Commit 5a7f7334 authored by Jing Zhang's avatar Jing Zhang
Browse files

merge develop

parents 14822d71 f5ec04f0
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_avgpool3d_bwd_ndhwc_ndhwc.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using I32 = int32_t;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using NDHWC = ck::tensor_layout::convolution::NDHWC;
using device_avgpool_bwd_ndhwc_f16_instances =
// clang-format off
std::tuple <
DeviceAvgPool3dBwd_NDHWC_NDHWC<F16, F16, F32, 256, 256, 1, 1, 1, 1>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<F16, F16, F32, 256, 256, 1, 2, 2, 2>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<F16, F16, F32, 256, 256, 1, 4, 4, 4>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<F16, F16, F32, 256, 256, 1, 8, 8, 8>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<F16, F16, F32, 256, 32, 8, 8, 8, 8>
// clang-format on
>;
using device_avgpool_bwd_ndhwc_bf16_instances =
// clang-format off
std::tuple <
DeviceAvgPool3dBwd_NDHWC_NDHWC<BF16, BF16, F32, 256, 256, 1, 1, 1, 1>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<BF16, BF16, F32, 256, 256, 1, 2, 2, 2>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<BF16, BF16, F32, 256, 256, 1, 4, 4, 4>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<BF16, BF16, F32, 256, 256, 1, 8, 8, 8>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<BF16, BF16, F32, 256, 32, 8, 8, 8, 8>
// clang-format on
>;
using device_avgpool_bwd_ndhwc_f32_instances =
// clang-format off
std::tuple <
DeviceAvgPool3dBwd_NDHWC_NDHWC<F32, F32, F32, 256, 256, 1, 1, 1, 1>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<F32, F32, F32, 256, 256, 1, 2, 2, 2>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<F32, F32, F32, 256, 256, 1, 4, 4, 4>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<F32, F32, F32, 256, 256, 1, 8, 8, 8>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<F32, F32, F32, 256, 32, 8, 8, 8, 8>
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "avg_pool3d_bwd_ndhwc_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_avgpool_bwd_ndhwc_bf16_instances(
std::vector<std::unique_ptr<DeviceAvgPoolBwd<3, BF16, BF16, NDHWC, NDHWC>>>& instances)
{
add_device_operation_instances(instances, device_avgpool_bwd_ndhwc_bf16_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "avg_pool3d_bwd_ndhwc_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_avgpool_bwd_ndhwc_f16_instances(
std::vector<std::unique_ptr<DeviceAvgPoolBwd<3, F16, F16, NDHWC, NDHWC>>>& instances)
{
add_device_operation_instances(instances, device_avgpool_bwd_ndhwc_f16_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "avg_pool3d_bwd_ndhwc_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_avgpool_bwd_ndhwc_f32_instances(
std::vector<std::unique_ptr<DeviceAvgPoolBwd<3, F32, F32, NDHWC, NDHWC>>>& instances)
{
add_device_operation_instances(instances, device_avgpool_bwd_ndhwc_f32_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
set(DEVICE_MAXPOOL_BWD_INSTANCES)
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND DEVICE_MAXPOOL_BWD_INSTANCES device_max_pool_bwd_f16_instance.cpp)
endif()
if(DTYPES MATCHES "bf16" OR NOT DEFINED DTYPES)
list(APPEND DEVICE_MAXPOOL_BWD_INSTANCES device_max_pool_bwd_bf16_instance.cpp)
endif()
if(DTYPES MATCHES "fp32" OR NOT DEFINED DTYPES)
list(APPEND DEVICE_MAXPOOL_BWD_INSTANCES device_max_pool_bwd_f32_instance.cpp)
endif()
add_instance_library(device_max_pool_bwd_instance ${DEVICE_MAXPOOL_BWD_INSTANCES})
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "max_pool_bwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_maxpool_bwd_bf16_instances(
std::vector<std::unique_ptr<DeviceMaxPoolBwd<BF16, I32, BF16>>>& instances)
{
add_device_operation_instances(instances, device_maxpool_bwd_instances<BF16, I32, BF16>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "max_pool_bwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_maxpool_bwd_f16_instances(
std::vector<std::unique_ptr<DeviceMaxPoolBwd<F16, I32, F16>>>& instances)
{
add_device_operation_instances(instances, device_maxpool_bwd_instances<F16, I32, F16>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "max_pool_bwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_maxpool_bwd_f32_instances(
std::vector<std::unique_ptr<DeviceMaxPoolBwd<F32, I32, F32>>>& instances)
{
add_device_operation_instances(instances, device_maxpool_bwd_instances<F32, I32, F32>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_max_pool_bwd_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using I32 = int32_t;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
template <typename DOutDataType, typename IndexDataType, typename DInDataType>
using device_maxpool_bwd_instances =
// clang-format off
std::tuple <
DeviceMaxPoolBwdImpl<DOutDataType, IndexDataType, DInDataType, 1>,
DeviceMaxPoolBwdImpl<DOutDataType, IndexDataType, DInDataType, 2>,
DeviceMaxPoolBwdImpl<DOutDataType, IndexDataType, DInDataType, 4>
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -3,6 +3,10 @@ if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND DEVICE_POOL3D_FWD_INSTANCES device_avg_pool3d_fwd_ndhwc_f16_instance.cpp
device_max_pool3d_fwd_ndhwc_f16_instance.cpp)
endif()
if(DTYPES MATCHES "bf16" OR NOT DEFINED DTYPES)
list(APPEND DEVICE_POOL3D_FWD_INSTANCES device_avg_pool3d_fwd_ndhwc_bf16_instance.cpp
device_max_pool3d_fwd_ndhwc_bf16_instance.cpp)
endif()
if(DTYPES MATCHES "fp32" OR NOT DEFINED DTYPES)
list(APPEND DEVICE_POOL3D_FWD_INSTANCES device_avg_pool3d_fwd_ndhwc_f32_instance.cpp
device_max_pool3d_fwd_ndhwc_f32_instance.cpp)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "pool_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
void add_device_pool3d_fwd_ndhwc_bf16_instances(
std::vector<
std::unique_ptr<DevicePoolFwd<5, 3, BF16, BF16, I32, NDHWC, NDHWC, ReduceOpId, false>>>&
instances)
{
add_device_operation_instances(
instances, device_pool3d_fwd_ndhwc_instances<BF16, BF16, I32, F32, ReduceOpId, false>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "pool_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
void add_device_pool3d_fwd_ndhwc_bf16_instances(
std::vector<
std::unique_ptr<DevicePoolFwd<5, 3, BF16, BF16, I32, NDHWC, NDHWC, ReduceOpId, false>>>&
instances)
{
add_device_operation_instances(
instances, device_pool3d_fwd_ndhwc_instances<BF16, BF16, I32, BF16, ReduceOpId, false>{});
}
void add_device_pool3d_fwd_ndhwc_index_bf16_instances(
std::vector<
std::unique_ptr<DevicePoolFwd<5, 3, BF16, BF16, I32, NDHWC, NDHWC, ReduceOpId, true>>>&
instances)
{
add_device_operation_instances(
instances, device_pool3d_fwd_ndhwc_instances<BF16, BF16, I32, BF16, ReduceOpId, true>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -17,6 +17,7 @@ namespace instance {
using I32 = int32_t;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using NDHWC = ck::tensor_layout::convolution::NDHWC;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/pool3d_fwd.hpp"
#include "ck/library/tensor_operation_instance/gpu/avg_pool3d_bwd.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_avgpool_bwd.hpp"
namespace ck {
namespace profiler {
template <typename TensorLayout>
std::vector<ck::index_t> f_tensor_strides_ncdhw(ck::index_t N_,
ck::index_t C_,
ck::index_t D,
ck::index_t H,
ck::index_t W,
TensorLayout layout)
{
using namespace ck::literals;
(void)N_;
if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NDHWC>::value)
return {D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_};
else
throw std::runtime_error("not supported yet");
};
template <typename DOutDataType,
typename DInDataType,
typename ComputeDataType,
typename DOutLayout,
typename DInLayout>
bool profile_avg_pool3d_bwd_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
std::vector<index_t> in_length, // NCDHW
std::vector<index_t> window_spatial_lengths,
std::vector<index_t> window_strides,
std::vector<index_t> window_dilations,
std::vector<index_t> input_left_pads,
std::vector<index_t> input_right_pads)
{
constexpr index_t InOutRank = 5;
constexpr index_t WindowRank = 3;
if(in_length.size() != InOutRank || window_spatial_lengths.size() != WindowRank ||
window_strides.size() != WindowRank || window_dilations.size() != WindowRank ||
input_left_pads.size() != WindowRank || input_right_pads.size() != WindowRank)
{
std::cout << "Parameter is incorrect" << std::endl;
return false;
}
std::vector<index_t> out_length(InOutRank);
int N = in_length[0];
int C = in_length[1];
out_length[0] = N;
out_length[1] = C;
// Calculate Do, Ho, Wo
for(int i = 2; i < InOutRank; ++i)
{
auto pad1 = input_left_pads[i - 2];
auto pad2 = input_right_pads[i - 2];
auto windows_size = window_spatial_lengths[i - 2];
auto windows_stride = window_strides[i - 2];
auto windows_dilation = window_dilations[i - 2];
auto eff = (windows_size - 1) * windows_dilation + 1;
out_length[i] = (in_length[i] + pad1 + pad2 - eff) / windows_stride + 1;
}
int Di = in_length[2];
int Hi = in_length[3];
int Wi = in_length[4];
int Do = out_length[2];
int Ho = out_length[3];
int Wo = out_length[4];
auto f_host_tensor_descriptor =
[](std::size_t N_, std::size_t C_, std::size_t D, std::size_t H, std::size_t W) {
using namespace ck::literals;
return HostTensorDescriptor({N_, C_, D, H, W},
{D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_});
};
Tensor<DOutDataType> dout_n_c_do_ho_wo(f_host_tensor_descriptor(N, C, Do, Ho, Wo));
Tensor<DInDataType> din_n_c_di_hi_wi_device(f_host_tensor_descriptor(N, C, Di, Hi, Wi));
Tensor<DInDataType> din_n_c_di_hi_wi_host(f_host_tensor_descriptor(N, C, Di, Hi, Wi));
switch(init_method)
{
case 0: dout_n_c_do_ho_wo.GenerateTensorValue(GeneratorTensor_1<DOutDataType>{}); break;
case 1: dout_n_c_do_ho_wo.GenerateTensorValue(GeneratorTensor_2<DOutDataType>{-5, 5}); break;
default: dout_n_c_do_ho_wo.GenerateTensorValue(GeneratorTensor_3<DOutDataType>{-0.5, 0.5});
}
DeviceMem dout_device_buf(sizeof(DOutDataType) * dout_n_c_do_ho_wo.mDesc.GetElementSpaceSize());
DeviceMem din_device_buf(sizeof(DInDataType) *
din_n_c_di_hi_wi_device.mDesc.GetElementSpaceSize());
dout_device_buf.ToDevice(dout_n_c_do_ho_wo.mData.data());
using DeviceOp = ck::tensor_operation::device::
DeviceAvgPoolBwd<3, DOutDataType, DInDataType, DOutLayout, DInLayout>;
// get device op instances
const auto instance_ptrs =
ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << instance_ptrs.size() << " instances" << std::endl;
std::string best_instance_name;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
if(do_verification)
{
using ReferencePoolingBwdInstance =
ck::tensor_operation::host::ReferenceAvgPoolBwd<3, DInDataType, DOutDataType>;
ReferencePoolingBwdInstance ref_pooling_bwd;
auto ref_pooling_bwd_argument = ref_pooling_bwd.MakeArgument(din_n_c_di_hi_wi_host,
dout_n_c_do_ho_wo,
window_spatial_lengths,
window_strides,
window_dilations,
input_left_pads,
input_right_pads);
auto ref_invoker = ref_pooling_bwd.MakeInvoker();
ref_invoker.Run(ref_pooling_bwd_argument);
}
int num_kernel = 0;
for(auto& inst_ptr : instance_ptrs)
{
auto argument_ptr = inst_ptr->MakeArgumentPointer(
static_cast<DOutDataType*>(dout_device_buf.GetDeviceBuffer()),
static_cast<DInDataType*>(din_device_buf.GetDeviceBuffer()),
{N, C, Do, Ho, Wo},
{N, C, Di, Hi, Wi},
f_tensor_strides_ncdhw(N, C, Do, Ho, Wo, DOutLayout{}),
f_tensor_strides_ncdhw(N, C, Di, Hi, Wi, DInLayout{}),
window_spatial_lengths,
window_strides,
window_dilations,
input_left_pads,
input_right_pads);
if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
{
++num_kernel;
}
else
{
if(time_kernel)
{
std::cout << inst_ptr->GetTypeString() << " skipped due to unsupported argument: ";
LogRange(std::cout << "doutput lengths = ", out_length, ", ") << std::endl;
}
continue;
}
din_device_buf.SetZero();
auto invoker_ptr = inst_ptr->MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t num_bytes =
dout_n_c_do_ho_wo.mDesc.GetElementSize() * sizeof(DOutDataType) +
din_n_c_di_hi_wi_device.mDesc.GetElementSize() * sizeof(DInDataType);
float gb_per_sec = num_bytes / 1.E6 / avg_time;
if(time_kernel)
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << gb_per_sec << " GB/s, "
<< inst_ptr->GetTypeString() << std::endl;
if(avg_time < best_avg_time)
{
best_instance_name = inst_ptr->GetTypeString();
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
din_device_buf.FromDevice(din_n_c_di_hi_wi_device.mData.data());
bool pass = ck::utils::check_err(din_n_c_di_hi_wi_device.mData,
din_n_c_di_hi_wi_host.mData,
"Error: Incorrect results",
1e-3,
1e-3);
if(do_log)
{
LogRangeAsType<float>(
std::cout << "din_n_c_di_hi_wi_device: ", din_n_c_di_hi_wi_device.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "din_n_c_di_hi_wi_host: ", din_n_c_di_hi_wi_host.mData, ",")
<< std::endl;
}
if(!pass)
{
std::cout << inst_ptr->GetTypeString() << " failed verification: ";
LogRange(std::cout << "doutput lengths = [", out_length, ", ") << "]." << std::endl;
return false;
}
else
{
if(time_kernel)
std::cout << "pass" << std::endl;
}
}
}
if(time_kernel)
{
LogRange(std::cout << "length = ", out_length, ",") << std::endl;
std::cout << "best perf = " << best_avg_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_instance_name << std::endl;
}
if(num_kernel == 0)
{
std::cout << "Error: No kernel is applicable" << std::endl;
return false;
}
return true;
}
} // namespace profiler
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/pool3d_fwd.hpp"
#include "ck/library/tensor_operation_instance/gpu/max_pool_bwd.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_maxpool_bwd.hpp"
namespace ck {
namespace profiler {
template <typename InDataType,
typename OutDataType,
typename IndexDataType,
typename DOutDataType,
typename DInDataType,
bool PropagateNan>
bool profile_max_pool3d_bwd_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
std::vector<index_t> in_length, // NCDHW
std::vector<index_t> window_spatial_lengths,
std::vector<index_t> window_strides,
std::vector<index_t> window_dilations,
std::vector<index_t> input_left_pads,
std::vector<index_t> input_right_pads)
{
// AtomicAdd only support f32 for now. ComputeDataType must be float32
using ComputeDataType = float;
constexpr index_t InOutRank = 5;
constexpr index_t WindowRank = 3;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
if(in_length.size() != InOutRank || window_spatial_lengths.size() != WindowRank ||
window_strides.size() != WindowRank || window_dilations.size() != WindowRank ||
input_left_pads.size() != WindowRank || input_right_pads.size() != WindowRank)
{
std::cout << "Parameter is incorrect" << std::endl;
return false;
}
std::vector<index_t> out_length(InOutRank);
int N = in_length[0];
int C = in_length[1];
out_length[0] = N;
out_length[1] = C;
// Calculate Do, Ho, Wo
for(int i = 2; i < InOutRank; ++i)
{
auto pad1 = input_left_pads[i - 2];
auto pad2 = input_right_pads[i - 2];
auto windows_size = window_spatial_lengths[i - 2];
auto windows_stride = window_strides[i - 2];
auto windows_dilation = window_dilations[i - 2];
auto eff = (windows_size - 1) * windows_dilation + 1;
out_length[i] = (in_length[i] + pad1 + pad2 - eff) / windows_stride + 1;
}
int Di = in_length[2];
int Hi = in_length[3];
int Wi = in_length[4];
int Do = out_length[2];
int Ho = out_length[3];
int Wo = out_length[4];
auto f_host_tensor_descriptor =
[](std::size_t N_, std::size_t C_, std::size_t D, std::size_t H, std::size_t W) {
using namespace ck::literals;
return HostTensorDescriptor({N_, C_, D, H, W},
{D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_});
};
Tensor<InDataType> in_n_c_di_hi_wi(f_host_tensor_descriptor(N, C, Di, Hi, Wi));
Tensor<OutDataType> out_n_c_do_ho_wo(f_host_tensor_descriptor(N, C, Do, Ho, Wo));
Tensor<IndexDataType> out_indices_n_c_do_ho_wo(f_host_tensor_descriptor(N, C, Do, Ho, Wo));
Tensor<DOutDataType> dout_n_c_do_ho_wo(f_host_tensor_descriptor(N, C, Do, Ho, Wo));
Tensor<DInDataType> din_n_c_di_hi_wi_host(f_host_tensor_descriptor(N, C, Di, Hi, Wi));
Tensor<DInDataType> din_n_c_di_hi_wi_device(f_host_tensor_descriptor(N, C, Di, Hi, Wi));
switch(init_method)
{
case 0:
in_n_c_di_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{});
dout_n_c_do_ho_wo.GenerateTensorValue(GeneratorTensor_1<DOutDataType>{});
break;
case 1:
in_n_c_di_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
dout_n_c_do_ho_wo.GenerateTensorValue(GeneratorTensor_2<DOutDataType>{-5, 5});
break;
default:
in_n_c_di_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{-0.5, 0.5});
dout_n_c_do_ho_wo.GenerateTensorValue(GeneratorTensor_3<DOutDataType>{-0.5, 0.5});
}
DeviceMem indices_device_buf(sizeof(IndexDataType) *
out_indices_n_c_do_ho_wo.mDesc.GetElementSpaceSize());
DeviceMem dout_device_buf(sizeof(DOutDataType) * dout_n_c_do_ho_wo.mDesc.GetElementSpaceSize());
DeviceMem din_device_buf(sizeof(DInDataType) *
din_n_c_di_hi_wi_device.mDesc.GetElementSpaceSize());
// Generate index data from forwarding
{
using ReferencePoolingFwdInstance =
ck::tensor_operation::host::ReferencePoolingFwd<InOutRank,
WindowRank,
InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
ck::ReduceTensorOp::MAX,
false,
true>;
ReferencePoolingFwdInstance ref_pooling_fwd;
auto ref_pooling_fwd_argument = ref_pooling_fwd.MakeArgument(in_n_c_di_hi_wi,
out_n_c_do_ho_wo,
out_indices_n_c_do_ho_wo,
window_spatial_lengths,
window_strides,
window_dilations,
input_left_pads,
input_right_pads);
auto ref_pooling_fwd_invoker = ref_pooling_fwd.MakeInvoker();
ref_pooling_fwd_invoker.Run(ref_pooling_fwd_argument);
}
indices_device_buf.ToDevice(out_indices_n_c_do_ho_wo.mData.data());
dout_device_buf.ToDevice(dout_n_c_do_ho_wo.mData.data());
using DeviceOp =
ck::tensor_operation::device::DeviceMaxPoolBwd<DOutDataType, IndexDataType, DInDataType>;
// get device op instances
const auto instance_ptrs =
ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << instance_ptrs.size() << " instances" << std::endl;
std::string best_instance_name;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
if(do_verification)
{
using ReferencePoolingBwdInstance =
ck::tensor_operation::host::ReferenceMaxPoolBwd<DOutDataType,
IndexDataType,
ComputeDataType,
DInDataType,
PassThrough>;
ReferencePoolingBwdInstance ref_pooling_bwd;
auto ref_pooling_bwd_argument = ref_pooling_bwd.MakeArgument(
dout_n_c_do_ho_wo, out_indices_n_c_do_ho_wo, din_n_c_di_hi_wi_host, PassThrough{});
auto ref_invoker = ref_pooling_bwd.MakeInvoker();
ref_invoker.Run(ref_pooling_bwd_argument);
}
int num_kernel = 0;
for(auto& inst_ptr : instance_ptrs)
{
auto argument_ptr = inst_ptr->MakeArgumentPointer(
static_cast<DOutDataType*>(dout_device_buf.GetDeviceBuffer()),
static_cast<IndexDataType*>(indices_device_buf.GetDeviceBuffer()),
static_cast<DInDataType*>(din_device_buf.GetDeviceBuffer()),
dout_n_c_do_ho_wo.mDesc.GetElementSpaceSize(),
din_n_c_di_hi_wi_device.mDesc.GetElementSpaceSize(),
window_spatial_lengths,
window_strides,
window_dilations);
if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
{
++num_kernel;
}
else
{
if(time_kernel)
{
std::cout << inst_ptr->GetTypeString() << " skipped due to unsupported argument: ";
LogRange(std::cout << "doutput lengths = ", out_length, ", ") << std::endl;
}
continue;
}
size_t workspace_sz = inst_ptr->GetWorkSpaceSize(argument_ptr.get());
DeviceMem workspace_device_buf(workspace_sz);
inst_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace_device_buf.GetDeviceBuffer());
auto invoker_ptr = inst_ptr->MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t num_bytes =
dout_n_c_do_ho_wo.mDesc.GetElementSize() * sizeof(DOutDataType) +
out_indices_n_c_do_ho_wo.mDesc.GetElementSize() * sizeof(IndexDataType) +
din_n_c_di_hi_wi_device.mDesc.GetElementSize() * sizeof(DInDataType);
float gb_per_sec = num_bytes / 1.E6 / avg_time;
if(time_kernel)
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << gb_per_sec << " GB/s, "
<< inst_ptr->GetTypeString() << std::endl;
if(avg_time < best_avg_time)
{
best_instance_name = inst_ptr->GetTypeString();
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
din_device_buf.FromDevice(din_n_c_di_hi_wi_device.mData.data());
bool pass = ck::utils::check_err(din_n_c_di_hi_wi_device.mData,
din_n_c_di_hi_wi_host.mData,
"Error: Incorrect results",
1e-3,
1e-3);
if(do_log)
{
LogRangeAsType<float>(
std::cout << "out_indices_n_c_do_ho_wo: ", out_indices_n_c_do_ho_wo.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "din_n_c_di_hi_wi_device: ", din_n_c_di_hi_wi_device.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "din_n_c_di_hi_wi_host: ", din_n_c_di_hi_wi_host.mData, ",")
<< std::endl;
}
if(!pass)
{
std::cout << inst_ptr->GetTypeString() << " failed verification: ";
LogRange(std::cout << "doutput lengths = [", out_length, ", ") << "]." << std::endl;
return false;
}
else
{
if(time_kernel)
std::cout << "pass" << std::endl;
}
}
}
if(time_kernel)
{
LogRange(std::cout << "length = ", out_length, ",") << std::endl;
std::cout << "best perf = " << best_avg_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_instance_name << std::endl;
}
if(num_kernel == 0)
{
std::cout << "Error: No kernel is applicable" << std::endl;
return false;
}
return true;
}
} // namespace profiler
} // namespace ck
......@@ -19,6 +19,8 @@ set(PROFILER_SOURCES
profile_groupnorm.cpp
profile_layernorm.cpp
profile_max_pool3d_fwd.cpp
profile_avg_pool3d_bwd.cpp
profile_max_pool3d_bwd.cpp
profile_softmax.cpp
profile_batchnorm_fwd.cpp
profile_batchnorm_bwd.cpp
......@@ -76,6 +78,8 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_scale_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_pool3d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_avg_pool3d_bwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_max_pool_bwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_data_instance)
if(DL_KERNELS)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_avg_pool3d_bwd_impl.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t;
struct maxPoolbwdArgParser
{
std::unordered_map<std::string, std::vector<int>> long_opts = {{"length", {}},
{"wsize", {}},
{"wstride", {}},
{"wdilation", {}},
{"pad1", {}},
{"pad2", {}}};
bool parse_opt(int argc, char* argv[], const std::string& key, int i)
{
if(std::string("--") + key == argv[i])
{
int pos = i;
while(++i < argc && argv[i][0] != '-') {}
int end = i;
for(int j = pos + 1; j < end; j++)
{
long_opts[key].push_back(std::stoi(argv[j]));
}
return true;
}
return false;
}
void operator()(int argc, char* argv[])
{
for(auto& kv : long_opts)
{
for(int i = 1; i < argc; i++)
{
if(parse_opt(argc, argv, kv.first, i))
break;
}
}
}
};
void print_help_avg_pool3d_bwd()
{
std::cout << "arg1: data type (0: fp16; 1: fp32; 5: bf16)\n"
<< "arg2: verification (0: no; 1: yes)\n"
<< "arg3: initialization (0: no init; 1: integer value; 2: decimal value)\n"
<< "arg4: print tensor value (0: no; 1: yes)\n"
<< "arg5: time kernel (0=no, 1=yes)\n"
<< "--length: input tensor length for NCDHW(e.g, --length 2 32 30 30 30) \n"
<< "--wsize: window size for ZYX (e.g, --wsize 2 2 2) \n"
<< "--wstride: window stride for DHW (e.g, --wstride 2 2 2) \n"
<< "--wdilation: window dilation for DHW (e.g, --wdilation 1 1 1) \n"
<< "--pad1: left side of padding in DHW (e.g, --pad1 1 1 1) \n"
<< "--pad2: right side of padding in DHW (e.g, --pad2 1 1 1) \n"
<< "eg: ckProfiler avg_pool3d_bwd 0 1 2 0 1 --length 2 32 30 30 30 --wsize 2 2 2 "
"--wstride 2 2 2 --wdilation 1 1 1 --pad1 1 1 1 --pad2 1 1 1"
<< std::endl;
}
int profile_avg_pool3d_bwd(int argc, char* argv[])
{
ck::DataTypeEnum data_type = ck::DataTypeEnum::Half;
bool do_verification = true;
int init_method = 0;
bool do_log = false;
bool time_kernel = true;
std::vector<index_t> in_length = {2, 32, 30, 30, 30};
std::vector<index_t> wsize = {2, 2, 2};
std::vector<index_t> wstride = {2, 2, 2};
std::vector<index_t> wdilation = {1, 1, 1};
std::vector<index_t> pad1 = {1, 1, 1};
std::vector<index_t> pad2 = {1, 1, 1};
if(argc != 2 && argc != 33)
{
print_help_avg_pool3d_bwd();
return 0;
}
else if(argc == 33)
{
data_type = static_cast<ck::DataTypeEnum>(std::stoi(argv[2]));
do_verification = std::stoi(argv[3]);
init_method = std::stoi(argv[4]);
do_log = std::stoi(argv[5]);
time_kernel = std::stoi(argv[6]);
// parse the long options
maxPoolbwdArgParser arg_parser;
arg_parser(argc, argv);
in_length = arg_parser.long_opts["length"];
wsize = arg_parser.long_opts["wsize"];
wstride = arg_parser.long_opts["wstride"];
wdilation = arg_parser.long_opts["wdilation"];
pad1 = arg_parser.long_opts["pad1"];
pad2 = arg_parser.long_opts["pad2"];
}
#ifdef CK_ENABLE_FP16
using F16 = ck::half_t;
#endif
#ifdef CK_ENABLE_BF16
using BF16 = ck::bhalf_t;
#endif
#ifdef CK_ENABLE_FP32
using F32 = float;
#endif
using NDHWC = ck::tensor_layout::convolution::NDHWC;
if(false)
;
#ifdef CK_ENABLE_FP16
else if(data_type == ck::DataTypeEnum::Half)
{
ck::profiler::profile_avg_pool3d_bwd_impl<F16, F16, F16, NDHWC, NDHWC>(do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
#endif
#ifdef CK_ENABLE_BF16
else if(data_type == ck::DataTypeEnum::BFloat16)
{
ck::profiler::profile_avg_pool3d_bwd_impl<BF16, BF16, BF16, NDHWC, NDHWC>(do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
#endif
#ifdef CK_ENABLE_FP32
else if(data_type == ck::DataTypeEnum::Float)
{
ck::profiler::profile_avg_pool3d_bwd_impl<F32, F32, F32, NDHWC, NDHWC>(do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
#endif
else
{
throw std::runtime_error("not implemented yet");
}
return 0;
}
REGISTER_PROFILER_OPERATION("avg_pool3d_bwd", "max_pool bwd", profile_avg_pool3d_bwd);
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_max_pool3d_bwd_impl.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t;
struct maxPoolbwdArgParser
{
std::unordered_map<std::string, std::vector<int>> long_opts = {{"length", {}},
{"wsize", {}},
{"wstride", {}},
{"wdilation", {}},
{"pad1", {}},
{"pad2", {}}};
bool parse_opt(int argc, char* argv[], const std::string& key, int i)
{
if(std::string("--") + key == argv[i])
{
int pos = i;
while(++i < argc && argv[i][0] != '-') {}
int end = i;
for(int j = pos + 1; j < end; j++)
{
long_opts[key].push_back(std::stoi(argv[j]));
}
return true;
}
return false;
}
void operator()(int argc, char* argv[])
{
for(auto& kv : long_opts)
{
for(int i = 1; i < argc; i++)
{
if(parse_opt(argc, argv, kv.first, i))
break;
}
}
}
};
void print_help_max_pool3d_bwd()
{
std::cout << "arg1: data type (0: fp16; 1: fp32; 5: bf16)\n"
<< "arg2: verification (0: no; 1: yes)\n"
<< "arg3: initialization (0: no init; 1: integer value; 2: decimal value)\n"
<< "arg4: print tensor value (0: no; 1: yes)\n"
<< "arg5: time kernel (0=no, 1=yes)\n"
<< "--length: input tensor length for NCDHW(e.g, --length 2 32 30 30 30) \n"
<< "--wsize: window size for ZYX (e.g, --wsize 2 2 2) \n"
<< "--wstride: window stride for DHW (e.g, --wstride 2 2 2) \n"
<< "--wdilation: window dilation for DHW (e.g, --wdilation 1 1 1) \n"
<< "--pad1: left side of padding in DHW (e.g, --pad1 1 1 1) \n"
<< "--pad2: right side of padding in DHW (e.g, --pad2 1 1 1) \n"
<< "eg: ckProfiler max_pool3d_bwd 0 1 2 0 1 --length 2 32 30 30 30 --wsize 2 2 2 "
"--wstride 2 2 2 --wdilation 1 1 1 --pad1 1 1 1 --pad2 1 1 1"
<< std::endl;
}
int profile_max_pool3d_bwd(int argc, char* argv[])
{
ck::DataTypeEnum data_type = ck::DataTypeEnum::Half;
bool do_verification = true;
int init_method = 0;
bool do_log = false;
bool time_kernel = true;
std::vector<index_t> in_length = {2, 32, 30, 30, 30};
std::vector<index_t> wsize = {2, 2, 2};
std::vector<index_t> wstride = {2, 2, 2};
std::vector<index_t> wdilation = {1, 1, 1};
std::vector<index_t> pad1 = {1, 1, 1};
std::vector<index_t> pad2 = {1, 1, 1};
if(argc != 2 && argc != 33)
{
print_help_max_pool3d_bwd();
return 0;
}
else if(argc == 33)
{
data_type = static_cast<ck::DataTypeEnum>(std::stoi(argv[2]));
do_verification = std::stoi(argv[3]);
init_method = std::stoi(argv[4]);
do_log = std::stoi(argv[5]);
time_kernel = std::stoi(argv[6]);
// parse the long options
maxPoolbwdArgParser arg_parser;
arg_parser(argc, argv);
in_length = arg_parser.long_opts["length"];
wsize = arg_parser.long_opts["wsize"];
wstride = arg_parser.long_opts["wstride"];
wdilation = arg_parser.long_opts["wdilation"];
pad1 = arg_parser.long_opts["pad1"];
pad2 = arg_parser.long_opts["pad2"];
}
#ifdef CK_ENABLE_FP16
using F16 = ck::half_t;
#endif
#ifdef CK_ENABLE_BF16
using BF16 = ck::bhalf_t;
#endif
#ifdef CK_ENABLE_FP32
using F32 = float;
#endif
using I32 = int32_t;
if(false)
;
#ifdef CK_ENABLE_FP16
else if(data_type == ck::DataTypeEnum::Half)
{
ck::profiler::profile_max_pool3d_bwd_impl<F16, F16, I32, F16, F16, false>(do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
#endif
#ifdef CK_ENABLE_BF16
else if(data_type == ck::DataTypeEnum::BFloat16)
{
ck::profiler::profile_max_pool3d_bwd_impl<BF16, BF16, I32, BF16, BF16, false>(
do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
#endif
#ifdef CK_ENABLE_FP32
else if(data_type == ck::DataTypeEnum::Float)
{
ck::profiler::profile_max_pool3d_bwd_impl<F32, F32, I32, F32, F32, false>(do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
#endif
else
{
throw std::runtime_error("not implemented yet");
}
return 0;
}
REGISTER_PROFILER_OPERATION("max_pool3d_bwd", "max_pool3d bwd", profile_max_pool3d_bwd);
......@@ -51,7 +51,7 @@ struct maxPoolFwdArgParser
void print_help_max_pool3d_fwd()
{
std::cout << "arg1: data type (0: fp16; 1: fp32)\n"
std::cout << "arg1: data type (0: fp16; 1: fp32; 5: bf16)\n"
<< "arg2: verification (0: no; 1: yes)\n"
<< "arg3: initialization (0: no init; 1: integer value; 2: decimal value)\n"
<< "arg4: print tensor value (0: no; 1: yes)\n"
......@@ -109,8 +109,15 @@ int profile_max_pool3d_fwd(int argc, char* argv[])
pad2 = arg_parser.long_opts["pad2"];
}
using F16 = ck::half_t;
using F32 = float;
#ifdef CK_ENABLE_FP16
using F16 = ck::half_t;
#endif
#ifdef CK_ENABLE_BF16
using BF16 = ck::bhalf_t;
#endif
#ifdef CK_ENABLE_FP32
using F32 = float;
#endif
using I32 = int32_t;
using NDHWC = ck::tensor_layout::convolution::NDHWC;
......@@ -120,7 +127,10 @@ int profile_max_pool3d_fwd(int argc, char* argv[])
constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
#endif
if(data_type == ck::DataTypeEnum::Half)
if(false)
;
#ifdef CK_ENABLE_FP16
else if(data_type == ck::DataTypeEnum::Half)
{
if(return_index)
ck::profiler::
......@@ -149,6 +159,51 @@ int profile_max_pool3d_fwd(int argc, char* argv[])
pad1,
pad2);
}
#endif
#ifdef CK_ENABLE_BF16
else if(data_type == ck::DataTypeEnum::BFloat16)
{
if(return_index)
ck::profiler::profile_pool3d_fwd_impl<BF16,
BF16,
BF16,
I32,
NDHWC,
NDHWC,
ReduceOpId,
false,
true>(do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
else
ck::profiler::profile_pool3d_fwd_impl<BF16,
BF16,
BF16,
I32,
NDHWC,
NDHWC,
ReduceOpId,
false,
false>(do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
#endif
#ifdef CK_ENABLE_FP32
else if(data_type == ck::DataTypeEnum::Float)
{
if(return_index)
......@@ -178,6 +233,7 @@ int profile_max_pool3d_fwd(int argc, char* argv[])
pad1,
pad2);
}
#endif
else
{
throw std::runtime_error("not implemented yet");
......
......@@ -57,7 +57,7 @@ add_subdirectory(data_type)
add_subdirectory(elementwise_normalization)
add_subdirectory(batchnorm)
add_subdirectory(contraction)
add_subdirectory(pool_fwd)
add_subdirectory(pool)
add_subdirectory(batched_gemm_multi_d)
add_subdirectory(grouped_convnd_bwd_data)
if(GPU_TARGETS MATCHES "gfx11")
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment