"sgl-kernel/python/vscode:/vscode.git/clone" did not exist on "12b609337e394bbc5180bc2753f628be2267cd4d"
Unverified Commit 5903efe7 authored by arai713's avatar arai713 Committed by GitHub
Browse files

Merge branch 'develop' into transpose_5d

parents 2100ea4b e1fa0091
add_example_executable(example_layernorm2d_bwd_fp16 layernorm2d_bwd_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_gamma_beta_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm_bwd.hpp"
using DYDataType = ck::half_t;
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using MeanInvStdDataType = float;
using DGammaDataType = ck::half_t;
using DBetaDataType = ck::half_t;
using DXDataType = ck::half_t;
using ComputeDataType = float;
constexpr int Rank = 2;
constexpr int NumReduceDim = 1;
// Layernorm:
// Input shape
// dy: [M, N]
// x: [M, N]
// mean: [M, 1]
// inv_std: [M, 1]
// Output shape
// dgamma: [1, N]
// dbeta: [1, N]
// dgamma = reduce_sum(dy * (x - mean) * inv_std, axis=0)
// dbeta = reduce_sum(dy, axis=0)
// [CAUSION]
// In DeviceNormalizationBwdGammaBetaImpl, M is invarient dimension, K is reduced dimension
// Hence, M in this example and DeviceNormalizationBwdGammaBetaImpl is different
using GammaBetaDeviceInstance = ck::tensor_operation::device::DeviceNormalizationBwdGammaBetaImpl<
DYDataType,
XDataType,
MeanInvStdDataType,
ComputeDataType,
DGammaDataType,
DBetaDataType,
Rank,
NumReduceDim,
256, // BlockSize
8, // ClusterInvarient
32, // ClusterReduce
8, // SliceInvarient
1, // SliceReduce
false, // IsDYFastestDimReduced
8, // DYSrcVectorSize
false, // IsXFastestDimReduced
8, // XSrcVectorSize
true, // IsMeanInvStdFastestDimReduced
1, // MeanInvStdSrcVectorSize
1, // DGammaDstVectorSize
1>; // DBetaDstVectorSize
int main()
{
bool time_kernel = false;
ck::index_t M = 1024;
ck::index_t N = 512;
Tensor<DYDataType> dy({M, N});
Tensor<XDataType> x({M, N});
Tensor<GammaDataType> gamma({N});
Tensor<MeanInvStdDataType> mean({M});
Tensor<MeanInvStdDataType> inv_std({M});
Tensor<DGammaDataType> dgamma({N});
Tensor<DBetaDataType> dbeta({N});
Tensor<DXDataType> dx({M, N});
dy.GenerateTensorValue(GeneratorTensor_3<DYDataType>{0.0, 1.0});
x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0.0, 1.0});
gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{0.0, 1.0});
mean.GenerateTensorValue(GeneratorTensor_3<MeanInvStdDataType>{0.0, 1.0});
inv_std.GenerateTensorValue(GeneratorTensor_3<MeanInvStdDataType>{0.0, 1.0});
DeviceMem dy_dev(sizeof(DYDataType) * dy.mDesc.GetElementSpaceSize());
DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
DeviceMem mean_dev(sizeof(MeanInvStdDataType) * mean.mDesc.GetElementSpaceSize());
DeviceMem inv_std_dev(sizeof(MeanInvStdDataType) * inv_std.mDesc.GetElementSpaceSize());
DeviceMem dgamma_dev(sizeof(DGammaDataType) * dgamma.mDesc.GetElementSpaceSize());
DeviceMem dbeta_dev(sizeof(DBetaDataType) * dbeta.mDesc.GetElementSpaceSize());
dy_dev.ToDevice(dy.mData.data());
x_dev.ToDevice(x.mData.data());
mean_dev.ToDevice(mean.mData.data());
inv_std_dev.ToDevice(inv_std.mData.data());
auto gamma_beta_device_instance = GammaBetaDeviceInstance{};
auto gamma_beta_argument_ptr =
gamma_beta_device_instance.MakeArgumentPointer({M, N}, // inLengths
{N, 1}, // dyStrides
{N, 1}, // xStrides
{1, 0}, // meanStrides
{1, 0}, // invStdStrides
{N}, // outLengths
{1}, // dgammaStrides
{1}, // dbetaStrides
{0}, // reduceDims
dy_dev.GetDeviceBuffer(),
x_dev.GetDeviceBuffer(),
mean_dev.GetDeviceBuffer(),
inv_std_dev.GetDeviceBuffer(),
dgamma_dev.GetDeviceBuffer(),
dbeta_dev.GetDeviceBuffer());
if(!gamma_beta_device_instance.IsSupportedArgument(gamma_beta_argument_ptr.get()))
{
std::cout << "The runtime parameters are not supported" << std::endl;
return 1;
};
auto gamma_beta_invoker_ptr = gamma_beta_device_instance.MakeInvokerPointer();
gamma_beta_invoker_ptr->Run(gamma_beta_argument_ptr.get(), StreamConfig{nullptr, time_kernel});
bool pass = true;
{
Tensor<DGammaDataType> host_dgamma({N});
Tensor<DBetaDataType> host_dbeta({N});
Tensor<DXDataType> host_dx({M, N});
using ReferenceInstance =
ck::tensor_operation::host::ReferenceLayernormBwd<DYDataType,
XDataType,
GammaDataType,
MeanInvStdDataType,
DGammaDataType,
DBetaDataType,
DXDataType,
ComputeDataType>;
ReferenceInstance ref;
auto ref_argument =
ref.MakeArgument(dy, x, gamma, mean, inv_std, host_dgamma, host_dbeta, host_dx, {M, N});
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
dgamma_dev.FromDevice(dgamma.mData.data());
dbeta_dev.FromDevice(dbeta.mData.data());
pass &= ck::utils::check_err(dgamma, host_dgamma, "Error: Incorrect dgamma", 1e-3, 1e-3);
pass &= ck::utils::check_err(dbeta, host_dbeta, "Error: Incorrect dbeta", 1e-3, 1e-3);
}
return (pass ? 0 : 1);
}
add_example_executable(example_groupnorm_bwd_fp16 groupnorm_bwd_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_gamma_beta_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_groupnorm_bwd.hpp"
using DYDataType = ck::half_t;
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using MeanInvStdDataType = float;
using DGammaDataType = ck::half_t;
using DBetaDataType = ck::half_t;
using DXDataType = ck::half_t;
using ComputeDataType = float;
constexpr int Rank = 5;
constexpr int NumReduceDim = 3;
// Grouprnorm
// kernel: M , K
// dy: N, H, W, G, C -> G * C, N * H * W
// x: N, H, W, G, C -> G * C, N * H * W
// mean: N, 1, 1, G, 1 -> G * 1, N * 1 * 1
// rstd: N, 1, 1, G, 1 -> G * 1, N * 1 * 1
// dgamma: 1, 1, 1, G, C -> G * C
// dbeta: 1, 1, 1, G, C -> G * C
// reduced axis: 0, 1, 2
using GammaBetaDeviceInstance = ck::tensor_operation::device::DeviceNormalizationBwdGammaBetaImpl<
DYDataType,
XDataType,
MeanInvStdDataType,
ComputeDataType,
DGammaDataType,
DBetaDataType,
Rank,
NumReduceDim,
256, // BlockSize
8, // ClusterInvarient
32, // ClusterReduce
8, // SliceInvarient
1, // SliceReduce
false, // IsDYFastestDimReduced
8, // DYSrcVectorSize
false, // IsXFastestDimReduced
8, // XSrcVectorSize
false, // IsMeanInvStdFastestDimReduced
1, // MeanInvStdSrcVectorSize
1, // DGammaDstVectorSize
1>; // DBetaDstVectorSize
int main()
{
bool time_kernel = false;
ck::index_t N = 16;
ck::index_t H = 16;
ck::index_t W = 16;
ck::index_t G = 32;
ck::index_t C = 64;
Tensor<DYDataType> dy({N, H, W, G, C});
Tensor<XDataType> x({N, H, W, G, C});
Tensor<GammaDataType> gamma({G, C});
Tensor<MeanInvStdDataType> mean({N, G});
Tensor<MeanInvStdDataType> inv_std({N, G});
Tensor<DGammaDataType> dgamma({G, C});
Tensor<DBetaDataType> dbeta({G, C});
Tensor<DXDataType> dx({N, H, W, G, C});
dy.GenerateTensorValue(GeneratorTensor_3<DYDataType>{0.0, 1.0});
x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0.0, 1.0});
gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{0.0, 1.0});
mean.GenerateTensorValue(GeneratorTensor_3<MeanInvStdDataType>{0.0, 1.0});
inv_std.GenerateTensorValue(GeneratorTensor_3<MeanInvStdDataType>{0.0, 1.0});
DeviceMem dy_dev(sizeof(DYDataType) * dy.mDesc.GetElementSpaceSize());
DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
DeviceMem mean_dev(sizeof(MeanInvStdDataType) * mean.mDesc.GetElementSpaceSize());
DeviceMem inv_std_dev(sizeof(MeanInvStdDataType) * inv_std.mDesc.GetElementSpaceSize());
DeviceMem dgamma_dev(sizeof(DGammaDataType) * dgamma.mDesc.GetElementSpaceSize());
DeviceMem dbeta_dev(sizeof(DBetaDataType) * dbeta.mDesc.GetElementSpaceSize());
dy_dev.ToDevice(dy.mData.data());
x_dev.ToDevice(x.mData.data());
mean_dev.ToDevice(mean.mData.data());
inv_std_dev.ToDevice(inv_std.mData.data());
std::vector<ck::index_t> dyStrides{dy.mDesc.GetStrides().begin(), dy.mDesc.GetStrides().end()};
std::vector<ck::index_t> xStrides{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()};
std::vector<ck::index_t> meanStrides = {G, 0, 0, 1, 0};
std::vector<ck::index_t> invStdStrides = {G, 0, 0, 1, 0};
auto gamma_beta_device_instance = GammaBetaDeviceInstance{};
auto gamma_beta_argument_ptr =
gamma_beta_device_instance.MakeArgumentPointer({N, H, W, G, C}, // inLengths
dyStrides, // dyStrides
xStrides, // xStrides
meanStrides, // meanStrides
invStdStrides, // invStdStrides
{G, C}, // outLengths
{C, 1}, // dgammaStrides
{C, 1}, // dbetaStrides
{0, 1, 2}, // reduceDims
dy_dev.GetDeviceBuffer(),
x_dev.GetDeviceBuffer(),
mean_dev.GetDeviceBuffer(),
inv_std_dev.GetDeviceBuffer(),
dgamma_dev.GetDeviceBuffer(),
dbeta_dev.GetDeviceBuffer());
if(!gamma_beta_device_instance.IsSupportedArgument(gamma_beta_argument_ptr.get()))
{
std::cout << "The runtime parameters are not supported" << std::endl;
return 1;
};
auto gamma_beta_invoker_ptr = gamma_beta_device_instance.MakeInvokerPointer();
gamma_beta_invoker_ptr->Run(gamma_beta_argument_ptr.get(), StreamConfig{nullptr, time_kernel});
bool pass = true;
{
Tensor<DGammaDataType> host_dgamma({G, C});
Tensor<DBetaDataType> host_dbeta({G, C});
Tensor<DXDataType> host_dx({N, H, W, G, C});
using ReferenceInstance =
ck::tensor_operation::host::ReferenceGroupnormBwd<DYDataType,
XDataType,
GammaDataType,
MeanInvStdDataType,
DGammaDataType,
DBetaDataType,
DXDataType,
ComputeDataType>;
ReferenceInstance ref;
auto ref_argument = ref.MakeArgument(
dy, x, gamma, mean, inv_std, host_dgamma, host_dbeta, host_dx, {N, H, W, G, C});
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
dgamma_dev.FromDevice(dgamma.mData.data());
dbeta_dev.FromDevice(dbeta.mData.data());
pass &= ck::utils::check_err(dgamma, host_dgamma, "Error: Incorrect dgamma", 1e-3, 1e-3);
pass &= ck::utils::check_err(dbeta, host_dbeta, "Error: Incorrect dbeta", 1e-3, 1e-3);
}
return (pass ? 0 : 1);
}
...@@ -30,6 +30,15 @@ foreach(gpu IN LISTS GPU_TARGETS) ...@@ -30,6 +30,15 @@ foreach(gpu IN LISTS GPU_TARGETS)
# Elu # Elu
add_example_executable(example_convnd_fwd_xdl_elu_fp16 convnd_fwd_xdl_elu_fp16.cpp) add_example_executable(example_convnd_fwd_xdl_elu_fp16 convnd_fwd_xdl_elu_fp16.cpp)
add_example_dependencies(example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_elu_fp16) add_example_dependencies(example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_elu_fp16)
# ScaleAdd on A and B
add_example_executable(example_conv_fwd_xdl_scaleadd_ab_fp16 multi_AB/conv_fwd_xdl_scaleadd_ab_fp16.cpp)
add_example_dependencies(example_convnd_fwd_activ_xdl example_conv_fwd_xdl_scaleadd_ab_fp16)
add_example_executable(example_conv_fwd_xdl_scaleadd_ab_fp32 multi_AB/conv_fwd_xdl_scaleadd_ab_fp32.cpp)
add_example_dependencies(example_convnd_fwd_activ_xdl example_conv_fwd_xdl_scaleadd_ab_fp32)
add_example_executable(example_conv_fwd_xdl_scaleadd_ab_bf16 multi_AB/conv_fwd_xdl_scaleadd_ab_bf16.cpp)
add_example_dependencies(example_convnd_fwd_activ_xdl example_conv_fwd_xdl_scaleadd_ab_bf16)
add_example_executable(example_conv_fwd_xdl_scaleadd_ab_int8 multi_AB/conv_fwd_xdl_scaleadd_ab_int8.cpp)
add_example_dependencies(example_convnd_fwd_activ_xdl example_conv_fwd_xdl_scaleadd_ab_int8)
# ScaleAdd ScaleAdd Relu # ScaleAdd ScaleAdd Relu
add_example_executable(example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16 convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16.cpp) add_example_executable(example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16 convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16.cpp)
add_example_dependencies(example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16) add_example_dependencies(example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16)
......
...@@ -11,7 +11,7 @@ ...@@ -11,7 +11,7 @@
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp" #include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/algorithm.hpp" #include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
...@@ -47,7 +47,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio ...@@ -47,7 +47,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template <typename OutElementOp> template <typename OutElementOp>
using DeviceGroupedConvNDFwdInstance = using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial, NDimSpatial,
InLayout, InLayout,
WeiLayout, WeiLayout,
......
...@@ -9,7 +9,7 @@ ...@@ -9,7 +9,7 @@
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp" #include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/algorithm.hpp" #include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
...@@ -47,7 +47,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio ...@@ -47,7 +47,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template <typename OutElementOp> template <typename OutElementOp>
using DeviceGroupedConvNDFwdInstance = using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial, NDimSpatial,
InLayout, InLayout,
WeiLayout, WeiLayout,
...@@ -226,14 +226,17 @@ bool run_grouped_conv_fwd(bool do_verification, ...@@ -226,14 +226,17 @@ bool run_grouped_conv_fwd(bool do_verification,
if(do_verification) if(do_verification)
{ {
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial, auto ref_conv =
InDataType, ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
WeiDataType, InDataType,
OutDataType, WeiDataType,
InElementOp, OutDataType,
WeiElementOp, InElementOp,
OutElementOp, WeiElementOp,
NumDs>(); OutElementOp,
0, /*Num A Elementwise Tensors*/
0, /*Num B Elementwise Tensors*/
NumDs>();
auto ref_invoker = ref_conv.MakeInvoker(); auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in, auto ref_argument = ref_conv.MakeArgument(in,
...@@ -246,6 +249,8 @@ bool run_grouped_conv_fwd(bool do_verification, ...@@ -246,6 +249,8 @@ bool run_grouped_conv_fwd(bool do_verification,
in_element_op, in_element_op,
wei_element_op, wei_element_op,
out_element_op, out_element_op,
{},
{},
d_tensors); d_tensors);
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_multi_ab_common.hpp"
using DataType = ck::bhalf_t;
using AccDataType = float;
using InDataType = DataType;
using WeiDataType = DataType;
using OutDataType = DataType;
using ADataTypes = ck::Tuple<DataType, DataType>;
using BDataTypes = ck::Tuple<DataType, DataType>;
using InElementOp = ck::tensor_operation::element_wise::ScaleAdd;
using WeiElementOp = ck::tensor_operation::element_wise::ScaleAdd;
using DeviceGroupedConvNDFwdActivInstance = DeviceGroupedConvNDMultiABFwdInstance<DataType,
AccDataType,
ADataTypes,
BDataTypes,
InElementOp,
WeiElementOp>;
#include "../run_convnd_fwd_activ_example.inc"
int main(int argc, char* argv[]) { return !run_convnd_fwd_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_multi_ab_common.hpp"
using DataType = ck::half_t;
using AccDataType = float;
using InDataType = DataType;
using WeiDataType = DataType;
using OutDataType = DataType;
using ADataTypes = ck::Tuple<DataType, DataType>;
using BDataTypes = ck::Tuple<DataType, DataType>;
using InElementOp = ck::tensor_operation::element_wise::ScaleAdd;
using WeiElementOp = ck::tensor_operation::element_wise::ScaleAdd;
using DeviceGroupedConvNDFwdActivInstance = DeviceGroupedConvNDMultiABFwdInstance<DataType,
AccDataType,
ADataTypes,
BDataTypes,
InElementOp,
WeiElementOp>;
#include "../run_convnd_fwd_activ_example.inc"
int main(int argc, char* argv[]) { return !run_convnd_fwd_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_multi_ab_common.hpp"
using DataType = float;
using AccDataType = float;
using InDataType = DataType;
using WeiDataType = DataType;
using OutDataType = DataType;
using ADataTypes = ck::Tuple<DataType, DataType>;
using BDataTypes = ck::Tuple<DataType, DataType>;
using InElementOp = ck::tensor_operation::element_wise::ScaleAdd;
using WeiElementOp = ck::tensor_operation::element_wise::ScaleAdd;
using DeviceGroupedConvNDFwdActivInstance = DeviceGroupedConvNDMultiABFwdInstance<DataType,
AccDataType,
ADataTypes,
BDataTypes,
InElementOp,
WeiElementOp>;
#include "../run_convnd_fwd_activ_example.inc"
int main(int argc, char* argv[]) { return !run_convnd_fwd_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_multi_ab_common.hpp"
using DataType = int8_t;
using AccDataType = int32_t;
using InDataType = DataType;
using WeiDataType = DataType;
using OutDataType = DataType;
using ADataTypes = ck::Tuple<DataType, DataType>;
using BDataTypes = ck::Tuple<DataType, DataType>;
using InElementOp = ck::tensor_operation::element_wise::ScaleAdd;
using WeiElementOp = ck::tensor_operation::element_wise::ScaleAdd;
using DeviceGroupedConvNDFwdActivInstance = DeviceGroupedConvNDMultiABFwdInstance<DataType,
AccDataType,
ADataTypes,
BDataTypes,
InElementOp,
WeiElementOp>;
#include "../run_convnd_fwd_activ_example.inc"
int main(int argc, char* argv[]) { return !run_convnd_fwd_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
constexpr ck::index_t NDimSpatial = 3;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InLayout = ck::tensor_layout::convolution::GNDHWC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::GNDHWK;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <typename DataType,
typename AccDataType,
typename InDataTypes,
typename WeiDataTypes,
typename InElementOp,
typename WeiElementOp>
using DeviceGroupedConvNDMultiABFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataTypes,
WeiDataTypes,
AccDataType,
DataType,
ck::Tuple<>,
DataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8>;
namespace {
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp,
typename DeviceConvNDFwdInstance>
bool run_grouped_conv_fwd(bool do_verification,
int init_method,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
{
constexpr ck::index_t NumAs = 2;
constexpr ck::index_t NumBs = 2;
Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<InDataType> in_bias(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
Tensor<WeiDataType> wei_bias(wei_g_k_c_xs_desc);
Tensor<OutDataType> out_host(out_g_n_k_wos_desc);
Tensor<OutDataType> out_device(out_g_n_k_wos_desc);
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "out: " << out_host.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-2, 2});
in_bias.GenerateTensorValue(GeneratorTensor_2<InDataType>{-2, 2});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-2, 2});
wei_bias.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-2, 2});
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-1.0, 1.0});
in_bias.GenerateTensorValue(GeneratorTensor_3<InDataType>{-1.0, 1.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.05, 0.05});
wei_bias.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-1.0, 1.0});
}
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem in_bias_device_buf(sizeof(InDataType) * in_bias.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem wei_bias_device_buf(sizeof(WeiDataType) * wei_bias.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in.mData.data());
in_bias_device_buf.ToDevice(in_bias.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
wei_bias_device_buf.ToDevice(wei_bias.mData.data());
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
std::array<const void*, NumAs> as{in_device_buf.GetDeviceBuffer(),
in_bias_device_buf.GetDeviceBuffer()};
std::array<const void*, NumBs> bs{wei_device_buf.GetDeviceBuffer(),
wei_bias_device_buf.GetDeviceBuffer()};
std::array<const void*, 0> ds{};
// do Conv
auto conv = DeviceConvNDFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(as,
bs,
ds,
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
{},
{},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = conv_param.GetFlops() +
2 * conv_param.GetOutputByte<InDataType>() / sizeof(InDataType) +
2 * conv_param.GetOutputByte<WeiDataType>() / sizeof(WeiDataType);
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>() +
conv_param.GetInputByte<InDataType>() +
conv_param.GetWeightByte<WeiDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
if(do_verification)
{
const std::array<Tensor<InDataType>, NumAs - 1> elementwise_a_tensors = {in_bias};
const std::array<Tensor<WeiDataType>, NumBs - 1> elementwise_b_tensors = {wei_bias};
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
NumAs - 1,
NumBs - 1>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in,
wei,
out_host,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
in_element_op,
wei_element_op,
out_element_op,
elementwise_a_tensors,
elementwise_b_tensors);
ref_invoker.Run(ref_argument);
out_device_buf.FromDevice(out_device.mData.data());
return ck::utils::check_err(out_device, out_host, "Error: incorrect results!");
}
return true;
}
} // namespace
add_example_executable(example_layernorm4d_fwd_fp16 layernorm4d_fwd_fp16.cpp)
add_example_executable(example_layernorm4d_fwd_splitk_fp16 layernorm4d_fwd_splitk_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_fwd_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_fwd_splitk_impl.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using SaveMeanInvStdDataType = float;
using ComputeDataType = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
#define SAVE_MEAN_INV_STD
constexpr int Rank = 4;
constexpr int NumReduceDim = 3;
using DeviceInstance =
ck::tensor_operation::device::DeviceNormalizationFwdImpl<XDataType,
GammaDataType,
BetaDataType,
ComputeDataType,
YDataType,
SaveMeanInvStdDataType,
PassThrough,
Rank,
NumReduceDim,
256, // BlockSize
8, // ClusterM
32, // ClusterK
1, // SliceM
8, // SliceK
1, // XYVectorDim (0=M, 1=K)
8, // SrcScalarPerVector
1, // GammaVecDim (0=M, 1=K)
8, // GammaScalarPerVector
1, // BetaVecDim (0=M, 1=K)
8, // BetaScalarPerVector
8, // YScalarPerVector
1>; // SaveMeanInvStdScalarPerVector
#include "run_layernorm4d_fwd_example.inc"
int main() { return run_layernorm4d_fwd_example<DeviceInstance>(); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using SaveMeanInvStdDataType = float;
using ComputeDataType = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
#define SAVE_MEAN_INV_STD
constexpr int Rank = 4;
constexpr int NumReduceDim = 3;
using DeviceInstance = ck::tensor_operation::device::DeviceNormalizationFwdSplitKImpl<
XDataType,
GammaDataType,
BetaDataType,
ComputeDataType,
YDataType,
SaveMeanInvStdDataType,
PassThrough,
Rank,
NumReduceDim,
256, // BlockSize
8, // ClusterM
32, // ClusterK
1, // SliceM
8, // SliceK
1, // XYVectorDim (0=M, 1=K)
8, // XScalarPerVector
1, // GammaVecDim (0=M, 1=K)
8, // GammaScalarPerVector
1, // BetaVecDim (0=M, 1=K)
8, // BetaScalarPerVector
8, // YScalarPerVector
1>; // SaveMeanInvStdScalarPerVector
#include "run_layernorm4d_fwd_example.inc"
int main() { return run_layernorm4d_fwd_example<DeviceInstance>(); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
template <typename DeviceInstance>
int run_layernorm4d_fwd_example()
{
bool time_kernel = false;
ck::index_t N = 256;
ck::index_t H = 16;
ck::index_t W = 16;
ck::index_t C = 8;
Tensor<XDataType> x({N, H, W, C});
Tensor<GammaDataType> gamma({H, W, C});
Tensor<BetaDataType> beta({H, W, C});
Tensor<YDataType> y({N, H, W, C});
Tensor<SaveMeanInvStdDataType> save_mean({N});
Tensor<SaveMeanInvStdDataType> save_inv_std({N});
x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0.0, 1.0});
gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{0.0, 1.0});
beta.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{0.0, 1.0});
DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize());
DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpaceSize());
#ifdef SAVE_MEAN_INV_STD
DeviceMem save_mean_dev(sizeof(SaveMeanInvStdDataType) * save_mean.mDesc.GetElementSpaceSize());
DeviceMem save_inv_std_dev(sizeof(SaveMeanInvStdDataType) *
save_inv_std.mDesc.GetElementSpaceSize());
#endif
x_dev.ToDevice(x.mData.data());
gamma_dev.ToDevice(gamma.mData.data());
beta_dev.ToDevice(beta.mData.data());
auto device_instance = DeviceInstance{};
auto argument_ptr = device_instance.MakeArgumentPointer(
{N, H, W, C},
std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()},
{0, W * C, C, 1},
{0, W * C, C, 1},
std::vector<ck::index_t>{y.mDesc.GetStrides().begin(), y.mDesc.GetStrides().end()},
std::vector<ck::index_t>{save_mean.mDesc.GetStrides().begin(),
save_mean.mDesc.GetStrides().end()},
std::vector<ck::index_t>{save_mean.mDesc.GetStrides().begin(),
save_mean.mDesc.GetStrides().end()},
{1, 2, 3},
1e-4,
x_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(),
y_dev.GetDeviceBuffer(),
#ifdef SAVE_MEAN_INV_STD
save_mean_dev.GetDeviceBuffer(),
save_inv_std_dev.GetDeviceBuffer(),
#else
nullptr,
nullptr,
#endif
PassThrough{});
if(!device_instance.IsSupportedArgument(argument_ptr.get()))
{
std::cout << "The runtime parameters are not supported" << std::endl;
return 1;
};
size_t workspace_sz = device_instance.GetWorkSpaceSize(argument_ptr.get());
DeviceMem workspace_dev(workspace_sz);
device_instance.SetWorkSpacePointer(argument_ptr.get(), workspace_dev.GetDeviceBuffer());
auto invoker_ptr = device_instance.MakeInvokerPointer();
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
bool pass = true;
{
Tensor<YDataType> host_y({N, H, W, C});
Tensor<SaveMeanInvStdDataType> host_save_mean({N});
Tensor<SaveMeanInvStdDataType> host_save_inv_std({N});
using ReferenceInstance =
ck::tensor_operation::host::ReferenceLayernorm<XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
PassThrough,
Rank,
NumReduceDim>;
ReferenceInstance ref;
auto ref_argument = ref.MakeArgument(x,
gamma,
beta,
host_y,
host_save_mean,
host_save_inv_std,
PassThrough{},
{N, H, W, C},
{1, 2, 3},
1e-4);
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
y_dev.FromDevice(y.mData.data());
pass &= ck::utils::check_err(y, host_y, "Error: Incorrect results (y)", 1e-3, 1e-3);
#ifdef SAVE_MEAN_INV_STD
save_mean_dev.FromDevice(save_mean.mData.data());
save_inv_std_dev.FromDevice(save_inv_std.mData.data());
pass &= ck::utils::check_err(
save_mean, host_save_mean, "Error: Incorrect results (mean)", 1e-3, 1e-3);
pass &= ck::utils::check_err(
save_inv_std, host_save_inv_std, "Error: Incorrect results (inv_std)", 1e-3, 1e-3);
#endif
}
return (pass ? 0 : 1);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <memory>
#include <array>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename InDataTypeTuple,
typename OutDataTypeTuple,
typename ElementwiseOperation,
typename UnaryOperation,
typename Scale,
index_t NumDim>
struct DeviceElementwise : public BaseOperator
{
static constexpr int NumInput = InDataTypeTuple::Size();
static constexpr int NumOutput = OutDataTypeTuple::Size();
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const std::array<index_t, NumDim> lengths,
const std::array<std::array<index_t, NumDim>, NumInput> inStridesArray,
const std::array<std::array<index_t, NumDim>, NumOutput> outStridesArray,
const std::array<const void*, NumInput> in_dev_buffers,
const std::array<void*, NumOutput> out_dev_buffers,
ElementwiseOperation elementwise_op,
UnaryOperation unary_op,
Scale scale_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
}; // namespace device
template <typename InDataTypeTuple,
typename OutDataTypeTuple,
typename ElementwiseOperation,
typename UnaryOperation,
typename Scale,
index_t NumDim>
using DeviceElementwisePtr = std::unique_ptr<DeviceElementwise<InDataTypeTuple,
OutDataTypeTuple,
ElementwiseOperation,
UnaryOperation,
Scale,
NumDim>>;
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/utility/is_detected.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename T>
using is_tuple = decltype(std::declval<T&>().IsTuple());
/**
* \brief Grouped Convolution Forward
*
* \details
* input : input image A[G, N, C, Hi, Wi], A1[G, N, C, Hi, Wi]...
* input : weight B[G, K, C, Y, X], B1[G, K, C, Y, X]...
* input : D0[G, N, K, Ho, Wo], D1[G, N, K, Ho, Wo], ...
* output : output image E[G, N, K, Ho, Wo]
*
* C = a_op(A, A1...) * b_op(B, B1...)
* E = cde_op(C, D0, D1, ...)
*
* \tparam NDimSpatial Number of spatial dimensions.
* \tparam ALayout Input layout (also for a1, a2...).
* \tparam BLayout Weight layout (also for b1, b2...).
* \tparam DsLayout Ds layouts.
* \tparam ELayout Output layout.
* \tparam ADataType Input data type. Pass tuple if there is multiple A.
* \tparam BDataType Weight data type. Pass tuple if there is multiple B.
* \tparam DsDataType D data types.
* \tparam EDataType Output data type.
* \tparam AElementwiseOperation A elementwise operation.
* \tparam BElementwiseOperation B elementwise operation.
* \tparam CDEElementwiseOperation CDE elementwise operation.
* \tparam ComputeType Compute data type (default: ADataType, first if tuple passed).
*/
template <index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename ComputeType =
decltype(UnpackDataType<is_detected<is_tuple, ADataType>::value,
Number<0>,
ADataType>())> // ComputeType is InputType by default (first
// in tuple for MultiAB), unpack if tuple was
// passed
struct DeviceGroupedConvFwdMultipleABD : public BaseOperator
{
static constexpr bool isMultiA = is_detected<is_tuple, ADataType>::value;
static constexpr bool isMultiB = is_detected<is_tuple, BDataType>::value;
static constexpr index_t NumATensor = GetNumABTensors<isMultiA, ADataType>();
static constexpr index_t NumBTensor = GetNumABTensors<isMultiB, BDataType>();
static constexpr index_t NumDTensor = DsDataType::Size();
static_assert(NumDTensor == DsLayout::Size(), "wrong! Inconsistent NumDTensor");
// If DataType is tuple, user has to pass std::array with pointers.
using APointers =
std::conditional_t<isMultiA, std::array<const void*, NumATensor>&, const void*>;
using BPointers =
std::conditional_t<isMultiB, std::array<const void*, NumBTensor>&, const void*>;
/**
* \brief Make argument pointer for grouped conv fwd.
*
* \param p_a A pointer to the input (std::array<const void*, NumA> with
pointers for multiple A).
* \param p_b A pointer to the weight (std::array<const void*, NumA> with
pointers for multiple B).
* \param p_ds A pointers to the Ds.
* \param p_e A pointers to the output.
* \param a_g_n_c_wis_lengths Input lengths [G, N, C, Spatial...] (for 3d).
* \param a_g_n_c_wis_strides Input strides [G, N, C, Spatial...] (for 3d).
* \param b_g_k_c_xs_lengths Weight lengths [G, K, C, Spatial...] (for 3d).
* \param b_g_k_c_xs_strides Weight strides [G, K, C, Spatial...] (for 3d).
* \param ds_g_n_k_wos_lengths Ds lengths [G, N, K, Spatial...] (for 3d).
* \param ds_g_n_k_wos_strides Ds strides [G, N, K, Spatial...] (for 3d).
* \param e_g_n_k_wos_lengths Output lengths [G, N, K, Spatial...] (for 3d).
* \param e_g_n_k_wos_strides Output strides [G, N, K, Spatial...] (for 3d).
* \param conv_filter_strides Convolution filter strides.
* \param conv_filter_dilations Convolution filter dilations.
* \param input_left_pads Input left paddings.
* \param input_right_pads Input right paddings.
* \param a_element_op A elementwise operation object.
* \param b_element_op B elementwise operation object.
* \param cde_element_op CDE elementwise operation object.
* \return Pointer to the argument.
*/
virtual std::unique_ptr<BaseArgument> MakeArgumentPointer(
APointers p_a,
BPointers p_b,
const std::array<const void*, NumDTensor>& p_ds,
void* p_e,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_lengths,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -3,21 +3,33 @@ ...@@ -3,21 +3,33 @@
#pragma once #pragma once
#include <array> #include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
// Convolution Forward: /**
// input : input image A[G, N, C, Hi, Wi], * \brief Grouped Convolution Forward
// input : weight B[G, K, C, Y, X], *
// input : D0[G, N, K, Ho, Wo], D1[G, N, K, Ho, Wo], ... * \note This structure is deprecated (left for backwards compatibility). Please use
// output : output image E[G, N, K, Ho, Wo] * DeviceGroupedConvFwdMultipleABD.
// C = a_op(A) * b_op(B) *
// E = cde_op(C, D0, D1, ...) * \tparam NDimSpatial Number of spatial dimensions.
* \tparam ALayout Input layout (also for a1, a2...).
* \tparam BLayout Weight layout (also for b1, b2...).
* \tparam DsLayout Ds layouts.
* \tparam ELayout Output layout.
* \tparam ADataType Input data type. Pass tuple if there is multiple A.
* \tparam BDataType Weight data type. Pass tuple if there is multiple B.
* \tparam DsDataType D data types.
* \tparam EDataType Output data type.
* \tparam AElementwiseOperation A elementwise operation.
* \tparam BElementwiseOperation B elementwise operation.
* \tparam CDEElementwiseOperation CDE elementwise operation.
* \tparam ComputeType Compute data type (default: ADataType, first if tuple passed).
*/
template <index_t NDimSpatial, template <index_t NDimSpatial,
typename ALayout, typename ALayout,
typename BLayout, typename BLayout,
...@@ -30,36 +42,25 @@ template <index_t NDimSpatial, ...@@ -30,36 +42,25 @@ template <index_t NDimSpatial,
typename AElementwiseOperation, typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
typename CDEElementwiseOperation, typename CDEElementwiseOperation,
typename ComputeType = ADataType> typename ComputeType =
struct DeviceGroupedConvFwdMultipleD : public BaseOperator decltype(UnpackDataType<is_detected<is_tuple, ADataType>::value,
{ Number<0>,
static constexpr index_t NumDTensor = DsDataType::Size(); ADataType>())> // ComputeType is InputType by default (first
// in tuple for MultiAB), unpack if tuple was
static_assert(NumDTensor == DsLayout::Size(), "wrong! Inconsistent NumDTensor"); // passed
using DeviceGroupedConvFwdMultipleD = DeviceGroupedConvFwdMultipleABD<NDimSpatial,
virtual std::unique_ptr<BaseArgument> MakeArgumentPointer( ALayout,
const void* p_a, // input image BLayout,
const void* p_b, // weight DsLayout,
const std::array<const void*, NumDTensor>& p_ds, ELayout,
void* p_e, // output image ADataType,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths, BDataType,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides, DsDataType,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths, EDataType,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides, AElementwiseOperation,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_lengths, BElementwiseOperation,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides, CDEElementwiseOperation,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths, ComputeType>;
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment