>
static auto
MakeEGridDescriptor_M_N(const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides)
{
const index_t N = e_g_n_k_wos_lengths[1];
const index_t K = e_g_n_k_wos_lengths[2];
const index_t NHoWo = N * std::accumulate(e_g_n_k_wos_lengths.begin() + 3,
e_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const auto out_gemmmraw_gemmnraw_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(NHoWo, K));
const auto out_gemmm_gemmn_grid_desc =
matrix_padder.PadCDescriptor_M_N(out_gemmmraw_gemmnraw_grid_desc);
return out_gemmm_gemmn_grid_desc;
}
template <typename ELay,
typename std::enable_if<is_same_v<ELay, tensor_layout::convolution::G_NW_K> ||
is_same_v<ELay, tensor_layout::convolution::G_NHW_K> ||
is_same_v<ELay, tensor_layout::convolution::G_NDHW_K> ||
is_same_v<ELay, tensor_layout::convolution::NWGK> ||
is_same_v<ELay, tensor_layout::convolution::NHWGK> ||
is_same_v<ELay, tensor_layout::convolution::NDHWGK>,
bool>::type = false>
static auto
MakeEGridDescriptor_M_N(const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides)
{
const index_t N = e_g_n_k_wos_lengths[1];
const index_t K = e_g_n_k_wos_lengths[2];
const auto KStride = I1;
const index_t WoStride = e_g_n_k_wos_strides[NDimSpatial + 2];
const index_t NHoWo = N * std::accumulate(e_g_n_k_wos_lengths.begin() + 3,
e_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const auto out_gemmmraw_gemmnraw_grid_desc =
make_naive_tensor_descriptor(make_tuple(NHoWo, K), make_tuple(WoStride, KStride));
const auto out_gemmm_gemmn_grid_desc =
matrix_padder.PadCDescriptor_M_N(out_gemmmraw_gemmnraw_grid_desc);
return out_gemmm_gemmn_grid_desc;
}
static auto MakeDsGridDescriptor_M_N(
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_lengths,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides)
{
return generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return DeviceOp::MakeEGridDescriptor_M_N<DLayout>(ds_g_n_k_wos_lengths[i],
ds_g_n_k_wos_strides[i]);
},
Number<NumDTensor>{});
}
using AGridDesc_M_K = remove_cvref_t<decltype(
MakeAGridDescriptor_M_K<ALayout>({}, {}, {}, {}, {}, {}, {}, {}, {}, {}))>;
using BGridDesc_N_K = remove_cvref_t<decltype(MakeBGridDescriptor_N_K<BLayout>({}, {}))>;
using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({}, {}))>;
using EGridDesc_M_N = remove_cvref_t<decltype(MakeEGridDescriptor_M_N<ELayout>({}, {}))>;
// GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle<
ADataType, // TODO: distinguish A/B datatype
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
InMemoryDataOperationEnum::Set,
AGridDesc_M_K,
BGridDesc_N_K,
DsGridDesc_M_N,
EGridDesc_M_N,
NumGemmKPrefetchStage,
BlockSize,
MPerBlock,
NPerBlock,
KPerBlock,
K1,
K1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
false,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
false,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CDEBlockTransferScalarPerVector_NPerBlock,
LoopSched>;
using AGridDesc_AK0_M_AK1 = remove_cvref_t<decltype(
GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(AGridDesc_M_K{}))>;
using BGridDesc_BK0_N_BK1 = remove_cvref_t<decltype(
GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(BGridDesc_N_K{}))>;
using Block2ETileMap = typename GridwiseGemm::DefaultBlock2ETileMap;
// Argument
struct Argument : public BaseArgument
{
Argument(const void* p_a,
const void* p_b,
const std::array<const void*, NumDTensor>& p_ds,
void* p_e,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>&
ds_g_n_k_wos_lengths,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>&
ds_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op)
: p_a_grid_{static_cast<const ADataType*>(p_a)},
p_b_grid_{static_cast<const BDataType*>(p_b)},
p_ds_grid_{}, // FIXME
p_e_grid_{static_cast<EDataType*>(p_e)},
a_grid_desc_m_k_{},
b_grid_desc_n_k_{},
ds_grid_desc_m_n_{},
e_grid_desc_m_n_{},
a_grid_desc_ak0_m_ak1_{},
b_grid_desc_bk0_n_bk1_{},
ds_grid_desc_mblock_mperblock_nblock_nperblock_{},
e_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_etile_map_{},
compute_ptr_offset_of_batch_{},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op},
a_g_n_c_wis_lengths_{a_g_n_c_wis_lengths},
a_g_n_c_wis_strides_{a_g_n_c_wis_strides},
b_g_k_c_xs_lengths_{b_g_k_c_xs_lengths},
b_g_k_c_xs_strides_{b_g_k_c_xs_strides},
ds_g_n_k_wos_lengths_{ds_g_n_k_wos_lengths},
ds_g_n_k_wos_strides_{ds_g_n_k_wos_strides},
e_g_n_k_wos_lengths_{e_g_n_k_wos_lengths},
e_g_n_k_wos_strides_{e_g_n_k_wos_strides},
conv_filter_strides_{conv_filter_strides},
conv_filter_dilations_{conv_filter_dilations},
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads}
{
// A desc
a_grid_desc_m_k_ = DeviceOp::MakeAGridDescriptor_M_K<ALayout>(a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
// B Desc
b_grid_desc_n_k_ =
DeviceOp::MakeBGridDescriptor_N_K<BLayout>(b_g_k_c_xs_lengths, b_g_k_c_xs_strides);
// E Desc
e_grid_desc_m_n_ = DeviceOp::MakeEGridDescriptor_M_N<ELayout>(e_g_n_k_wos_lengths,
e_g_n_k_wos_strides);
// A Des
a_grid_desc_ak0_m_ak1_ =
GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(a_grid_desc_m_k_);
// B Desc
b_grid_desc_bk0_n_bk1_ =
GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(b_grid_desc_n_k_);
// Block-to-e-tile
block_2_etile_map_ = Block2ETileMap{e_grid_desc_m_n_};
// A/B/E Batch Stride
compute_ptr_offset_of_batch_.BatchStrideA_ = a_g_n_c_wis_strides[0];
compute_ptr_offset_of_batch_.BatchStrideB_ = b_g_k_c_xs_strides[0];
compute_ptr_offset_of_batch_.BatchStrideE_ = e_g_n_k_wos_strides[0];
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
// D pointer
p_ds_grid_(i) = static_cast<const DDataType*>(p_ds[i]);
// D batch stride
compute_ptr_offset_of_batch_.BatchStrideDs_(i) = ds_g_n_k_wos_strides[i][0];
// D desc
ds_grid_desc_m_n_(i) = DeviceOp::MakeEGridDescriptor_M_N<DLayout>(
ds_g_n_k_wos_lengths[i], ds_g_n_k_wos_strides[i]);
});
// populate desc for Ds/E
if(GridwiseGemm::CheckValidity(a_grid_desc_m_k_,
b_grid_desc_n_k_,
ds_grid_desc_m_n_,
e_grid_desc_m_n_,
block_2_etile_map_))
{
e_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
e_grid_desc_m_n_);
ds_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
ds_grid_desc_m_n_);
}
}
void Print() const
{
std::cout << "A[M, K]: " << a_grid_desc_m_k_ << std::endl;
std::cout << "B[N, K]: " << b_grid_desc_n_k_ << std::endl;
static_for<0, NumDTensor, 1>{}(
[&](auto i) { std::cout << "Ds[M, N]: " << ds_grid_desc_m_n_[i] << std::endl; });
std::cout << "E[M, N]: " << e_grid_desc_m_n_ << std::endl;
}
// private:
// pointers
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
typename GridwiseGemm::DsGridPointer p_ds_grid_;
EDataType* p_e_grid_;
// tensor descriptors
AGridDesc_M_K a_grid_desc_m_k_;
BGridDesc_N_K b_grid_desc_n_k_;
DsGridDesc_M_N ds_grid_desc_m_n_;
EGridDesc_M_N e_grid_desc_m_n_;
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
typename GridwiseGemm::DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_;
// block-to-e-tile map
Block2ETileMap block_2_etile_map_;
ComputePtrOffsetOfStridedBatch<NumDTensor> compute_ptr_offset_of_batch_;
// element-wise op
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
// for checking IsSupportedArgument()
std::array<index_t, NDimSpatial + 3> a_g_n_c_wis_lengths_;
std::array<index_t, NDimSpatial + 3> a_g_n_c_wis_strides_;
std::array<index_t, NDimSpatial + 3> b_g_k_c_xs_lengths_;
std::array<index_t, NDimSpatial + 3> b_g_k_c_xs_strides_;
std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor> ds_g_n_k_wos_lengths_;
std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor> ds_g_n_k_wos_strides_;
std::array<index_t, NDimSpatial + 3> e_g_n_k_wos_lengths_;
std::array<index_t, NDimSpatial + 3> e_g_n_k_wos_strides_;
std::array<index_t, NDimSpatial> conv_filter_strides_;
std::array<index_t, NDimSpatial> conv_filter_dilations_;
std::array<index_t, NDimSpatial> input_left_pads_;
std::array<index_t, NDimSpatial> input_right_pads_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
#if 1
arg.Print();
#endif
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_m_k_,
arg.b_grid_desc_n_k_,
arg.ds_grid_desc_m_n_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_))
{
throw std::runtime_error(
"wrong! GridwiseGemmMultipleD_xdl_cshuffle has invalid setting");
}
const index_t grid_size =
arg.block_2_etile_map_.CalculateGridSize(arg.e_grid_desc_m_n_) *
arg.a_g_n_c_wis_lengths_[0];
const auto K =
arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
auto launch_kernel = [&](auto has_main_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
const auto kernel = kernel_batch_gemm_multiple_d_xdl_cshuffle<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
typename GridwiseGemm::DsGridPointer,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
Block2ETileMap,
ComputePtrOffsetOfStridedBatch<NumDTensor>,
has_main_loop>;
return launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_ds_grid_,
arg.p_e_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.cde_element_op_,
arg.a_g_n_c_wis_lengths_[0], // Group count
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.ds_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.e_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_etile_map_,
arg.compute_ptr_offset_of_batch_);
};
if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{
return launch_kernel(integral_constant<bool, true>{});
}
else
{
return launch_kernel(integral_constant<bool, false>{});
}
}
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static bool IsSupportedArgument(const Argument& arg)
{
namespace ctc = tensor_layout::convolution;
// check device
if(get_device_name() == "gfx908")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, float> ||
is_same_v<AccDataType, int32_t>))
{
return false;
}
}
else if(get_device_name() == "gfx90a")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, float> ||
is_same_v<AccDataType, int32_t> || is_same_v<AccDataType, double>))
{
return false;
}
}
else
{
return false;
}
int itmp = 0;
printf("%d\n", itmp++);
// check ConvolutionForwardSpecialization
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
// check if it's 1x1, stride=1 conv
for(index_t i = 0; i < NDimSpatial; ++i)
{
const index_t X = arg.b_g_k_c_xs_lengths_[i + 2];
const index_t ConvStride = arg.conv_filter_strides_[i];
const index_t LeftPad = arg.input_left_pads_[i];
const index_t RightPad = arg.input_right_pads_[i];
if(!(X == 1 && ConvStride == 1 && LeftPad == 0 && RightPad == 0))
{
return false;
}
}
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Pad0)
{
// check if it's 1x1 conv
for(index_t i = 0; i < NDimSpatial; ++i)
{
const index_t X = arg.b_g_k_c_xs_lengths_[i + 2];
const index_t LeftPad = arg.input_left_pads_[i];
const index_t RightPad = arg.input_right_pads_[i];
if(!(X == 1 && LeftPad == 0 && RightPad == 0))
{
return false;
}
}
}
printf("%d\n", itmp++);
// check vector access of A
// FIXME: layout
if constexpr(is_same_v<ALayout, ctc::G_NW_C> || is_same_v<ALayout, ctc::G_NHW_C> ||
is_same_v<ALayout, ctc::G_NDHW_C> || is_same_v<ALayout, ctc::GNWC> ||
is_same_v<ALayout, ctc::GNHWC> || is_same_v<ALayout, ctc::GNDHWC> ||
is_same_v<ALayout, ctc::NWGC> || is_same_v<ALayout, ctc::NHWGC> ||
is_same_v<ALayout, ctc::NDHWGC>)
{
const index_t C = arg.a_g_n_c_wis_lengths_[2];
if(!(ABlockTransferSrcVectorDim == 2 && C % ABlockTransferSrcScalarPerVector == 0))
{
return false;
}
}
else
{
return false;
}
printf("%d\n", itmp++);
// check vector access of B
// FIXME: layout
if constexpr(is_same_v<BLayout, ctc::G_K_X_C> || is_same_v<BLayout, ctc::G_K_YX_C> ||
is_same_v<BLayout, ctc::G_K_ZYX_C> || is_same_v<BLayout, ctc::GKXC> ||
is_same_v<BLayout, ctc::GKYXC> || is_same_v<BLayout, ctc::GKZYXC> ||
is_same_v<BLayout, ctc::KXGC> || is_same_v<BLayout, ctc::KYXGC> ||
is_same_v<BLayout, ctc::KZYXGC>)
{
const index_t C = arg.b_g_k_c_xs_lengths_[2];
if(!(BBlockTransferSrcVectorDim == 2 && C % BBlockTransferSrcScalarPerVector == 0))
{
return false;
}
}
else
{
return false;
}
printf("%d\n", itmp++);
// check vector access of Ds
bool valid = true;
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
// FIXME: layout
if constexpr(is_same_v<DLayout, ctc::G_NW_K> || is_same_v<DLayout, ctc::G_NHW_K> ||
is_same_v<DLayout, ctc::G_NDHW_K> || is_same_v<DLayout, ctc::GNWK> ||
is_same_v<DLayout, ctc::GNHWK> || is_same_v<DLayout, ctc::GNDHWK> ||
is_same_v<DLayout, ctc::NWGK> || is_same_v<DLayout, ctc::NHWGK> ||
is_same_v<DLayout, ctc::NDHWGK>)
{
const index_t K = arg.ds_g_n_k_wos_lengths_[i][2];
if(!(K % CDEBlockTransferScalarPerVector_NPerBlock == 0))
{
valid = false;
}
}
else
{
valid = false;
}
});
if(!valid)
{
return false;
}
printf("%d\n", itmp++);
// check vector access of E
if constexpr(is_same_v<ELayout, ctc::G_NW_K> || is_same_v<ELayout, ctc::G_NHW_K> ||
is_same_v<ELayout, ctc::G_NDHW_K> || is_same_v<ELayout, ctc::GNWK> ||
is_same_v<ELayout, ctc::GNHWK> || is_same_v<ELayout, ctc::GNDHWK> ||
is_same_v<ELayout, ctc::NWGK> || is_same_v<ELayout, ctc::NHWGK> ||
is_same_v<ELayout, ctc::NDHWGK>)
{
const index_t K = arg.e_g_n_k_wos_lengths_[2];
if(!(K % CDEBlockTransferScalarPerVector_NPerBlock == 0))
{
return false;
}
}
else
{
return false;
}
printf("%d\n", itmp++);
// check Gridwise GEMM
return GridwiseGemm::CheckValidity(arg.a_grid_desc_m_k_,
arg.b_grid_desc_n_k_,
arg.ds_grid_desc_m_n_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_);
}
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(
const void* p_a,
const void* p_b,
const std::array<const void*, NumDTensor>& p_ds,
void* p_e,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_lengths,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op)
{
return Argument{p_a,
p_b,
p_ds,
p_e,
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
ds_g_n_k_wos_lengths,
ds_g_n_k_wos_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
a_element_op,
b_element_op,
cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
std::unique_ptr<BaseArgument> MakeArgumentPointer(
const void* p_a,
const void* p_b,
const std::array<const void*, NumDTensor>& p_ds,
void* p_e,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_lengths,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op) override
{
return std::make_unique<Argument>(p_a,
p_b,
p_ds,
p_e,
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
ds_g_n_k_wos_lengths,
ds_g_n_k_wos_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
a_element_op,
b_element_op,
cde_element_op);
}
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceConvFwdMultipleD_Xdl_CShuffle"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< getConvForwardSpecializationString(ConvForwardSpecialization)
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -11,14 +11,14 @@ namespace ck {
namespace tensor_operation {
namespace device {
// Grouped Convolution Forword
// input : input image A[G, C, N, Hi, Wi],
// Convolution Forward:
// input : input image A[G, N, C, Hi, Wi],
// input : weight B[G, K, C, Y, X],
// input : D0[G, N, K, Ho, Wo], D1[G, N, K, Ho, Wo], ...
// output : output image E[G, N, K, Ho, Wo]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
template <ck::index_t NDimSpatial,
template <index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename DsLayout,
......@@ -34,26 +34,26 @@ struct DeviceGroupedConvFwdMultipleD : public BaseOperator
{
static constexpr index_t NumDTensor = DsDataType::Size();
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_e,
const std::vector<ck::index_t>& a_g_n_c_wis_lengths,
const std::vector<ck::index_t>& a_g_n_c_wis_strides,
const std::vector<ck::index_t>& b_g_k_c_xs_lengths,
const std::vector<ck::index_t>& b_g_k_c_xs_strides,
std::array<std::vector<ck::index_t>, NumDTensor> ds_g_n_k_wos_lengths;
std::array<std::vector<ck::index_t>, NumDTensor> ds_g_n_k_wos_strides;
const std::vector<ck::index_t>& e_g_n_k_wos_lengths,
const std::vector<ck::index_t>& e_g_n_k_wos_strides,
const std::vector<ck::index_t>& conv_filter_strides,
const std::vector<ck::index_t>& conv_filter_dilations,
const std::vector<ck::index_t>& input_left_pads,
const std::vector<ck::index_t>& input_right_pads,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op) = 0;
virtual std::unique_ptr<BaseArgument> MakeArgumentPointer(
const void* p_a,
const void* p_b,
const std::array<const void*, NumDTensor>& p_ds,
void* p_e,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_lengths,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
......
