Commit 5c0736c9 authored by Astha Rai's avatar Astha Rai
Browse files

adding some more 5d example files

parent 4166ceb0
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using F16 = ck::half_t;
using F32 = float;
using ADataType = F16;
using BDataType = F16;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceElementwisePermuteInstance =
ck::tensor_operation::device::DeviceElementwiseImpl<ck::Tuple<ADataType>,
ck::Tuple<BDataType>,
PassThrough,
5,
8,
ck::Sequence<8>,
ck::Sequence<1>>;
template <typename HostTensorA, typename HostTensorB, typename Functor>
void host_elementwise4D(HostTensorB& B_nchwd, const HostTensorA& A_ncdhw, Functor functor)
{
for(std::size_t n = 0; n < A_ncdhw.mDesc.GetLengths()[0]; ++n)
for(std::size_t c = 0; c < A_ncdhw.mDesc.GetLengths()[1]; ++c)
for(std::size_t d = 0; d < A_ncdhw.mDesc.GetLengths()[2]; ++d)
for(std::size_t h = 0; h < A_ncdhw.mDesc.GetLengths()[3]; ++h)
for(std::size_t w = 0; w < A_ncdhw.mDesc.GetLengths()[4]; ++w)
{
auto a_val = A_ncdhw(n, c, d, h, w);
functor(B_nchwd(n, c, h, w, d), a_val);
}
}
int main()
{
bool do_verification = true;
bool time_kernel = true;
//std::vector<std::size_t> ncdhw = {16, 128, 32, 64, 16};
//std::vector<std::size_t> nchwd = {16, 128, 64, 16, 32};
std::vector<std::size_t> ncdhw = {16, 8, 8, 8, 8};
std::vector<std::size_t> nchwd = {16, 8, 8, 8, 8};
Tensor<ADataType> a(ncdhw);
Tensor<BDataType> b(nchwd);
a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a.mData.data());
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
std::array<ck::index_t, 5> ab_lengths;
std::array<ck::index_t, 5> a_strides = {static_cast<int>(ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]),
static_cast<int>(ncdhw[2] * ncdhw[3] * ncdhw[4]),
static_cast<int>(ncdhw[3] * ncdhw[4]),
static_cast<int>(ncdhw[4]),
1};
std::array<ck::index_t, 5> b_strides = {static_cast<int>(nchwd[1] * nchwd[2] * nchwd[3] * nchwd[4]),
static_cast<int>(nchwd[2] * nchwd[3] * nchwd[4]),
1,
static_cast<int>(nchwd[3] * nchwd[4]),
static_cast<int>(nchwd[4])};
ck::ranges::copy(ncdhw, ab_lengths.begin());
auto broadcastPermute = DeviceElementwisePermuteInstance{};
auto argument = broadcastPermute.MakeArgumentPointer(
ab_lengths, {a_strides}, {b_strides}, input, output, PassThrough{});
if(!broadcastPermute.IsSupportedArgument(argument.get()))
{
throw std::runtime_error(
"The runtime parameters seems not supported by the device instance, exiting!");
};
std::cout << "A (ncdhw): " << a.mDesc << std::endl;
std::cout << "B (nchwd): " << b.mDesc << std::endl;
auto broadcastPermute_invoker_ptr = broadcastPermute.MakeInvokerPointer();
float ave_time =
broadcastPermute_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4];
std::size_t num_btype = sizeof(ADataType) * (ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]) +
sizeof(BDataType) * (ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
//LogRangeAsType<float>(std::cout << "A : ", a.mData, ",") << std::endl;
//LogRangeAsType<float>(std::cout << "B : ", b.mData, ",") << std::endl;
//std::cout << "A: " << a.mData.data() << std::endl;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
bool pass = true;
if(do_verification)
{
b_device_buf.FromDevice(b.mData.data());
Tensor<BDataType> host_b(nchwd);
host_elementwise4D(host_b, a, PassThrough{});
//LogRangeAsType<float>(std::cout << "B : ", b.mData, ",") << std::endl;
//LogRangeAsType<float>(std::cout << "Host B : ", host_b.mData, ",") << std::endl;
pass &=
ck::utils::check_err(b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3);
}
return pass ? 0 : 1;
}
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_2d_impl.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using F16 = ck::half_t;
using ADataType = F16;
using BDataType = F16;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceElementwisePermuteInstance =
ck::tensor_operation::device::DeviceElementwise2dImpl<ck::Tuple<ADataType>,
ck::Tuple<BDataType>,
PassThrough,
3, // NumDim_M
2, // NumDim_N
8,
8,
ck::Sequence<8>,
ck::Sequence<8>>;
template <typename HostTensorA, typename HostTensorB, typename Functor>
void host_elementwise4D(HostTensorB& B_nchwd,
const HostTensorA& A_ncdhw,
const std::vector<std::size_t>& shape_ncdhw,
Functor functor)
{
for(std::size_t n = 0; n < shape_ncdhw[0]; ++n)
for(std::size_t c = 0; c < shape_ncdhw[1]; ++c)
for(std::size_t d = 0; d < shape_ncdhw[2]; ++d)
for(std::size_t h = 0; h < shape_ncdhw[3]; ++h)
for(std::size_t w = 0; w < shape_ncdhw[0]; ++w)
{
auto a_val = A_ncdhw(n, c, d, h, w);
functor(B_nchwd(n, c, h, w, d), a_val);
}
}
int main()
{
bool do_verification = true;
bool time_kernel = true;
//const int N = 120;
//const int C = 128;
//const int H = 32;
//const int W = 1024;
const int N = 8;
const int C = 8;
const int D = 8;
const int H = 8;
const int W = 8;
/**const int N = 120;
const int H = 32;
const int W = 64;
const int C = 128;**/
std::vector<std::size_t> ncdhw = {N, C, D, H, W};
std::vector<std::size_t> nchwd = {N, C, H, W, D};
Tensor<ADataType> a(ncdhw);
Tensor<BDataType> b(nchwd);
a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a.mData.data());
// LogRangeAsType<float>(std::cout << "Tensor a : ", a.mData, ",") << std::endl;
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
//std::array<ck::index_t, 5> ab_lengths{N, H, W, C};
std::array<ck::index_t, 5> ab_lengths{N, C, D, H, W};
//std::array<ck::index_t, 5> a_strides = {C * H * W, W, 1, H * W};
//std::array<ck::index_t, 5> b_strides = {H * W * C, W * C, C, 1};
std::array<ck::index_t, 5> a_strides = {C * D * H * W, D * H * W, H * W, W, 1};
std::array<ck::index_t, 5> b_strides = {C * H * W * D, H * W * D, 1, W * D, D};
auto broadcastPermute = DeviceElementwisePermuteInstance{};
auto argument = broadcastPermute.MakeArgumentPointer(
ab_lengths, {a_strides}, {b_strides}, input, output, PassThrough{});
if(!broadcastPermute.IsSupportedArgument(argument.get()))
{
throw std::runtime_error(
"The runtime parameters seems not supported by the device instance, exiting!");
};
std::cout << "A (ncdhw): " << a.mDesc << std::endl;
std::cout << "B (nchwd): " << b.mDesc << std::endl;
auto broadcastPermute_invoker_ptr = broadcastPermute.MakeInvokerPointer();
float ave_time =
broadcastPermute_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4];
std::size_t num_btype = sizeof(ADataType) * (ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] + ncdhw[4]) +
sizeof(BDataType) * (ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] + ncdhw[4]);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
//LogRangeAsType<float>(std::cout << "A : ", a.mData, ",") << std::endl;
//LogRangeAsType<float>(std::cout << "B : ", b.mData, ",") << std::endl;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
bool pass = true;
if(do_verification)
{
b_device_buf.FromDevice(b.mData.data());
// LogRangeAsType<float>(std::cout << "Tensor b : ", b.mData, ",") << std::endl;
Tensor<BDataType> host_b(nchwd);
host_elementwise4D<Tensor<ADataType>, Tensor<BDataType>, PassThrough>(
host_b, a, ncdhw, PassThrough{});
//LogRangeAsType<float>(std::cout << "Host_b : ", host_b.mData, ",") << std::endl;
// LogRangeAsType<float>(std::cout << "Host b : ", host_b.mData, ",") << std::endl;
pass &=
ck::utils::check_err(b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3);
}
return pass ? 0 : 1;
}
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_3d_impl.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using F16 = ck::half_t;
using F32 = float;
using ADataType = F16;
using BDataType = F16;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceElementwisePermuteInstance =
ck::tensor_operation::device::DeviceElementwise3dImpl<ck::Tuple<ADataType>,
ck::Tuple<BDataType>,
PassThrough,
3,
1,
1,
8,
8,
8,
ck::Sequence<8>,
ck::Sequence<1>>;
template <typename HostTensorA, typename HostTensorB, typename Functor>
void host_elementwise4D(HostTensorB& B_nchwd, const HostTensorA& A_ncdhw, Functor functor)
{
for(std::size_t n = 0; n < A_ncdhw.mDesc.GetLengths()[0]; ++n)
for(std::size_t c = 0; c < A_ncdhw.mDesc.GetLengths()[1]; ++c)
for(std::size_t d = 0; d < A_ncdhw.mDesc.GetLengths()[2]; ++d)
for(std::size_t h = 0; h < A_ncdhw.mDesc.GetLengths()[3]; ++h)
for(std::size_t w = 0; w < A_ncdhw.mDesc.GetLengths()[4]; ++w)
{
auto a_val = A_ncdhw(n, c, d, h, w);
functor(B_nchwd(n, c, h, w, d), a_val);
}
}
int main()
{
bool do_verification = true;
bool time_kernel = true;
const int N = 16;
const int C = 8;
const int D = 8;
const int H = 8;
const int W = 8;
std::vector<std::size_t> ncdhw = {N, C, D, H, W};
std::vector<std::size_t> nchwd = {N, C, H, W, D};
Tensor<ADataType> a(ncdhw);
Tensor<BDataType> b(nchwd);
a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a.mData.data());
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
std::array<ck::index_t, 5> ab_lengths{N, C, H, W, D};
std::array<ck::index_t, 5> a_strides = {C * D * H * W, D * H * W, 1, D * H, D};
std::array<ck::index_t, 5> b_strides = {C * H * W * D, H * W * D, W * D, D, 1};
auto broadcastPermute = DeviceElementwisePermuteInstance{};
auto argument = broadcastPermute.MakeArgumentPointer(
ab_lengths, {a_strides}, {b_strides}, input, output, PassThrough{});
if(!broadcastPermute.IsSupportedArgument(argument.get()))
{
throw std::runtime_error(
"The runtime parameters seems not supported by the device instance, exiting!");
};
std::cout << "A (ncdhw): " << a.mDesc << std::endl;
std::cout << "B (nchwd): " << b.mDesc << std::endl;
auto broadcastPermute_invoker_ptr = broadcastPermute.MakeInvokerPointer();
float ave_time =
broadcastPermute_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4];
std::size_t num_btype = sizeof(ADataType) * (ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]) +
sizeof(BDataType) * (ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
// LogRangeAsType<float>(std::cout << "A : ", a.mData, ",") << std::endl;
//LogRangeAsType<float>(std::cout << "B : ", b.mData, ",") << std::endl;
//std::cout << "A: " << a.mData.data() << std::endl;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
bool pass = true;
if(do_verification)
{
b_device_buf.FromDevice(b.mData.data());
//LogRangeAsType<float>(std::cout << "A : ", a.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "B : ", b.mData, ",") << std::endl;
Tensor<BDataType> host_b(nchwd);
host_elementwise4D(host_b, a, PassThrough{});
//LogRangeAsType<float>(std::cout << "B : ", b.mData, ",") << std::endl;
//LogRangeAsType<float>(std::cout << "Host B : ", host_b.mData, ",") << std::endl;
pass &=
ck::utils::check_err(b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3);
}
return pass ? 0 : 1;
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment