To make our lives easier and bring Composable Kernel dependencies together, we recommend using docker images.
## So what is Composable Kernel?
Composable Kernel (CK) library aims to provide a programming model for writing performance critical kernels for machine learning workloads across multiple architectures including GPUs, CPUs, etc, through general purpose kernel languages, like HIP C++.
# Need to specify target ID, example below is for gfx908 and gfx90a
cmake \
-D CMAKE_PREFIX_PATH=/opt/rocm \
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-D CMAKE_CXX_FLAGS="-O3" \
-D CMAKE_BUILD_TYPE=Release \
-D GPU_TARGETS="gfx908;gfx90a" \
..
```
and
```
make -j examples tests
```
To run all the test cases including tests and examples run
```
make test
```
We can also run specific examples or tests like
```
./bin/example_gemm_xdl_fp16
./bin/test_gemm_fp16
```
For more details visit [CK github repo](https://github.com/ROCmSoftwarePlatform/composable_kernel), [CK examples](https://github.com/ROCmSoftwarePlatform/composable_kernel/tree/develop/example), [even more CK examples](https://github.com/ROCmSoftwarePlatform/composable_kernel/tree/develop/client_example).
## And what is inside?
The docker images have everything you need for running CK including:
Let's take a look at the image naming, for example "ck_ub20.04_rocm5.4_release". The image specs are:
* "ck" - made for running Composable Kernel
* "ub20.04" - based on Ubuntu 20.04
* "rocm5.4" - ROCm platform version 5.4
* "release" - compiler version is release
So just pick the right image for your project dependencies and you're all set.
## DIY starts here
If you need to customize a docker image or just can't stop tinkering, feel free to adjust the [Dockerfile](https://github.com/ROCmSoftwarePlatform/composable_kernel/blob/develop/Dockerfile) for your needs.
## License
CK is released under the MIT [license](https://github.com/ROCmSoftwarePlatform/composable_kernel/blob/develop/LICENSE).