......@@ -20,6 +20,7 @@
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/io.hpp"
namespace ck {
namespace tensor_operation {
......@@ -27,39 +28,152 @@ namespace device {
namespace {
template <index_t NumDTensor>
struct ComputePtrOffsetOfStridedBatch
{
ComputePtrOffsetOfStridedBatch() = default;
ComputePtrOffsetOfStridedBatch(index_t BatchStrideA,
index_t BatchStrideB,
Array<ck::index_t, NumDTensor> BatchStrideDs,
index_t BatchStrideE)
: BatchStrideA_(BatchStrideA),
BatchStrideB_(BatchStrideB),
BatchStrideDs_(BatchStrideDs),
BatchStrideE_(BatchStrideE)
{
}
__host__ __device__ constexpr long_index_t GetAPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideA_);
}
__host__ __device__ constexpr long_index_t GetBPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideB_);
}
__host__ __device__ constexpr auto GetDsPtrOffset(index_t g_idx) const
{
Array<long_index_t, NumDTensor> ds_offset;
static_for<0, NumDTensor, 1>{}(
[&](auto i) { ds_offset(i) = g_idx * static_cast<long_index_t>(BatchStrideDs_[i]); });
return ds_offset;
}
__host__ __device__ constexpr long_index_t GetEPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideE_);
}
index_t BatchStrideA_;
index_t BatchStrideB_;
Array<ck::index_t, NumDTensor> BatchStrideDs_;
index_t BatchStrideE_;
};
/*
* \brief Wrapper function of GridwiseGemm::Run to realize BatchedGEMM.
*
* \tparam ComputePtrOffsetOfBatch Class that computes the base pointer offsets of A, B, C matrix
* given the batch. For example, ComputePtrOffsetOfStridedBatch() computes the offsets of evenly
* strided batched, but we can easily extend to other layouts. The returned offset can be either \p
* index_t or \p long_index_t. If it returns \p long_index_t, we are not subject to the 2GB
* limitations.
*
* \tparam Block2ETileMap Block2ETileMap::CalculateBottomIndex() takes in id of a workgroup and
* returns the 2D index of the tile that it computes. \see
* GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3::Run().
*
* \note Using \p ComputePtrOffsetOfBatch gives us the flexibility that 2 workgroups can compute 2
* tiles from different matrices. Keep in mind that these 2 matrices can share the same grid
* descriptor (like in BatchedGEMM), or use their own grid descriptors (in GroupedGemm). \link
* device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk.hpp kernel_gemm_xdlops_v2r3_for_conv3d \endlink for \link
* DeviceConv3d \endlink uses the same concept, but currently does NOT encapsulate the computing of
* pointer offset into \p ComputePtrOffsetOfStridedBatch.
*
* \note \p Block2ETileMap allows customized mapping between a workgroup and the C-tile it computes.
* Together with \p ComputePtrOffsetOfBatch, we can reuse GridwiseGemm (and GridwiseGemm fusion ) to
* realize BatchedGemm and GroupedGemm (and the corresponding GEMM fusion).
*
*/
template <typename GridwiseGemm,
typename FloatAB,
typename FloatDsPointer,
typename FloatE,
typename ABDataType,
typename DsPointer,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename Block2ETileMap,
typename ComputePtrOffsetOfBatch,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_multiple_d_xdl_cshuffle(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatDsPointer p_ds_grid,
FloatE* __restrict__ p_e_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op,
const AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1,
const DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock,
const EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2ETileMap block_2_etile_map)
kernel_batch_gemm_multiple_d_xdl_cshuffle(
const ABDataType* __restrict__ p_a_grid,
const ABDataType* __restrict__ p_b_grid,
DsPointer p_ds_grid,
EDataType* __restrict__ p_e_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op,
const index_t batch_count,
const AGridDesc_AK0_M_AK1 a_grid_desc_k0_m_k1,
const BGridDesc_BK0_N_BK1 b_grid_desc_k0_n_k1,
const DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock,
const EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_,
const Block2ETileMap block_2_ctile_map,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if 1
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t e_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const auto ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
DsPointer p_ds_grid_grp;
static constexpr index_t NumDTensor =
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock::Size();
static_for<0, NumDTensor, 1>{}(
[&](auto i) { p_ds_grid_grp(i) = p_ds_grid[i] + ds_batch_offset[i]; });
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid + a_batch_offset,
p_b_grid + b_batch_offset,
p_ds_grid_grp,
p_e_grid + e_batch_offset,
p_shared,
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_k0_m_k1,
b_grid_desc_k0_n_k1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock_,
block_2_ctile_map);
#else
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
......@@ -70,26 +184,31 @@ __global__ void
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
a_grid_desc_k0_m_k1,
b_grid_desc_k0_n_k1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_etile_map);
e_grid_desc_mblock_mperblock_nblock_nperblock_,
block_2_ctile_map);
#endif
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_ds_grid;
ignore = p_e_grid;
ignore = batch_count;
ignore = a_grid_desc_k0_m_k1;
ignore = b_grid_desc_k0_n_k1;
ignore = ds_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = e_grid_desc_mblock_mperblock_nblock_nperblock_;
ignore = a_element_op;
ignore = b_element_op;
ignore = cde_element_op;
ignore = a_grid_desc_ak0_m_ak1;
ignore = b_grid_desc_bk0_n_bk1;
ignore = ds_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = e_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = block_2_etile_map;
ignore = compute_ptr_offset_of_batch;
ignore = block_2_ctile_map;
#endif
}
} // namespace
//
......@@ -97,9 +216,9 @@ __global__ void
//
// Supports:
// @li Forward convolution with up to 3 spatial dimentions
// @li Input tensor in NWC data format
// @li Weight tensor in KXC data format
// @li Output tensor in NWK data format
// @li Input tensor in GNWC data format
// @li Weight tensor in GKXC data format
// @li Output tensor in GNWK data format
//
// 1D:
// out[N, Wo, K] = in[N, Wi, C] * wei[K, X, C]
......@@ -182,53 +301,41 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
static constexpr auto matrix_padder =
MatrixPadder<GemmSpec, index_t, index_t, index_t>{MPerBlock, NPerBlock, KPerBlock};
template <typename std::enable_if<ALayout, bool>::type = false>
static auto GetWeightTensorDescriptor(index_t GemmNRaw, index_t GemmKRaw)
{
const auto wei_k_yxc_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(GemmNRaw, GemmKRaw));
const auto wei_gemmn_gemmk_grid_desc =
matrix_padder.PadBDescriptor_N_K(wei_k_yxc_grid_desc);
return wei_gemmn_gemmk_grid_desc;
}
static auto GetOutputTensorDescriptor(index_t GemmMRaw, index_t GemmN)
template <typename ALay,
typename std::enable_if<NDimSpatial == 1 &&
is_same_v<ALay, tensor_layout::convolution::GNWC>,
bool>::type = false>
static auto
MakeAGridDescriptor_M_K(const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
{
const index_t GemmM = math::integer_least_multiple(GemmMRaw, MPerBlock);
const index_t N = a_g_n_c_wis_lengths[1];
const index_t C = a_g_n_c_wis_lengths[2];
const auto out_gemmmraw_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(GemmM, GemmN));
const index_t Wi = a_g_n_c_wis_lengths[3];
const auto out_gemmm_gemmn_grid_desc =
matrix_padder.PadCDescriptor_M_N(out_gemmmraw_gemmn_grid_desc);
return out_gemmm_gemmn_grid_desc;
}
const index_t Wo = e_g_n_k_wos_lengths[3];
template <index_t NDim, typename std::enable_if<NDim == 1, bool>::type = false>
static auto GetInputTensorDescriptor(index_t N,
index_t C,
index_t GemmMRaw,
index_t GemmKRaw,
const std::vector<index_t>& input_spatial_lengths,
const std::vector<index_t>& filter_spatial_lengths,
const std::vector<index_t>& output_spatial_lengths,
const std::vector<index_t>& conv_filter_strides,
const std::vector<index_t>& conv_filter_dilations,
const std::vector<index_t>& input_left_pads,
const std::vector<index_t>& input_right_pads)
{
const index_t Wi = input_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[0];
const index_t ConvStrideW = conv_filter_strides[0];
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const index_t NWo = N * std::accumulate(e_g_n_k_wos_lengths.begin() + 3,
e_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const auto in_gemmmraw_gemmk_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(GemmMRaw, GemmKRaw));
make_naive_tensor_descriptor_packed(make_tuple(NWo, C));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmk_grid_desc);
......@@ -262,7 +369,7 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
}
else
{
const index_t X = filter_spatial_lengths[0];
const index_t X = b_g_k_c_xs_lengths[3];
const index_t ConvDilationW = conv_filter_dilations[0];
const index_t InLeftPadW = input_left_pads[0];
const index_t InRightPadW = input_right_pads[0];
......@@ -301,24 +408,30 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
}
}
template <index_t NDim, typename std::enable_if<NDim == 2, bool>::type = false>
static auto GetInputTensorDescriptor(index_t N,
index_t C,
index_t GemmMRaw,
index_t GemmKRaw,
const std::vector<index_t>& input_spatial_lengths,
const std::vector<index_t>& filter_spatial_lengths,
const std::vector<index_t>& output_spatial_lengths,
const std::vector<index_t>& conv_filter_strides,
const std::vector<index_t>& conv_filter_dilations,
const std::vector<index_t>& input_left_pads,
const std::vector<index_t>& input_right_pads)
template <typename ALay,
typename std::enable_if<NDimSpatial == 2 &&
is_same_v<ALay, tensor_layout::convolution::GNHWC>,
bool>::type = false>
static auto
MakeAGridDescriptor_M_K(const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
{
const index_t Hi = input_spatial_lengths[0];
const index_t Wi = input_spatial_lengths[1];
const index_t N = a_g_n_c_wis_lengths[1];
const index_t C = a_g_n_c_wis_lengths[2];
const index_t Ho = output_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[1];
const index_t Hi = a_g_n_c_wis_lengths[3];
const index_t Wi = a_g_n_c_wis_lengths[4];
const index_t Ho = e_g_n_k_wos_lengths[3];
const index_t Wo = e_g_n_k_wos_lengths[4];
const index_t ConvStrideH = conv_filter_strides[0];
const index_t ConvStrideW = conv_filter_strides[1];
......@@ -326,8 +439,13 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const index_t NHoWo = N * std::accumulate(e_g_n_k_wos_lengths.begin() + 3,
e_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const auto in_gemmmraw_gemmkraw_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(GemmMRaw, GemmKRaw));
make_naive_tensor_descriptor_packed(make_tuple(NHoWo, C));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_grid_desc);
......@@ -363,8 +481,8 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
}
else
{
const index_t Y = filter_spatial_lengths[0];
const index_t X = filter_spatial_lengths[1];
const index_t Y = b_g_k_c_xs_lengths[3];
const index_t X = b_g_k_c_xs_lengths[4];
const index_t ConvDilationH = conv_filter_dilations[0];
const index_t ConvDilationW = conv_filter_dilations[1];
......@@ -411,26 +529,32 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
}
}
template <index_t NDim, typename std::enable_if<NDim == 3, bool>::type = false>
static auto GetInputTensorDescriptor(index_t N,
index_t C,
index_t GemmMRaw,
index_t GemmKRaw,
const std::vector<index_t>& input_spatial_lengths,
const std::vector<index_t>& filter_spatial_lengths,
const std::vector<index_t>& output_spatial_lengths,
const std::vector<index_t>& conv_filter_strides,
const std::vector<index_t>& conv_filter_dilations,
const std::vector<index_t>& input_left_pads,
const std::vector<index_t>& input_right_pads)
template <typename ALay,
typename std::enable_if<NDimSpatial == 3 &&
is_same_v<ALay, tensor_layout::convolution::GNDHWC>,
bool>::type = false>
static auto
MakeAGridDescriptor_M_K(const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
{
const index_t Di = input_spatial_lengths[0];
const index_t Hi = input_spatial_lengths[1];
const index_t Wi = input_spatial_lengths[2];
const index_t N = a_g_n_c_wis_lengths[1];
const index_t C = a_g_n_c_wis_lengths[2];
const index_t Di = a_g_n_c_wis_lengths[3];
const index_t Hi = a_g_n_c_wis_lengths[4];
const index_t Wi = a_g_n_c_wis_lengths[5];
const index_t Do = output_spatial_lengths[0];
const index_t Ho = output_spatial_lengths[1];
const index_t Wo = output_spatial_lengths[2];
const index_t Do = e_g_n_k_wos_lengths[3];
const index_t Ho = e_g_n_k_wos_lengths[4];
const index_t Wo = e_g_n_k_wos_lengths[5];
const index_t ConvStrideD = conv_filter_strides[0];
const index_t ConvStrideH = conv_filter_strides[1];
......@@ -439,8 +563,14 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const index_t NDoHoWo =
N * std::accumulate(e_g_n_k_wos_lengths.begin() + 3,
e_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const auto in_gemmmraw_gemmkraw_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(GemmMRaw, GemmKRaw));
make_naive_tensor_descriptor_packed(make_tuple(NDoHoWo, C));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_grid_desc);
......@@ -479,9 +609,9 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
}
else
{
const index_t Z = filter_spatial_lengths[0];
const index_t Y = filter_spatial_lengths[1];
const index_t X = filter_spatial_lengths[2];
const index_t Z = b_g_k_c_xs_lengths[3];
const index_t Y = b_g_k_c_xs_lengths[4];
const index_t X = b_g_k_c_xs_lengths[5];
const index_t ConvDilationD = conv_filter_dilations[0];
const index_t ConvDilationH = conv_filter_dilations[1];
......@@ -540,93 +670,574 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
}
}
static index_t GetGemmMRaw(index_t N, const std::vector<index_t>& output_spatial_lengths)
// TODO: implement ck::tensor_layout::convolution that describe packed/strided dimemsion as
// properties
template <typename ALay,
typename std::enable_if<NDimSpatial == 1 &&
(is_same_v<ALay, tensor_layout::convolution::G_NW_C> ||
is_same_v<ALay, tensor_layout::convolution::NWGC>),
bool>::type = false>
static auto
MakeAGridDescriptor_M_K(const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
{
return N * std::accumulate(std::begin(output_spatial_lengths),
std::end(output_spatial_lengths),
1,
std::multiplies<index_t>());
const index_t N = a_g_n_c_wis_lengths[1];
const index_t C = a_g_n_c_wis_lengths[2];
const index_t Wi = a_g_n_c_wis_lengths[3];
const index_t Wo = e_g_n_k_wos_lengths[3];
const index_t ConvStrideW = conv_filter_strides[0];
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const index_t NHoWo = N * std::accumulate(e_g_n_k_wos_lengths.begin() + 3,
e_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
// This is different
const index_t WiStride = a_g_n_c_wis_strides[2 + NDimSpatial];
const auto CStride = I1;
const auto in_gemmmraw_gemmk_grid_desc =
make_naive_tensor_descriptor(make_tuple(NHoWo, C), make_tuple(WiStride, CStride));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmk_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Pad0)
{
// This is different
const index_t NStride = a_g_n_c_wis_strides[1];
const index_t WiStride = a_g_n_c_wis_strides[3];
const auto CStride = I1;
const auto in_n_wi_c_grid_desc = make_naive_tensor_descriptor(
make_tuple(N, Wi, C), make_tuple(NStride, WiStride, CStride));
const auto in_n_wo_c_grid_desc = transform_tensor_descriptor(
in_n_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Wo), make_tuple(ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_gemmmraw_gemmkraw_grid_desc = transform_tensor_descriptor(
in_n_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, Wo)), make_pass_through_transform(C)),
make_tuple(Sequence<0, 1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
else
{
const index_t X = b_g_k_c_xs_lengths[3];
const index_t ConvDilationW = conv_filter_dilations[0];
const index_t InLeftPadW = input_left_pads[0];
const index_t InRightPadW = input_right_pads[0];
// This is different
const index_t NStride = a_g_n_c_wis_strides[1];
const index_t WiStride = a_g_n_c_wis_strides[3];
const auto CStride = I1;
const auto in_n_wi_c_grid_desc = make_naive_tensor_descriptor(
make_tuple(N, Wi, C), make_tuple(NStride, WiStride, CStride));
const auto in_n_wip_c_grid_desc = transform_tensor_descriptor(
in_n_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_n_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
const auto in_gemmmraw_gemmk_grid_desc =
transform_tensor_descriptor(in_n_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, Wo)),
make_merge_transform(make_tuple(X, C))),
make_tuple(Sequence<0, 2>{}, Sequence<1, 3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmk_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
}
template <typename ALay,
typename std::enable_if<NDimSpatial == 2 &&
(is_same_v<ALay, tensor_layout::convolution::G_NHW_C> ||
is_same_v<ALay, tensor_layout::convolution::NHWGC>),
bool>::type = false>
static auto
MakeAGridDescriptor_M_K(const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
{
const index_t N = a_g_n_c_wis_lengths[1];
const index_t C = a_g_n_c_wis_lengths[2];
const index_t Hi = a_g_n_c_wis_lengths[3];
const index_t Wi = a_g_n_c_wis_lengths[4];
const index_t Ho = e_g_n_k_wos_lengths[3];
const index_t Wo = e_g_n_k_wos_lengths[4];
const index_t ConvStrideH = conv_filter_strides[0];
const index_t ConvStrideW = conv_filter_strides[1];
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const index_t NHoWo = N * std::accumulate(e_g_n_k_wos_lengths.begin() + 3,
e_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
// This is different
const index_t WiStride = a_g_n_c_wis_strides[2 + NDimSpatial];
const auto CStride = I1;
const auto in_gemmmraw_gemmkraw_grid_desc =
make_naive_tensor_descriptor(make_tuple(NHoWo, C), make_tuple(WiStride, CStride));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Pad0)
{
// This is different
const index_t NStride = a_g_n_c_wis_strides[1];
const index_t HiStride = a_g_n_c_wis_strides[3];
const index_t WiStride = a_g_n_c_wis_strides[4];
const auto CStride = I1;
const auto in_n_hi_wi_c_grid_desc = make_naive_tensor_descriptor(
make_tuple(N, Hi, Wi, C), make_tuple(NStride, HiStride, WiStride, CStride));
const auto in_n_ho_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Ho), make_tuple(ConvStrideH)),
make_embed_transform(make_tuple(Wo), make_tuple(ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_gemmmraw_gemmk_grid_desc =
transform_tensor_descriptor(in_n_ho_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, Ho, Wo)),
make_pass_through_transform(C)),
make_tuple(Sequence<0, 1, 2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmk_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
else
{
const index_t Y = b_g_k_c_xs_lengths[3];
const index_t X = b_g_k_c_xs_lengths[4];
const index_t ConvDilationH = conv_filter_dilations[0];
const index_t ConvDilationW = conv_filter_dilations[1];
const index_t InLeftPadH = input_left_pads[0];
const index_t InLeftPadW = input_left_pads[1];
const index_t InRightPadH = input_right_pads[0];
const index_t InRightPadW = input_right_pads[1];
// This is different
const index_t NStride = a_g_n_c_wis_strides[1];
const index_t HiStride = a_g_n_c_wis_strides[3];
const index_t WiStride = a_g_n_c_wis_strides[4];
const auto CStride = I1;
const auto in_n_hi_wi_c_grid_desc = make_naive_tensor_descriptor(
make_tuple(N, Hi, Wi, C), make_tuple(NStride, HiStride, WiStride, CStride));
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_gemmmraw_gemmk_grid_desc =
transform_tensor_descriptor(in_n_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, Ho, Wo)),
make_merge_transform(make_tuple(Y, X, C))),
make_tuple(Sequence<0, 2, 4>{}, Sequence<1, 3, 5>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmk_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
}
static index_t GetGemmKRaw(index_t C, const std::vector<index_t>& filter_spatial_lengths)
template <typename ALay,
typename std::enable_if<NDimSpatial == 3 &&
(is_same_v<ALay, tensor_layout::convolution::G_NDHW_C> ||
is_same_v<ALay, tensor_layout::convolution::NDHWGC>),
bool>::type = false>
static auto
MakeAGridDescriptor_M_K(const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
{
return C * std::accumulate(std::begin(filter_spatial_lengths),
std::end(filter_spatial_lengths),
1,
std::multiplies<index_t>());
const index_t N = a_g_n_c_wis_lengths[1];
const index_t C = a_g_n_c_wis_lengths[2];
const index_t Di = a_g_n_c_wis_lengths[3];
const index_t Hi = a_g_n_c_wis_lengths[4];
const index_t Wi = a_g_n_c_wis_lengths[5];
const index_t Do = e_g_n_k_wos_lengths[3];
const index_t Ho = e_g_n_k_wos_lengths[4];
const index_t Wo = e_g_n_k_wos_lengths[5];
const index_t ConvStrideD = conv_filter_strides[0];
const index_t ConvStrideH = conv_filter_strides[1];
const index_t ConvStrideW = conv_filter_strides[2];
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const index_t NDoHoWo =
N * std::accumulate(e_g_n_k_wos_lengths.begin() + 3,
e_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
// This is different
const index_t WiStride = a_g_n_c_wis_strides[2 + NDimSpatial];
const auto CStride = I1;
const auto in_gemmmraw_gemmkraw_grid_desc =
make_naive_tensor_descriptor(make_tuple(NDoHoWo, C), make_tuple(WiStride, CStride));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Pad0)
{
// This is different
const index_t NStride = a_g_n_c_wis_strides[1];
const index_t DiStride = a_g_n_c_wis_strides[3];
const index_t HiStride = a_g_n_c_wis_strides[4];
const index_t WiStride = a_g_n_c_wis_strides[5];
const auto CStride = I1;
const auto in_n_di_hi_wi_c_grid_desc = make_naive_tensor_descriptor(
make_tuple(N, Di, Hi, Wi, C),
make_tuple(NStride, DiStride, HiStride, WiStride, CStride));
const auto in_n_do_ho_wo_c_grid_desc = transform_tensor_descriptor(
in_n_di_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Do), make_tuple(ConvStrideD)),
make_embed_transform(make_tuple(Ho), make_tuple(ConvStrideH)),
make_embed_transform(make_tuple(Wo), make_tuple(ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_gemmmraw_gemmkraw_grid_desc = transform_tensor_descriptor(
in_n_do_ho_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, Do, Ho, Wo)),
make_pass_through_transform(C)),
make_tuple(Sequence<0, 1, 2, 3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
else
{
const index_t Z = b_g_k_c_xs_lengths[3];
const index_t Y = b_g_k_c_xs_lengths[4];
const index_t X = b_g_k_c_xs_lengths[5];
const index_t ConvDilationD = conv_filter_dilations[0];
const index_t ConvDilationH = conv_filter_dilations[1];
const index_t ConvDilationW = conv_filter_dilations[2];
const index_t InLeftPadD = input_left_pads[0];
const index_t InLeftPadH = input_left_pads[1];
const index_t InLeftPadW = input_left_pads[2];
const index_t InRightPadD = input_right_pads[0];
const index_t InRightPadH = input_right_pads[1];
const index_t InRightPadW = input_right_pads[2];
// This is different
const index_t NStride = a_g_n_c_wis_strides[1];
const index_t DiStride = a_g_n_c_wis_strides[3];
const index_t HiStride = a_g_n_c_wis_strides[4];
const index_t WiStride = a_g_n_c_wis_strides[5];
const auto CStride = I1;
const auto in_n_di_hi_wi_c_grid_desc = make_naive_tensor_descriptor(
make_tuple(N, Di, Hi, Wi, C),
make_tuple(NStride, DiStride, HiStride, WiStride, CStride));
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_di_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Di, InLeftPadD, InRightPadD),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_n_z_do_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Z, Do), make_tuple(ConvDilationD, ConvStrideD)),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{},
Sequence<1, 2>{},
Sequence<3, 4>{},
Sequence<5, 6>{},
Sequence<7>{}));
const auto in_gemmmraw_gemmkraw_grid_desc = transform_tensor_descriptor(
in_n_z_do_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, Do, Ho, Wo)),
make_merge_transform(make_tuple(Z, Y, X, C))),
make_tuple(Sequence<0, 2, 4, 6>{}, Sequence<1, 3, 5, 7>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmm_gemmk_grid_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_grid_desc);
return in_gemmm_gemmk_grid_desc;
}
}
template <typename BLay,
typename std::enable_if<is_same_v<BLay, tensor_layout::convolution::GKXC> ||
is_same_v<BLay, tensor_layout::convolution::GKYXC> ||
is_same_v<BLay, tensor_layout::convolution::GKZYXC>,
bool>::type = false>
static auto
MakeABEGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(index_t N,
index_t K,
index_t C,
std::vector<index_t> input_spatial_lengths,
std::vector<index_t> filter_spatial_lengths,
std::vector<index_t> output_spatial_lengths,
std::vector<index_t> conv_filter_strides,
std::vector<index_t> conv_filter_dilations,
std::vector<index_t> input_left_pads,
std::vector<index_t> input_right_pads)
MakeBGridDescriptor_N_K(const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides)
{
using namespace ck;
const index_t GemmMRaw = GetGemmMRaw(N, output_spatial_lengths);
const index_t GemmNRaw = K;
const index_t GemmKRaw = GetGemmKRaw(C, filter_spatial_lengths);
// A:
const auto in_gemmm_gemmk_grid_desc =
GetInputTensorDescriptor<NDimSpatial>(N,
C,
GemmMRaw,
GemmKRaw,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
// B:
const auto wei_gemmn_gemmk_grid_desc = GetWeightTensorDescriptor(GemmNRaw, GemmKRaw);
// E:
const auto out_gemmm_gemmn_grid_desc = GetOutputTensorDescriptor(GemmMRaw, GemmNRaw);
return make_tuple(
in_gemmm_gemmk_grid_desc, wei_gemmn_gemmk_grid_desc, out_gemmm_gemmn_grid_desc);
const index_t K = b_g_k_c_xs_lengths[1];
const index_t C = b_g_k_c_xs_lengths[2];
const index_t YX = std::accumulate(b_g_k_c_xs_lengths.begin() + 3,
b_g_k_c_xs_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const auto wei_k_yxc_grid_desc = make_naive_tensor_descriptor_packed(make_tuple(K, YX * C));
const auto wei_gemmn_gemmk_grid_desc =
matrix_padder.PadBDescriptor_N_K(wei_k_yxc_grid_desc);
return wei_gemmn_gemmk_grid_desc;
}
template <index_t NDim, typename std::enable_if<NDim == 1, bool>::type = false>
static auto GetABEGridDesc()
template <typename BLay,
typename std::enable_if<is_same_v<BLay, tensor_layout::convolution::G_K_X_C> ||
is_same_v<BLay, tensor_layout::convolution::G_K_YX_C> ||
is_same_v<BLay, tensor_layout::convolution::G_K_ZYX_C> ||
is_same_v<BLay, tensor_layout::convolution::KXGC> ||
is_same_v<BLay, tensor_layout::convolution::KYXGC> ||
is_same_v<BLay, tensor_layout::convolution::KZYXGC>,
bool>::type = false>
static auto
MakeBGridDescriptor_N_K(const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides)
{
return MakeABEGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
1, 1, 1, {1}, {1}, {1}, {1}, {1}, {1}, {1});
const index_t K = b_g_k_c_xs_lengths[1];
const index_t C = b_g_k_c_xs_lengths[2];
const index_t YX = std::accumulate(b_g_k_c_xs_lengths.begin() + 3,
b_g_k_c_xs_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const index_t KStride = b_g_k_c_xs_strides[1];
const index_t XStride = b_g_k_c_xs_strides[2 + NDimSpatial];
const auto CStride = I1;
const auto wei_k_yx_c_grid_desc = make_naive_tensor_descriptor(
make_tuple(K, YX, C), make_tuple(KStride, XStride, CStride));
const auto wei_gemmnraw_gemmkraw_grid_desc = transform_tensor_descriptor(
wei_k_yx_c_grid_desc,
make_tuple(make_pass_through_transform(K), make_merge_transform(make_tuple(YX, C))),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto wei_gemmn_gemmk_grid_desc =
matrix_padder.PadBDescriptor_N_K(wei_gemmnraw_gemmkraw_grid_desc);
return wei_gemmn_gemmk_grid_desc;
}
template <index_t NDim, typename std::enable_if<NDim == 2, bool>::type = false>
static auto GetABEGridDesc()
template <typename ELay,
typename std::enable_if<is_same_v<ELay, tensor_layout::convolution::GNWK> ||
is_same_v<ELay, tensor_layout::convolution::GNHWK> ||
is_same_v<ELay, tensor_layout::convolution::GNDHWK>,
bool>::type = false>
static auto
MakeEGridDescriptor_M_N(const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides)
{
return MakeABEGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
1, 1, 1, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1});
const index_t N = e_g_n_k_wos_lengths[1];
const index_t K = e_g_n_k_wos_lengths[2];
const index_t NHoWo = N * std::accumulate(e_g_n_k_wos_lengths.begin() + 3,
e_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const auto out_gemmmraw_gemmnraw_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(NHoWo, K));
const auto out_gemmm_gemmn_grid_desc =
matrix_padder.PadCDescriptor_M_N(out_gemmmraw_gemmnraw_grid_desc);
return out_gemmm_gemmn_grid_desc;
}
template <index_t NDim, typename std::enable_if<NDim == 3, bool>::type = false>
static auto GetABEGridDesc()
template <typename ELay,
typename std::enable_if<is_same_v<ELay, tensor_layout::convolution::G_NW_K> ||
is_same_v<ELay, tensor_layout::convolution::G_NHW_K> ||
is_same_v<ELay, tensor_layout::convolution::G_NDHW_K> ||
is_same_v<ELay, tensor_layout::convolution::NWGK> ||
is_same_v<ELay, tensor_layout::convolution::NHWGK> ||
is_same_v<ELay, tensor_layout::convolution::NDHWGK>,
bool>::type = false>
static auto
MakeEGridDescriptor_M_N(const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides)
{
return MakeABEGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
1, 1, 1, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1});
const index_t N = e_g_n_k_wos_lengths[1];
const index_t K = e_g_n_k_wos_lengths[2];
const auto KStride = I1;
const index_t WoStride = e_g_n_k_wos_strides[NDimSpatial + 2];
const index_t NHoWo = N * std::accumulate(e_g_n_k_wos_lengths.begin() + 3,
e_g_n_k_wos_lengths.begin() + 3 + NDimSpatial,
index_t{1},
std::multiplies<index_t>());
const auto out_gemmmraw_gemmnraw_grid_desc =
make_naive_tensor_descriptor(make_tuple(NHoWo, K), make_tuple(WoStride, KStride));
const auto out_gemmm_gemmn_grid_desc =
matrix_padder.PadCDescriptor_M_N(out_gemmmraw_gemmnraw_grid_desc);
return out_gemmm_gemmn_grid_desc;
}
using ABEGridDescs = decltype(GetABEGridDesc<NDimSpatial>());
static auto MakeDsGridDescriptor_M_N(
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_lengths,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides)
{
return generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return DeviceOp::MakeEGridDescriptor_M_N<DLayout>(ds_g_n_k_wos_lengths[i],
ds_g_n_k_wos_strides[i]);
},
Number<NumDTensor>{});
}
using AGridDesc_M_K = remove_cvref_t<decltype(ABEGridDescs{}[I0])>;
using BGridDesc_N_K = remove_cvref_t<decltype(ABEGridDescs{}[I1])>;
using EGridDesc_M_N = remove_cvref_t<decltype(ABEGridDescs{}[I2])>;
using AGridDesc_M_K = remove_cvref_t<decltype(
MakeAGridDescriptor_M_K<ALayout>({}, {}, {}, {}, {}, {}, {}, {}, {}, {}))>;
using BGridDesc_N_K = remove_cvref_t<decltype(MakeBGridDescriptor_N_K<BLayout>({}, {}))>;
using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({}, {}))>;
using EGridDesc_M_N = remove_cvref_t<decltype(MakeEGridDescriptor_M_N<ELayout>({}, {}))>;
// GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle<
using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle<
ADataType, // TODO: distinguish A/B datatype
AccDataType,
CShuffleDataType,
......@@ -638,6 +1249,7 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
InMemoryDataOperationEnum::Set,
AGridDesc_M_K,
BGridDesc_N_K,
DsGridDesc_M_N,
EGridDesc_M_N,
NumGemmKPrefetchStage,
BlockSize,
......@@ -682,76 +1294,134 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
// Argument
struct Argument : public BaseArgument
{
Argument(const ADataType* p_in_grid,
const BDataType* p_wei_grid,
EDataType* p_out_grid,
index_t N,
index_t K,
index_t C,
std::vector<index_t> input_spatial_lengths,
std::vector<index_t> filter_spatial_lengths,
std::vector<index_t> output_spatial_lengths,
std::vector<index_t> conv_filter_strides,
std::vector<index_t> conv_filter_dilations,
std::vector<index_t> input_left_pads,
std::vector<index_t> input_right_pads,
AElementwiseOperation in_element_op,
BElementwiseOperation wei_element_op,
CDEElementwiseOperation out_element_op)
: p_a_grid_{static_cast<const ADataType*>(p_in_grid)},
p_b_grid_{static_cast<const BDataType*>(p_wei_grid)},
Argument(const void* p_a,
const void* p_b,
const std::array<const void*, NumDTensor>& p_ds,
void* p_e,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>&
ds_g_n_k_wos_lengths,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>&
ds_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op)
: p_a_grid_{static_cast<const ADataType*>(p_a)},
p_b_grid_{static_cast<const BDataType*>(p_b)},
p_ds_grid_{}, // FIXME
p_e_grid_{static_cast<EDataType*>(p_out_grid)},
p_e_grid_{static_cast<EDataType*>(p_e)},
a_grid_desc_m_k_{},
b_grid_desc_n_k_{},
ds_grid_desc_m_n_{},
e_grid_desc_m_n_{},
a_grid_desc_ak0_m_ak1_{},
b_grid_desc_bk0_n_bk1_{},
e_grid_desc_m_n_{},
ds_grid_desc_mblock_mperblock_nblock_nperblock_{},
e_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_etile_map_{},
a_element_op_{in_element_op},
b_element_op_{wei_element_op},
cde_element_op_{out_element_op},
Conv_N_{N},
Conv_K_{K},
Conv_C_{C},
filter_spatial_lengths_{filter_spatial_lengths},
compute_ptr_offset_of_batch_{},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op},
a_g_n_c_wis_lengths_{a_g_n_c_wis_lengths},
a_g_n_c_wis_strides_{a_g_n_c_wis_strides},
b_g_k_c_xs_lengths_{b_g_k_c_xs_lengths},
b_g_k_c_xs_strides_{b_g_k_c_xs_strides},
ds_g_n_k_wos_lengths_{ds_g_n_k_wos_lengths},
ds_g_n_k_wos_strides_{ds_g_n_k_wos_strides},
e_g_n_k_wos_lengths_{e_g_n_k_wos_lengths},
e_g_n_k_wos_strides_{e_g_n_k_wos_strides},
conv_filter_strides_{conv_filter_strides},
conv_filter_dilations_{conv_filter_dilations},
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads}
{
const auto descs =
DeviceOp::MakeABEGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
// A desc
a_grid_desc_m_k_ = DeviceOp::MakeAGridDescriptor_M_K<ALayout>(a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
const auto a_grid_desc_m_k = descs[I0];
const auto b_grid_desc_n_k = descs[I1];
e_grid_desc_m_n_ = descs[I2];
// B Desc
b_grid_desc_n_k_ =
DeviceOp::MakeBGridDescriptor_N_K<BLayout>(b_g_k_c_xs_lengths, b_g_k_c_xs_strides);
// E Desc
e_grid_desc_m_n_ = DeviceOp::MakeEGridDescriptor_M_N<ELayout>(e_g_n_k_wos_lengths,
e_g_n_k_wos_strides);
// A Des
a_grid_desc_ak0_m_ak1_ =
GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(a_grid_desc_m_k);
GridwiseGemm::MakeDefaultAGridDescriptor_AK0_M_AK1(a_grid_desc_m_k_);
// B Desc
b_grid_desc_bk0_n_bk1_ =
GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(b_grid_desc_n_k);
GridwiseGemm::MakeDefaultBGridDescriptor_BK0_N_BK1(b_grid_desc_n_k_);
// Block-to-e-tile
block_2_etile_map_ = Block2ETileMap{e_grid_desc_m_n_};
if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_,
b_grid_desc_bk0_n_bk1_,
// A/B/E Batch Stride
compute_ptr_offset_of_batch_.BatchStrideA_ = a_g_n_c_wis_strides[0];
compute_ptr_offset_of_batch_.BatchStrideB_ = b_g_k_c_xs_strides[0];
compute_ptr_offset_of_batch_.BatchStrideE_ = e_g_n_k_wos_strides[0];
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
// D pointer
p_ds_grid_(i) = static_cast<const DDataType*>(p_ds[i]);
// D batch stride
compute_ptr_offset_of_batch_.BatchStrideDs_(i) = ds_g_n_k_wos_strides[i][0];
// D desc
ds_grid_desc_m_n_(i) = DeviceOp::MakeEGridDescriptor_M_N<DLayout>(
ds_g_n_k_wos_lengths[i], ds_g_n_k_wos_strides[i]);
});
// populate desc for Ds/E
if(GridwiseGemm::CheckValidity(a_grid_desc_m_k_,
b_grid_desc_n_k_,
ds_grid_desc_m_n_,
e_grid_desc_m_n_,
block_2_etile_map_))
{
e_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
e_grid_desc_m_n_);
ds_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
ds_grid_desc_m_n_);
}
}
void Print() const
{
std::cout << "A[M, K]: " << a_grid_desc_m_k_ << std::endl;
std::cout << "B[N, K]: " << b_grid_desc_n_k_ << std::endl;
static_for<0, NumDTensor, 1>{}(
[&](auto i) { std::cout << "Ds[M, N]: " << ds_grid_desc_m_n_[i] << std::endl; });
std::cout << "E[M, N]: " << e_grid_desc_m_n_ << std::endl;
}
// private:
// pointers
const ADataType* p_a_grid_;
......@@ -760,33 +1430,41 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
EDataType* p_e_grid_;
// tensor descriptors
AGridDesc_M_K a_grid_desc_m_k_;
BGridDesc_N_K b_grid_desc_n_k_;
DsGridDesc_M_N ds_grid_desc_m_n_;
EGridDesc_M_N e_grid_desc_m_n_;
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
StaticallyIndexedArray<
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
NumDTensor>
ds_grid_desc_mblock_mperblock_nblock_nperblock_; // FIXME: Ds desc may be of different
// type from E
EGridDesc_M_N e_grid_desc_m_n_;
typename GridwiseGemm::DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_;
// block-to-e-tile map
Block2ETileMap block_2_etile_map_;
ComputePtrOffsetOfStridedBatch<NumDTensor> compute_ptr_offset_of_batch_;
// element-wise op
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
// for checking IsSupportedArgument()
index_t Conv_N_;
index_t Conv_K_;
index_t Conv_C_;
std::vector<index_t> filter_spatial_lengths_;
std::vector<index_t> conv_filter_strides_;
std::vector<index_t> input_left_pads_;
std::vector<index_t> input_right_pads_;
std::array<index_t, NDimSpatial + 3> a_g_n_c_wis_lengths_;
std::array<index_t, NDimSpatial + 3> a_g_n_c_wis_strides_;
std::array<index_t, NDimSpatial + 3> b_g_k_c_xs_lengths_;
std::array<index_t, NDimSpatial + 3> b_g_k_c_xs_strides_;
std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor> ds_g_n_k_wos_lengths_;
std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor> ds_g_n_k_wos_strides_;
std::array<index_t, NDimSpatial + 3> e_g_n_k_wos_lengths_;
std::array<index_t, NDimSpatial + 3> e_g_n_k_wos_strides_;
std::array<index_t, NDimSpatial> conv_filter_strides_;
std::array<index_t, NDimSpatial> conv_filter_dilations_;
std::array<index_t, NDimSpatial> input_left_pads_;
std::array<index_t, NDimSpatial> input_right_pads_;
};
// Invoker
......@@ -797,32 +1475,21 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
#if 1
{
std::cout << "arg.a_grid_desc_ak0_m_ak1_{"
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) << ", "
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I1) << ", "
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_bk0_n_bk1_{"
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I0) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I1) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.e_grid_desc_m_n_{ " << arg.e_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.e_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
arg.Print();
#endif
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_m_k_,
arg.b_grid_desc_n_k_,
arg.ds_grid_desc_m_n_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_))
{
throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting");
"wrong! GridwiseGemmMultipleD_xdl_cshuffle has invalid setting");
}
const index_t grid_size =
arg.block_2_etile_map_.CalculateGridSize(arg.e_grid_desc_m_n_);
arg.block_2_etile_map_.CalculateGridSize(arg.e_grid_desc_m_n_) *
arg.a_g_n_c_wis_lengths_[0];
const auto K =
arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
......@@ -830,7 +1497,7 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
auto launch_kernel = [&](auto has_main_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
const auto kernel = kernel_gemm_multiple_d_xdl_cshuffle<
const auto kernel = kernel_batch_gemm_multiple_d_xdl_cshuffle<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
typename GridwiseGemm::DsGridPointer,
......@@ -840,11 +1507,10 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
CDEElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
ck::StaticallyIndexedArray<
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
NumDTensor>,
typename GridwiseGemm::DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
Block2ETileMap,
ComputePtrOffsetOfStridedBatch<NumDTensor>,
has_main_loop>;
return launch_and_time_kernel(stream_config,
......@@ -859,25 +1525,23 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
arg.a_element_op_,
arg.b_element_op_,
arg.cde_element_op_,
arg.a_g_n_c_wis_lengths_[0], // Group count
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.ds_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.e_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_etile_map_);
arg.block_2_etile_map_,
arg.compute_ptr_offset_of_batch_);
};
float avg_time = 0;
if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{
avg_time = launch_kernel(integral_constant<bool, true>{});
return launch_kernel(integral_constant<bool, true>{});
}
else
{
avg_time = launch_kernel(integral_constant<bool, false>{});
return launch_kernel(integral_constant<bool, false>{});
}
return avg_time;
}
float Run(const BaseArgument* p_arg,
......@@ -889,21 +1553,10 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
static bool IsSupportedArgument(const Argument& arg)
{
#if 1
{
std::cout << "arg.a_grid_desc_ak0_m_ak1_{" << arg.a_grid_desc_ak0_m_ak1_.GetLength(I0)
<< ", " << arg.a_grid_desc_ak0_m_ak1_.GetLength(I1) << ", "
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I2) << "}" << std::endl;
namespace ctc = tensor_layout::convolution;
std::cout << "arg.b_grid_desc_bk0_n_bk1_{" << arg.b_grid_desc_bk0_n_bk1_.GetLength(I0)
<< ", " << arg.b_grid_desc_bk0_n_bk1_.GetLength(I1) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.e_grid_desc_m_n_{ " << arg.e_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.e_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
#endif
if(ck::get_device_name() == "gfx908")
// check device
if(get_device_name() == "gfx908")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, float> ||
is_same_v<AccDataType, int32_t>))
......@@ -911,7 +1564,7 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
return false;
}
}
else if(ck::get_device_name() == "gfx90a")
else if(get_device_name() == "gfx90a")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, float> ||
is_same_v<AccDataType, int32_t> || is_same_v<AccDataType, double>))
......@@ -924,24 +1577,19 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
return false;
}
// tensors can't be bigger than 2GB each.
constexpr ck::long_index_t GB2 = (ck::long_index_t{1} << 31);
if(arg.a_grid_desc_ak0_m_ak1_.GetElementSpaceSize() * sizeof(ADataType) > GB2 ||
arg.b_grid_desc_bk0_n_bk1_.GetElementSpaceSize() * sizeof(BDataType) > GB2 ||
arg.e_grid_desc_m_n_.GetElementSpaceSize() * sizeof(EDataType) > GB2)
{
return false;
}
// check ConvolutionForwardSpecialization
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
// check if it's 1x1, stride=1 conv
for(index_t i = 0; i < NDimSpatial; ++i)
{
if(!(arg.filter_spatial_lengths_[i] == 1 && arg.conv_filter_strides_[i] == 1 &&
arg.input_left_pads_[i] == 0 && arg.input_right_pads_[i] == 0))
const index_t X = arg.b_g_k_c_xs_lengths_[i + 2];
const index_t ConvStride = arg.conv_filter_strides_[i];
const index_t LeftPad = arg.input_left_pads_[i];
const index_t RightPad = arg.input_right_pads_[i];
if(!(X == 1 && ConvStride == 1 && LeftPad == 0 && RightPad == 0))
{
return false;
}
......@@ -953,31 +1601,112 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
// check if it's 1x1 conv
for(index_t i = 0; i < NDimSpatial; ++i)
{
if(!(arg.filter_spatial_lengths_[i] == 1 && arg.input_left_pads_[i] == 0 &&
arg.input_right_pads_[i] == 0))
const index_t X = arg.b_g_k_c_xs_lengths_[i + 2];
const index_t LeftPad = arg.input_left_pads_[i];
const index_t RightPad = arg.input_right_pads_[i];
if(!(X == 1 && LeftPad == 0 && RightPad == 0))
{
return false;
}
}
}
// vector load A/B matrix from global memory
if(!(ABlockTransferSrcVectorDim == 2 && BBlockTransferSrcVectorDim == 2 &&
arg.Conv_C_ % ABlockTransferSrcScalarPerVector == 0 &&
arg.Conv_C_ % BBlockTransferSrcScalarPerVector == 0))
// check vector access of A
// FIXME: layout
if constexpr(is_same_v<ALayout, ctc::G_NW_C> || is_same_v<ALayout, ctc::G_NHW_C> ||
is_same_v<ALayout, ctc::G_NDHW_C> || is_same_v<ALayout, ctc::GNWC> ||
is_same_v<ALayout, ctc::GNHWC> || is_same_v<ALayout, ctc::GNDHWC> ||
is_same_v<ALayout, ctc::NWGC> || is_same_v<ALayout, ctc::NHWGC> ||
is_same_v<ALayout, ctc::NDHWGC>)
{
const index_t C = arg.a_g_n_c_wis_lengths_[2];
if(!(ABlockTransferSrcVectorDim == 2 && C % ABlockTransferSrcScalarPerVector == 0))
{
return false;
}
}
else
{
return false;
}
// vector store D/E matrix into global memory
if(!(arg.Conv_K_ % CDEBlockTransferScalarPerVector_NPerBlock == 0))
// check vector access of B
// FIXME: layout
if constexpr(is_same_v<BLayout, ctc::G_K_X_C> || is_same_v<BLayout, ctc::G_K_YX_C> ||
is_same_v<BLayout, ctc::G_K_ZYX_C> || is_same_v<BLayout, ctc::GKXC> ||
is_same_v<BLayout, ctc::GKYXC> || is_same_v<BLayout, ctc::GKZYXC> ||
is_same_v<BLayout, ctc::KXGC> || is_same_v<BLayout, ctc::KYXGC> ||
is_same_v<BLayout, ctc::KZYXGC>)
{
const index_t C = arg.b_g_k_c_xs_lengths_[2];
if(!(BBlockTransferSrcVectorDim == 2 && C % BBlockTransferSrcScalarPerVector == 0))
{
return false;
}
}
else
{
return false;
}
// check vector access of Ds
bool valid = true;
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
// FIXME: layout
if constexpr(is_same_v<DLayout, ctc::G_NW_K> || is_same_v<DLayout, ctc::G_NHW_K> ||
is_same_v<DLayout, ctc::G_NDHW_K> || is_same_v<DLayout, ctc::GNWK> ||
is_same_v<DLayout, ctc::GNHWK> || is_same_v<DLayout, ctc::GNDHWK> ||
is_same_v<DLayout, ctc::NWGK> || is_same_v<DLayout, ctc::NHWGK> ||
is_same_v<DLayout, ctc::NDHWGK>)
{
const index_t K = arg.ds_g_n_k_wos_lengths_[i][2];
if(!(K % CDEBlockTransferScalarPerVector_NPerBlock == 0))
{
valid = false;
}
}
else
{
valid = false;
}
});
if(!valid)
{
return false;
}
// check vector access of E
if constexpr(is_same_v<ELayout, ctc::G_NW_K> || is_same_v<ELayout, ctc::G_NHW_K> ||
is_same_v<ELayout, ctc::G_NDHW_K> || is_same_v<ELayout, ctc::GNWK> ||
is_same_v<ELayout, ctc::GNHWK> || is_same_v<ELayout, ctc::GNDHWK> ||
is_same_v<ELayout, ctc::NWGK> || is_same_v<ELayout, ctc::NHWGK> ||
is_same_v<ELayout, ctc::NDHWGK>)
{
const index_t K = arg.e_g_n_k_wos_lengths_[2];
if(!(K % CDEBlockTransferScalarPerVector_NPerBlock == 0))
{
return false;
}
}
else
{
return false;
}
// Gridwise GEMM size
return GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
// check Gridwise GEMM
return GridwiseGemm::CheckValidity(arg.a_grid_desc_m_k_,
arg.b_grid_desc_n_k_,
arg.ds_grid_desc_m_n_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_);
}
......@@ -987,77 +1716,90 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const ADataType* p_in_grid,
const BDataType* p_wei_grid,
EDataType* p_out_grid,
index_t N,
index_t K,
index_t C,
std::vector<index_t> input_spatial_lengths,
std::vector<index_t> filter_spatial_lengths,
std::vector<index_t> output_spatial_lengths,
std::vector<index_t> conv_filter_strides,
std::vector<index_t> conv_filter_dilations,
std::vector<index_t> input_left_pads,
std::vector<index_t> input_right_pads,
AElementwiseOperation in_element_op,
BElementwiseOperation wei_element_op,
CDEElementwiseOperation out_element_op)
static auto MakeArgument(
const void* p_a,
const void* p_b,
const std::array<const void*, NumDTensor>& p_ds,
void* p_e,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_lengths,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op)
{
return Argument{p_in_grid,
p_wei_grid,
p_out_grid,
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
return Argument{p_a,
p_b,
p_ds,
p_e,
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
ds_g_n_k_wos_lengths,
ds_g_n_k_wos_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op};
a_element_op,
b_element_op,
cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const ADataType* p_in_grid,
const BDataType* p_wei_grid,
EDataType* p_out_grid,
index_t N,
index_t K,
index_t C,
std::vector<index_t> input_spatial_lengths,
std::vector<index_t> filter_spatial_lengths,
std::vector<index_t> output_spatial_lengths,
std::vector<index_t> conv_filter_strides,
std::vector<index_t> conv_filter_dilations,
std::vector<index_t> input_left_pads,
std::vector<index_t> input_right_pads,
AElementwiseOperation in_element_op,
BElementwiseOperation wei_element_op,
CDEElementwiseOperation out_element_op) override
std::unique_ptr<BaseArgument> MakeArgumentPointer(
const void* p_a,
const void* p_b,
const std::array<const void*, NumDTensor>& p_ds,
void* p_e,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_lengths,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_in_grid),
static_cast<const BDataType*>(p_wei_grid),
static_cast<EDataType*>(p_out_grid),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
return std::make_unique<Argument>(p_a,
p_b,
p_ds,
p_e,
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
ds_g_n_k_wos_lengths,
ds_g_n_k_wos_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
a_element_op,
b_element_op,
cde_element_op);
}
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment