Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
61510f0a
"...composable_kernel_rocm.git" did not exist on "b03761009d453d42df8b20d0b5a3e32ba84b87d2"
Commit
61510f0a
authored
Jul 25, 2022
by
Chao Liu
Browse files
clean
parent
65c56e56
Changes
16
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
16 changed files
with
1214 additions
and
3277 deletions
+1214
-3277
example/06_conv2d_fwd_bias_relu/CMakeLists.txt
example/06_conv2d_fwd_bias_relu/CMakeLists.txt
+0
-5
example/06_conv2d_fwd_bias_relu/README.md
example/06_conv2d_fwd_bias_relu/README.md
+0
-22
example/06_conv2d_fwd_bias_relu/conv2d_fwd_bias_relu_xdl_fp16.cpp
...06_conv2d_fwd_bias_relu/conv2d_fwd_bias_relu_xdl_fp16.cpp
+0
-348
example/07_conv2d_fwd_bias_relu_add/CMakeLists.txt
example/07_conv2d_fwd_bias_relu_add/CMakeLists.txt
+0
-2
example/07_conv2d_fwd_bias_relu_add/README.md
example/07_conv2d_fwd_bias_relu_add/README.md
+0
-24
example/07_conv2d_fwd_bias_relu_add/conv2d_fwd_bias_relu_add_xdl_fp16.cpp
...d_fwd_bias_relu_add/conv2d_fwd_bias_relu_add_xdl_fp16.cpp
+0
-354
example/28_group_convnd_fwd_bias_relu/CMakeLists.txt
example/28_group_convnd_fwd_bias_relu/CMakeLists.txt
+2
-1
example/28_group_convnd_fwd_bias_relu/README.md
example/28_group_convnd_fwd_bias_relu/README.md
+28
-0
example/28_group_convnd_fwd_bias_relu/group_convnd_fwd_bias_relu_xdl_fp16.cpp
...vnd_fwd_bias_relu/group_convnd_fwd_bias_relu_xdl_fp16.cpp
+0
-170
example/28_group_convnd_fwd_bias_relu/grouped_convnd_fwd_bias_common.hpp
...p_convnd_fwd_bias_relu/grouped_convnd_fwd_bias_common.hpp
+13
-14
example/28_group_convnd_fwd_bias_relu/grouped_convnd_fwd_bias_relu_xdl_fp16.cpp
...d_fwd_bias_relu/grouped_convnd_fwd_bias_relu_xdl_fp16.cpp
+54
-53
example/CMakeLists.txt
example/CMakeLists.txt
+0
-2
include/ck/tensor_operation/gpu/device/device_conv_fwd_multiple_d.hpp
...ensor_operation/gpu/device/device_conv_fwd_multiple_d.hpp
+0
-63
include/ck/tensor_operation/gpu/device/device_conv_fwd_multiple_d_xdl_cshuffle.hpp
...on/gpu/device/device_conv_fwd_multiple_d_xdl_cshuffle.hpp
+0
-1844
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp
...eration/gpu/device/device_grouped_conv_fwd_multiple_d.hpp
+23
-23
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp
...evice/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp
+1094
-352
No files found.
example/06_conv2d_fwd_bias_relu/CMakeLists.txt
deleted
100644 → 0
View file @
65c56e56
add_example_executable
(
example_conv2d_fwd_bias_relu_xdl_fp16 conv2d_fwd_bias_relu_xdl_fp16.cpp
)
target_link_libraries
(
example_conv2d_fwd_bias_relu_xdl_fp16 PRIVATE utility
)
add_example_executable
(
example_convnd_fwd_bias_relu_xdl_fp16 convnd_fwd_bias_relu_xdl_fp16.cpp
)
target_link_libraries
(
example_convnd_fwd_bias_relu_xdl_fp16 PRIVATE utility
)
example/06_conv2d_fwd_bias_relu/README.md
deleted
100644 → 0
View file @
65c56e56
# Instructions for ```example_conv_xdl_bias_relu```
## Run ```example_conv_xdl_bias_relu```
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx
./bin/example_conv_xdl_bias_relu 0 1 5
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
wei_k_c_y_x: dim 4, lengths {256, 192, 3, 3}, strides {1728, 1, 576, 192}
out_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
bias_k: dim 1, lengths {256}, strides {1}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 1.39009 ms, 105.581 TFlops, 239.981 GB/s
```
example/06_conv2d_fwd_bias_relu/conv2d_fwd_bias_relu_xdl_fp16.cpp
deleted
100644 → 0
View file @
65c56e56
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv2d_fwd_xdl_c_shuffle_bias_activation_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
namespace
{
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
KYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NHWK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
static
constexpr
auto
MemorySet
=
ck
::
InMemoryDataOperationEnum
::
Set
;
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
// clang-format off
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
InDataType
,
// InDataType
WeiDataType
,
// WeiDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
InElementOp
,
// InElementwiseOperation
WeiElementOp
,
// WeiElementwiseOperation
OutElementOp
,
// OutElementwiseOperation
MemorySet
,
// OutGlobalMemoryDataOperation
ConvFwdDefault
,
// ConvForwardSpecialization
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
4
,
// K0PerBlock
8
,
// K1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
// CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
8
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
void
print_helper_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
"arg4: N spatial dimensions (default 2)
\n
"
<<
"Following arguments (depending on number of spatial dims):
\n
"
<<
" N, K, C,
\n
"
<<
" <filter spatial dimensions>, (ie Y, X for 2D)
\n
"
<<
" <input image spatial dimensions>, (ie Hi, Wi for 2D)
\n
"
<<
" <strides>, (ie Sy, Sx for 2D)
\n
"
<<
" <dilations>, (ie Dy, Dx for 2D)
\n
"
<<
" <left padding>, (ie LeftPy, LeftPx for 2D)
\n
"
<<
" <right padding>, (ie RightPy, RightPx for 2D)
\n
"
<<
std
::
endl
;
}
ck
::
utils
::
conv
::
ConvParam
parse_conv_param
(
int
num_dim_spatial
,
int
arg_idx
,
char
*
const
argv
[])
{
const
ck
::
index_t
N
=
std
::
stoi
(
argv
[
arg_idx
++
]);
const
ck
::
index_t
K
=
std
::
stoi
(
argv
[
arg_idx
++
]);
const
ck
::
index_t
C
=
std
::
stoi
(
argv
[
arg_idx
++
]);
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
(
num_dim_spatial
);
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
(
num_dim_spatial
);
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
(
num_dim_spatial
);
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
(
num_dim_spatial
);
std
::
vector
<
ck
::
index_t
>
input_left_pads
(
num_dim_spatial
);
std
::
vector
<
ck
::
index_t
>
input_right_pads
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
filter_spatial_lengths
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
input_spatial_lengths
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
conv_filter_strides
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
conv_filter_dilations
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
input_left_pads
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
input_right_pads
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
return
ck
::
utils
::
conv
::
ConvParam
{
num_dim_spatial
,
N
,
K
,
C
,
filter_spatial_lengths
,
input_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
};
}
}
// namespace
int
main
(
int
argc
,
char
*
argv
[])
{
print_helper_msg
();
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
num_dim_spatial
=
2
;
ck
::
utils
::
conv
::
ConvParam
params
{
2
,
128
,
256
,
192
,
{
3
,
3
},
{
71
,
71
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
params
=
parse_conv_params
(
num_dim_spatial
,
5
,
argv
);
}
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{};
auto
f_nhwc_host_tensor_descriptor
=
[](
ck
::
index_t
n
,
ck
::
index_t
c
,
std
::
vector
<
ck
::
index_t
>
spatial_lengths
)
{
std
::
vector
<
std
::
size_t
>
nhwc_lengths
{
static_cast
<
std
::
size_t
>
(
n
),
static_cast
<
std
::
size_t
>
(
c
)};
nhwc_lengths
.
insert
(
nhwc_lengths
.
begin
()
+
1
,
spatial_lengths
.
begin
(),
spatial_lengths
.
end
());
return
HostTensorDescriptor
(
nhwc_lengths
);
};
Tensor
<
InDataType
>
in_n_hi_wi_c
(
f_nhwc_host_tensor_descriptor
(
params
.
N_
,
params
.
C_
,
params
.
input_spatial_lengths_
));
Tensor
<
WeiDataType
>
wei_k_y_x_c
(
f_nhwc_host_tensor_descriptor
(
params
.
K_
,
params
.
C_
,
params
.
filter_spatial_lengths_
));
// bias: assume contiguous 1d vector
Tensor
<
OutDataType
>
bias_k
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
params
.
K_
)})));
Tensor
<
OutDataType
>
out_n_ho_wo_k_host
(
f_nhwc_host_tensor_descriptor
(
params
.
N_
,
params
.
K_
,
params
.
GetOutputSpatialLengths
()));
Tensor
<
OutDataType
>
out_n_ho_wo_k_device
(
f_nhwc_host_tensor_descriptor
(
params
.
N_
,
params
.
K_
,
params
.
GetOutputSpatialLengths
()));
std
::
cout
<<
"in_n_hi_wi_c: "
<<
in_n_hi_wi_c
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_y_x_c: "
<<
wei_k_y_x_c
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias_k: "
<<
bias_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
out_n_ho_wo_k_host
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in_n_hi_wi_c
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei_k_y_x_c
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
break
;
default:
in_n_hi_wi_c
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei_k_y_x_c
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.0
,
1.0
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_hi_wi_c
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_y_x_c
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_device_buf
(
sizeof
(
OutDataType
)
*
bias_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_ho_wo_k_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in_n_hi_wi_c
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_k_y_x_c
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_k
.
mData
.
data
());
// do GEMM
auto
conv
=
DeviceConvFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
static_cast
<
const
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
OutDataType
*>
(
bias_device_buf
.
GetDeviceBuffer
()),
params
.
N_
,
params
.
K_
,
params
.
C_
,
params
.
input_spatial_lengths_
,
params
.
filter_spatial_lengths_
,
params
.
GetOutputSpatialLengths
(),
params
.
conv_filter_strides_
,
params
.
conv_filter_dilations_
,
params
.
input_left_pads_
,
params
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
params
.
GetFlops
();
std
::
size_t
num_btype
=
params
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
// use OutDataType for intermediate data
Tensor
<
OutDataType
>
tmp_n_ho_wo_k_host
(
f_nhwc_host_tensor_descriptor
(
params
.
N_
,
params
.
K_
,
params
.
GetOutputSpatialLengths
()));
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
2
,
ck
::
tensor_layout
::
convolution
::
NHWC
,
ck
::
tensor_layout
::
convolution
::
KYXC
,
ck
::
tensor_layout
::
convolution
::
NHWK
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
PassThrough
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in_n_hi_wi_c
,
wei_k_y_x_c
,
tmp_n_ho_wo_k_host
,
params
.
conv_filter_strides_
,
params
.
conv_filter_dilations_
,
params
.
input_left_pads_
,
params
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
// FIXME: implement reference pointwise operation
for
(
int
n
=
0
;
n
<
params
.
N_
;
n
++
)
{
for
(
int
ho
=
0
;
ho
<
params
.
output_spatial_lengths_
[
0
];
ho
++
)
{
for
(
int
wo
=
0
;
wo
<
params
.
output_spatial_lengths_
[
1
];
wo
++
)
{
for
(
int
k
=
0
;
k
<
params
.
K_
;
k
++
)
{
out_element_op
(
out_n_ho_wo_k_host
(
n
,
ho
,
wo
,
k
),
tmp_n_ho_wo_k_host
(
n
,
ho
,
wo
,
k
),
bias_k
(
k
));
}
}
}
}
out_device_buf
.
FromDevice
(
out_n_ho_wo_k_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
out_n_ho_wo_k_host
.
mData
,
out_n_ho_wo_k_device
.
mData
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
)
?
0
:
1
;
}
return
0
;
}
example/07_conv2d_fwd_bias_relu_add/CMakeLists.txt
deleted
100644 → 0
View file @
65c56e56
add_example_executable
(
example_conv2d_fwd_bias_relu_add_xdl_fp16 conv2d_fwd_bias_relu_add_xdl_fp16.cpp
)
target_link_libraries
(
example_conv2d_fwd_bias_relu_add_xdl_fp16 PRIVATE utility
)
example/07_conv2d_fwd_bias_relu_add/README.md
deleted
100644 → 0
View file @
65c56e56
# Instructions for ```example_conv_xdl_bias_relu_add```
## Run ```example_conv_xdl_bias_relu_add```
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx
./bin/example_conv_xdl_bias_relu_add 0 1 5
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
wei_k_c_y_x: dim 4, lengths {256, 192, 3, 3}, strides {1728, 1, 576, 192}
out_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
bias_k: dim 1, lengths {256}, strides {1}
resi_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 1.44711 ms, 101.421 TFlops, 289.218 GB/s
```
example/07_conv2d_fwd_bias_relu_add/conv2d_fwd_bias_relu_add_xdl_fp16.cpp
deleted
100644 → 0
View file @
65c56e56
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv2d_fwd_xdl_c_shuffle_bias_activation_add_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
namespace
{
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
KYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NHWK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
// clang-format off
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Add_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
InDataType
,
// InDataType
WeiDataType
,
// WeiDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
InElementOp
,
// InElementwiseOperation
WeiElementOp
,
// WeiElementwiseOperation
OutElementOp
,
// OutElementwiseOperation
ConvFwdDefault
,
// ConvForwardSpecialization
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
4
,
// K0PerBlock
8
,
// K1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
// CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
8
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
void
print_helper_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
"arg4: N spatial dimensions (default 2)
\n
"
<<
"Following arguments (depending on number of spatial dims):
\n
"
<<
" N, K, C,
\n
"
<<
" <filter spatial dimensions>, (ie Y, X for 2D)
\n
"
<<
" <in_n_hi_wi_c image spatial dimensions>, (ie Hi, Wi for 2D)
\n
"
<<
" <strides>, (ie Sy, Sx for 2D)
\n
"
<<
" <dilations>, (ie Dy, Dx for 2D)
\n
"
<<
" <left padding>, (ie LeftPy, LeftPx for 2D)
\n
"
<<
" <right padding>, (ie RightPy, RightPx for 2D)
\n
"
<<
std
::
endl
;
}
ck
::
utils
::
conv
::
ConvParam
parse_conv_params
(
int
num_dim_spatial
,
int
arg_idx
,
char
*
const
argv
[])
{
const
ck
::
index_t
N
=
std
::
stoi
(
argv
[
arg_idx
++
]);
const
ck
::
index_t
K
=
std
::
stoi
(
argv
[
arg_idx
++
]);
const
ck
::
index_t
C
=
std
::
stoi
(
argv
[
arg_idx
++
]);
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
(
num_dim_spatial
);
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
(
num_dim_spatial
);
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
(
num_dim_spatial
);
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
(
num_dim_spatial
);
std
::
vector
<
ck
::
index_t
>
input_left_pads
(
num_dim_spatial
);
std
::
vector
<
ck
::
index_t
>
input_right_pads
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
filter_spatial_lengths
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
input_spatial_lengths
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
conv_filter_strides
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
conv_filter_dilations
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
input_left_pads
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
input_right_pads
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
return
ck
::
utils
::
conv
::
ConvParam
{
num_dim_spatial
,
N
,
K
,
C
,
filter_spatial_lengths
,
input_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
};
}
}
// anonymous namespace
int
main
(
int
argc
,
char
*
argv
[])
{
print_helper_msg
();
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
num_dim_spatial
=
2
;
ck
::
utils
::
conv
::
ConvParam
params
{
2
,
128
,
256
,
192
,
{
3
,
3
},
{
71
,
71
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
params
=
parse_conv_params
(
num_dim_spatial
,
5
,
argv
);
}
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{};
auto
f_nhwc_host_tensor_descriptor
=
[](
ck
::
index_t
n
,
ck
::
index_t
c
,
std
::
vector
<
ck
::
index_t
>
spatial_lengths
)
{
std
::
vector
<
std
::
size_t
>
nhwc_lengths
{
static_cast
<
std
::
size_t
>
(
n
),
static_cast
<
std
::
size_t
>
(
c
)};
nhwc_lengths
.
insert
(
nhwc_lengths
.
begin
()
+
1
,
spatial_lengths
.
begin
(),
spatial_lengths
.
end
());
return
HostTensorDescriptor
(
nhwc_lengths
);
};
Tensor
<
InDataType
>
in_n_hi_wi_c
(
f_nhwc_host_tensor_descriptor
(
params
.
N_
,
params
.
C_
,
params
.
input_spatial_lengths_
));
Tensor
<
WeiDataType
>
wei_k_y_x_c
(
f_nhwc_host_tensor_descriptor
(
params
.
K_
,
params
.
C_
,
params
.
filter_spatial_lengths_
));
// bias: assume contiguous 1d vector
Tensor
<
OutDataType
>
bias_k
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
params
.
K_
)})));
// resi: assume same layout as output tensor
Tensor
<
OutDataType
>
resi_n_ho_wo_k
(
f_nhwc_host_tensor_descriptor
(
params
.
N_
,
params
.
K_
,
params
.
GetOutputSpatialLengths
()));
Tensor
<
OutDataType
>
out_n_ho_wo_k_host
(
f_nhwc_host_tensor_descriptor
(
params
.
N_
,
params
.
K_
,
params
.
GetOutputSpatialLengths
()));
Tensor
<
OutDataType
>
out_n_ho_wo_k_device
(
f_nhwc_host_tensor_descriptor
(
params
.
N_
,
params
.
K_
,
params
.
GetOutputSpatialLengths
()));
std
::
cout
<<
"in_n_hi_wi_c: "
<<
in_n_hi_wi_c
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_y_x_c: "
<<
wei_k_y_x_c
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias_k: "
<<
bias_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"resi_n_ho_wo_k: "
<<
resi_n_ho_wo_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_ho_wo_k: "
<<
out_n_ho_wo_k_host
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in_n_hi_wi_c
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei_k_y_x_c
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
resi_n_ho_wo_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
break
;
default:
in_n_hi_wi_c
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei_k_y_x_c
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.0
,
1.0
});
resi_n_ho_wo_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.0
,
1.0
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_hi_wi_c
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_y_x_c
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_device_buf
(
sizeof
(
OutDataType
)
*
bias_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
resi_device_buf
(
sizeof
(
OutDataType
)
*
resi_n_ho_wo_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_ho_wo_k_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in_n_hi_wi_c
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_k_y_x_c
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_k
.
mData
.
data
());
resi_device_buf
.
ToDevice
(
resi_n_ho_wo_k
.
mData
.
data
());
auto
conv
=
DeviceConvFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
static_cast
<
const
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
OutDataType
*>
(
bias_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
OutDataType
*>
(
resi_device_buf
.
GetDeviceBuffer
()),
params
.
N_
,
params
.
K_
,
params
.
C_
,
params
.
input_spatial_lengths_
,
params
.
filter_spatial_lengths_
,
params
.
output_spatial_lengths_
,
params
.
conv_filter_strides_
,
params
.
conv_filter_dilations_
,
params
.
input_left_pads_
,
params
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device operator with the specified compilation parameters does "
"not support this problem"
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
params
.
GetFlops
();
std
::
size_t
num_btype
=
params
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
// use OutDataType for intermediate data
Tensor
<
OutDataType
>
tmp_n_ho_wo_k_host
(
f_nhwc_host_tensor_descriptor
(
params
.
N_
,
params
.
K_
,
params
.
GetOutputSpatialLengths
()));
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
2
,
ck
::
tensor_layout
::
convolution
::
NHWC
,
ck
::
tensor_layout
::
convolution
::
KYXC
,
ck
::
tensor_layout
::
convolution
::
NHWK
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
PassThrough
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in_n_hi_wi_c
,
wei_k_y_x_c
,
tmp_n_ho_wo_k_host
,
params
.
conv_filter_strides_
,
params
.
conv_filter_dilations_
,
params
.
input_left_pads_
,
params
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
// FIXME: implement reference pointwise operation
for
(
int
n
=
0
;
n
<
params
.
N_
;
n
++
)
{
for
(
int
ho
=
0
;
ho
<
params
.
output_spatial_lengths_
[
0
];
ho
++
)
{
for
(
int
wo
=
0
;
wo
<
params
.
output_spatial_lengths_
[
1
];
wo
++
)
{
for
(
int
k
=
0
;
k
<
params
.
K_
;
k
++
)
{
out_element_op
(
out_n_ho_wo_k_host
(
n
,
ho
,
wo
,
k
),
tmp_n_ho_wo_k_host
(
n
,
ho
,
wo
,
k
),
bias_k
(
k
),
resi_n_ho_wo_k
(
n
,
ho
,
wo
,
k
));
}
}
}
}
out_device_buf
.
FromDevice
(
out_n_ho_wo_k_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
out_n_ho_wo_k_host
.
mData
,
out_n_ho_wo_k_device
.
mData
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
)
?
0
:
1
;
}
return
0
;
}
example/28_group_convnd_fwd_bias_relu/CMakeLists.txt
View file @
61510f0a
add_example_executable
(
example_group_convnd_fwd_bias_relu_xdl_fp16 group_convnd_fwd_bias_relu_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_convnd_fwd_bias_relu_xdl_fp16 grouped_convnd_fwd_bias_relu_xdl_fp16.cpp
)
target_link_libraries
(
example_grouped_convnd_fwd_bias_relu_xdl_fp16 PRIVATE utility
)
example/28_group_convnd_fwd_bias_relu/README.md
0 → 100644
View file @
61510f0a
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: time kernel (0=no, 1=yes)
#Following arguments (depending on number of spatial dims):
# N spatial dimensions
# G, N, K, C,
# <filter spatial dimensions>, (ie Y, X for 2D)
# <input image spatial dimensions>, (ie Hi, Wi for 2D)
# <strides>, (ie Sy, Sx for 2D)
# <dilations>, (ie Dy, Dx for 2D)
# <left padding>, (ie LeftPy, LeftPx for 2D)
# <right padding>, (ie RightPy, RightPx for 2D)
bin/example_grouped_convnd_fwd_bias_relu_xdl_fp16 1 1 1
```
Result (MI100)
```
in: dim 5, lengths {1, 128, 192, 71, 71}, strides {6912, 967872, 1, 13632, 192}
wei: dim 5, lengths {1, 256, 192, 3, 3}, strides {192, 1728, 1, 576, 192}
bias: dim 5, lengths {1, 128, 256, 36, 36}, strides {256, 0, 1, 0, 0}
out: dim 5, lengths {1, 128, 256, 36, 36}, strides {256, 331776, 1, 9216, 256}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 1.19215 ms, 123.112 TFlops, 279.827 GB/s, DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<256, 128, 256, 32, Default>
```
example/28_group_convnd_fwd_bias_relu/group_convnd_fwd_bias_relu_xdl_fp16.cpp
deleted
100644 → 0
View file @
65c56e56
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "../09_convnd_fwd/convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_fwd_nwc_kxc_nwk_xdl.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_fwd_multiple_d_nwc_kxc_nwk_xdl_cshuffle.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryConvert
;
using
CShuffleDataType
=
ck
::
half_t
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceConvNdFwdMultipleD_NwcKxcNwk_Xdl_CShuffle
<
NDimSpatial
,
//
InDataType
,
//
WeiDataType
,
//
AccDataType
,
//
CShuffleDataType
,
//
ck
::
Tuple
<>
,
//
OutDataType
,
//
InElementOp
,
// Input Elementwise Operation
WeiElementOp
,
// Weights Elementwise Operation
OutElementOp
,
// Output Elementwise Operation
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// K1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
print_helper_msg
();
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
num_dim_spatial
=
2
;
ck
::
utils
::
conv
::
ConvParam
params
{
2
,
128
,
256
,
192
,
{
3
,
3
},
{
71
,
71
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
params
=
parse_conv_params
(
num_dim_spatial
,
5
,
argv
);
}
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{};
if
(
num_dim_spatial
==
1
)
{
return
run_conv_fwd
<
1
,
ck
::
tensor_layout
::
convolution
::
NWC
,
ck
::
tensor_layout
::
convolution
::
KXC
,
ck
::
tensor_layout
::
convolution
::
NWK
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceConvNDFwdInstance
<
1
>>
(
do_verification
,
init_method
,
time_kernel
,
params
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
else
if
(
num_dim_spatial
==
2
)
{
return
run_conv_fwd
<
2
,
ck
::
tensor_layout
::
convolution
::
NHWC
,
ck
::
tensor_layout
::
convolution
::
KYXC
,
ck
::
tensor_layout
::
convolution
::
NHWK
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceConvNDFwdInstance
<
2
>>
(
do_verification
,
init_method
,
time_kernel
,
params
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
else
if
(
num_dim_spatial
==
3
)
{
return
run_conv_fwd
<
3
,
ck
::
tensor_layout
::
convolution
::
NDHWC
,
ck
::
tensor_layout
::
convolution
::
KZYXC
,
ck
::
tensor_layout
::
convolution
::
NDHWK
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceConvNDFwdInstance
<
3
>>
(
do_verification
,
init_method
,
time_kernel
,
params
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
return
0
;
}
example/
06
_conv
2
d_fwd_bias_relu/convnd_fwd_bias_common.hpp
→
example/
28_group
_conv
n
d_fwd_bias_relu/
grouped_
convnd_fwd_bias_common.hpp
View file @
61510f0a
...
@@ -23,8 +23,8 @@ void print_helper_msg()
...
@@ -23,8 +23,8 @@ void print_helper_msg()
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
"arg4: N spatial dimensions (default 2)
\n
"
<<
"Following arguments (depending on number of spatial dims):
\n
"
<<
"Following arguments (depending on number of spatial dims):
\n
"
<<
" N spatial dimensions (1=Conv1d, 2=Conv2d, 3=Conv3d)
\n
"
<<
" G, N, K, C,
\n
"
<<
" G, N, K, C,
\n
"
<<
" <filter spatial dimensions>, (ie Y, X for 2D)
\n
"
<<
" <filter spatial dimensions>, (ie Y, X for 2D)
\n
"
<<
" <input image spatial dimensions>, (ie Hi, Wi for 2D)
\n
"
<<
" <input image spatial dimensions>, (ie Hi, Wi for 2D)
\n
"
...
@@ -92,7 +92,6 @@ ck::utils::conv::ConvParam parse_conv_param(int num_dim_spatial, int arg_idx, ch
...
@@ -92,7 +92,6 @@ ck::utils::conv::ConvParam parse_conv_param(int num_dim_spatial, int arg_idx, ch
input_right_pads
};
input_right_pads
};
}
}
// FIXME: current implementation only support NCHW/NHWC layout
template
<
ck
::
index_t
NDimSpatial
,
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
InDataType
,
typename
WeiDataType
,
typename
WeiDataType
,
...
@@ -101,17 +100,17 @@ template <ck::index_t NDimSpatial,
...
@@ -101,17 +100,17 @@ template <ck::index_t NDimSpatial,
typename
WeiElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
OutElementOp
,
typename
DeviceConvNDFwdInstance
>
typename
DeviceConvNDFwdInstance
>
int
run_conv_fwd_bias
(
bool
do_verification
,
int
run_
grouped_
conv_fwd_bias
(
bool
do_verification
,
int
init_method
,
int
init_method
,
bool
time_kernel
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
bias_g_n_k_wos_desc
,
const
HostTensorDescriptor
&
bias_g_n_k_wos_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
const
OutElementOp
&
out_element_op
)
{
{
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
...
@@ -175,7 +174,7 @@ int run_conv_fwd_bias(bool do_verification,
...
@@ -175,7 +174,7 @@ int run_conv_fwd_bias(bool do_verification,
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
// do
GEMM
// do
Conv
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
auto
argument
=
conv
.
MakeArgument
(
...
...
example/
06
_conv
2
d_fwd_bias_relu/convnd_fwd_bias_relu_xdl_fp16.cpp
→
example/
28_group
_conv
n
d_fwd_bias_relu/
grouped_
convnd_fwd_bias_relu_xdl_fp16.cpp
View file @
61510f0a
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_bias_common.hpp"
#include "
grouped_
convnd_fwd_bias_common.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/device_
grouped_
conv_fwd_multiple_d_xdl_cshuffle.hpp"
using
InDataType
=
ck
::
half_t
;
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
...
@@ -29,51 +29,52 @@ template <ck::index_t NDimSpatial,
...
@@ -29,51 +29,52 @@ template <ck::index_t NDimSpatial,
typename
WeiLayout
,
typename
WeiLayout
,
typename
BiasLayout
,
typename
BiasLayout
,
typename
OutLayout
>
typename
OutLayout
>
using
DeviceConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceConvFwdMultipleD_Xdl_CShuffle
<
using
DeviceGroupledConvNDFwdInstance
=
NDimSpatial
,
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
InLayout
,
NDimSpatial
,
WeiLayout
,
InLayout
,
ck
::
Tuple
<
BiasLayout
>
,
WeiLayout
,
OutLayout
,
ck
::
Tuple
<
BiasLayout
>
,
InDataType
,
OutLayout
,
WeiDataType
,
InDataType
,
AccDataType
,
WeiDataType
,
CShuffleDataType
,
AccDataType
,
ck
::
Tuple
<
BiasDataType
>
,
CShuffleDataType
,
OutDataType
,
ck
::
Tuple
<
BiasDataType
>
,
InElementOp
,
OutDataType
,
WeiElementOp
,
InElementOp
,
OutElementOp
,
WeiElementOp
,
ConvSpec
,
// ConvForwardSpecialization
OutElementOp
,
GemmSpec
,
// GemmSpecialization
ConvSpec
,
// ConvForwardSpecialization
1
,
//
GemmSpec
,
// GemmSpecialization
256
,
// BlockSize
1
,
//
128
,
// MPerBlock
256
,
// BlockSize
256
,
// NPerBlock
128
,
// MPerBlock
32
,
// KPerBlock
256
,
// NPerBlock
8
,
// K1
32
,
// KPerBlock
32
,
// MPerXdl
8
,
// K1
32
,
// NPerXdl
32
,
// MPerXdl
2
,
// MXdlPerWave
32
,
// NPerXdl
4
,
// NXdlPerWave
2
,
// MXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
4
,
// NXdlPerWave
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
2
,
// ABlockTransferSrcVectorDim
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
8
,
// ABlockTransferSrcScalarPerVector
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferDstScalarPerVector_K1
8
,
// ABlockTransferSrcScalarPerVector
1
,
// ABlockLdsExtraM
8
,
// ABlockTransferDstScalarPerVector_K1
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
1
,
// ABlockLdsExtraM
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
2
,
// BBlockTransferSrcVectorDim
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
8
,
// BBlockTransferSrcScalarPerVector
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferDstScalarPerVector_K1
8
,
// BBlockTransferSrcScalarPerVector
1
,
// BBlockLdsExtraN
8
,
// BBlockTransferDstScalarPerVector_K1
1
,
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
1
,
8
>
;
S
<
1
,
32
,
1
,
8
>
,
8
>
;
int
main
(
int
argc
,
char
*
argv
[])
int
main
(
int
argc
,
char
*
argv
[])
{
{
...
@@ -155,7 +156,7 @@ int main(int argc, char* argv[])
...
@@ -155,7 +156,7 @@ int main(int argc, char* argv[])
conv_param
.
G_
*
conv_param
.
K_
// wo
conv_param
.
G_
*
conv_param
.
K_
// wo
});
});
return
run_conv_fwd_bias
<
return
run_
grouped_
conv_fwd_bias
<
1
,
1
,
InDataType
,
InDataType
,
WeiDataType
,
WeiDataType
,
...
@@ -163,7 +164,7 @@ int main(int argc, char* argv[])
...
@@ -163,7 +164,7 @@ int main(int argc, char* argv[])
InElementOp
,
InElementOp
,
WeiElementOp
,
WeiElementOp
,
OutElementOp
,
OutElementOp
,
DeviceConvNDFwdInstance
<
1
,
InLayout
,
WeiLayout
,
BiasLayout
,
OutLayout
>>
(
Device
Groupled
ConvNDFwdInstance
<
1
,
InLayout
,
WeiLayout
,
BiasLayout
,
OutLayout
>>
(
do_verification
,
do_verification
,
init_method
,
init_method
,
time_kernel
,
time_kernel
,
...
@@ -242,7 +243,7 @@ int main(int argc, char* argv[])
...
@@ -242,7 +243,7 @@ int main(int argc, char* argv[])
conv_param
.
G_
*
conv_param
.
K_
// wo
conv_param
.
G_
*
conv_param
.
K_
// wo
});
});
return
run_conv_fwd_bias
<
return
run_
grouped_
conv_fwd_bias
<
2
,
2
,
InDataType
,
InDataType
,
WeiDataType
,
WeiDataType
,
...
@@ -250,7 +251,7 @@ int main(int argc, char* argv[])
...
@@ -250,7 +251,7 @@ int main(int argc, char* argv[])
InElementOp
,
InElementOp
,
WeiElementOp
,
WeiElementOp
,
OutElementOp
,
OutElementOp
,
DeviceConvNDFwdInstance
<
2
,
InLayout
,
WeiLayout
,
BiasLayout
,
OutLayout
>>
(
Device
Groupled
ConvNDFwdInstance
<
2
,
InLayout
,
WeiLayout
,
BiasLayout
,
OutLayout
>>
(
do_verification
,
do_verification
,
init_method
,
init_method
,
time_kernel
,
time_kernel
,
...
@@ -340,7 +341,7 @@ int main(int argc, char* argv[])
...
@@ -340,7 +341,7 @@ int main(int argc, char* argv[])
conv_param
.
G_
*
conv_param
.
K_
// wo
conv_param
.
G_
*
conv_param
.
K_
// wo
});
});
return
run_conv_fwd_bias
<
return
run_
grouped_
conv_fwd_bias
<
3
,
3
,
InDataType
,
InDataType
,
WeiDataType
,
WeiDataType
,
...
@@ -348,7 +349,7 @@ int main(int argc, char* argv[])
...
@@ -348,7 +349,7 @@ int main(int argc, char* argv[])
InElementOp
,
InElementOp
,
WeiElementOp
,
WeiElementOp
,
OutElementOp
,
OutElementOp
,
DeviceConvNDFwdInstance
<
3
,
InLayout
,
WeiLayout
,
BiasLayout
,
OutLayout
>>
(
Device
Groupled
ConvNDFwdInstance
<
3
,
InLayout
,
WeiLayout
,
BiasLayout
,
OutLayout
>>
(
do_verification
,
do_verification
,
init_method
,
init_method
,
time_kernel
,
time_kernel
,
...
...
example/CMakeLists.txt
View file @
61510f0a
...
@@ -25,8 +25,6 @@ add_subdirectory(01_gemm)
...
@@ -25,8 +25,6 @@ add_subdirectory(01_gemm)
add_subdirectory
(
02_gemm_bilinear
)
add_subdirectory
(
02_gemm_bilinear
)
add_subdirectory
(
03_gemm_bias_relu
)
add_subdirectory
(
03_gemm_bias_relu
)
add_subdirectory
(
04_gemm_add_add_fastgelu
)
add_subdirectory
(
04_gemm_add_add_fastgelu
)
add_subdirectory
(
06_conv2d_fwd_bias_relu
)
add_subdirectory
(
07_conv2d_fwd_bias_relu_add
)
add_subdirectory
(
09_convnd_fwd
)
add_subdirectory
(
09_convnd_fwd
)
add_subdirectory
(
12_reduce
)
add_subdirectory
(
12_reduce
)
add_subdirectory
(
13_pool2d_fwd
)
add_subdirectory
(
13_pool2d_fwd
)
...
...
include/ck/tensor_operation/gpu/device/device_conv_fwd_multiple_d.hpp
deleted
100644 → 0
View file @
65c56e56
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// Convolution Forward:
// input : input image A[N, C, Hi, Wi],
// input : weight B[K, C, Y, X],
// input : D0[N, K, Ho, Wo], D1[N, K, Ho, Wo], ...
// output : output image E[N, K, Ho, Wo]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
>
struct
DeviceConvFwdMultipleD
:
public
BaseOperator
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_conv_fwd_multiple_d_xdl_cshuffle.hpp
deleted
100644 → 0
View file @
65c56e56
This diff is collapsed.
Click to expand it.
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp
View file @
61510f0a
...
@@ -11,14 +11,14 @@ namespace ck {
...
@@ -11,14 +11,14 @@ namespace ck {
namespace
tensor_operation
{
namespace
tensor_operation
{
namespace
device
{
namespace
device
{
//
Grouped
Convolution Forw
o
rd
// Convolution Forw
a
rd
:
// input : input image A[G,
C
,
N
, Hi, Wi],
// input : input image A[G,
N
,
C
, Hi, Wi],
// input : weight B[G, K, C, Y, X],
// input : weight B[G, K, C, Y, X],
// input : D0[G, N, K, Ho, Wo], D1[G, N, K, Ho, Wo], ...
// input : D0[G, N, K, Ho, Wo], D1[G, N, K, Ho, Wo], ...
// output : output image E[G, N, K, Ho, Wo]
// output : output image E[G, N, K, Ho, Wo]
// C = a_op(A) * b_op(B)
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// E = cde_op(C, D0, D1, ...)
template
<
ck
::
index_t
NDimSpatial
,
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
ALayout
,
typename
BLayout
,
typename
BLayout
,
typename
DsLayout
,
typename
DsLayout
,
...
@@ -34,26 +34,26 @@ struct DeviceGroupedConvFwdMultipleD : public BaseOperator
...
@@ -34,26 +34,26 @@ struct DeviceGroupedConvFwdMultipleD : public BaseOperator
{
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
virtual
std
::
unique_ptr
<
BaseArgument
>
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_a
,
const
void
*
p_b
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
const
std
::
array
<
const
void
*
,
NumDTensor
>
&
p_ds
,
void
*
p_e
,
void
*
p_e
,
const
std
::
vector
<
ck
::
index_t
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
vector
<
ck
::
index_t
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
NumDTensor
>
ds_g_n_k_wos_lengths
;
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>
&
ds_g_n_k_wos_lengths
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
NumDTensor
>
ds_g_n_k_wos_strides
;
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>
&
ds_g_n_k_wos_strides
,
const
std
::
vector
<
ck
::
index_t
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
vector
<
ck
::
index_t
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
vector
<
ck
::
index_t
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
vector
<
ck
::
index_t
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
input_right_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
=
0
;
const
CDEElementwiseOperation
&
cde_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
};
...
...
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp
View file @
61510f0a
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment