Unverified Commit 564c720f authored by Anthony Chang's avatar Anthony Chang Committed by GitHub
Browse files

Merge branch 'develop' into rosenrodt/gemm-layernorm

parents dde01029 85fc91c3
......@@ -32,7 +32,7 @@ template <typename ALayout,
typename CElementwiseOperation,
typename DxsReduceOperation,
typename DxsInElementwiseOperation,
typename DxsOutElementwiseOperation,
typename DxsAccElementwiseOperation,
typename DGlobalMemoryDataOperation,
GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
......@@ -73,7 +73,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
BElementwiseOperation,
CElementwiseOperation,
DxsInElementwiseOperation,
DxsOutElementwiseOperation>
DxsAccElementwiseOperation>
{
using DeviceOp = DeviceGemmReduce_Xdl_CShuffle;
......@@ -389,7 +389,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
CElementwiseOperation,
DxsReduceOperation,
DxsInElementwiseOperation,
DxsOutElementwiseOperation,
DxsAccElementwiseOperation,
InMemoryDataOperationEnum::Set,
DGlobalMemoryDataOperation,
AGridDesc_AK0_M_AK1,
......@@ -449,7 +449,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsOutElementwiseOperation dxs_out_element_op)
DxsAccElementwiseOperation dxs_out_element_op)
: p_a_grid_{p_a_grid},
p_b_grid_{p_b_grid},
p_c_grid_{p_c_grid},
......@@ -498,7 +498,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
DxsInElementwiseOperation dxs_in_element_op_;
DxsOutElementwiseOperation dxs_out_element_op_;
DxsAccElementwiseOperation dxs_out_element_op_;
};
// Invoker
......@@ -554,7 +554,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
BElementwiseOperation,
CElementwiseOperation,
DxsInElementwiseOperation,
DxsOutElementwiseOperation,
DxsAccElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
......@@ -594,7 +594,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
BElementwiseOperation,
CElementwiseOperation,
DxsInElementwiseOperation,
DxsOutElementwiseOperation,
DxsAccElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
......@@ -669,7 +669,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsOutElementwiseOperation dxs_out_element_op)
DxsAccElementwiseOperation dxs_out_element_op)
{
return Argument{p_a,
p_b,
......@@ -705,7 +705,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsOutElementwiseOperation dxs_out_element_op,
DxsAccElementwiseOperation dxs_out_element_op,
index_t /* KBatch */ = 1) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
......
......@@ -3,6 +3,7 @@
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_prop.hpp"
#include "device_base.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp"
......@@ -11,7 +12,6 @@
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r3.hpp"
#include "gemm_specialization.hpp"
#include "device_prop.hpp"
namespace ck {
namespace tensor_operation {
......@@ -408,7 +408,23 @@ struct DeviceGemmXdl
static bool IsSupportedArgument(const Argument& arg)
{
if(!(ck::get_device_name() == "gfx908" || ck::get_device_name() == "gfx90a"))
if(ck::get_device_name() == "gfx908")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, float> ||
is_same_v<AccDataType, int32_t>))
{
return false;
}
}
else if(ck::get_device_name() == "gfx90a")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, float> ||
is_same_v<AccDataType, int32_t> || is_same_v<AccDataType, double>))
{
return false;
}
}
else
{
return false;
}
......
......@@ -143,6 +143,24 @@ struct AddHardswishAdd
}
};
struct Normalize
{
Normalize(float epsilon = 1e-4) : epsilon_(epsilon) {}
__host__ __device__ constexpr void operator()(float& y,
const float& x,
const float& mean,
const float& mean_square,
const float& gamma,
const float& beta) const
{
float variance = mean_square - (mean * mean);
y = ((x - mean) / sqrtf(variance + epsilon_)) * gamma + beta;
}
float epsilon_;
};
// Unary operators are usually called element-wisely before/after the reduction is executed on the
// elements. They are needed for easy implementation of reduction types of AVG, NRM1, NRM2
......
#pragma once
#include "cluster_descriptor.hpp"
#include "data_type.hpp"
#include "element_wise_operation.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
namespace ck {
template <typename Gridwise5AryEltwise,
typename ADataType,
typename BDataType,
typename CDataType,
typename DDataType,
typename EDataType,
typename FDataType,
typename AGridDesc_M,
typename BGridDesc_M,
typename CGridDesc_M,
typename DGridDesc_M,
typename EGridDesc_M,
typename FGridDesc_M,
typename ElementwiseFunctor>
__global__ void kernel_5ary_elementwise_1d(const ADataType* __restrict__ p_a_global,
const BDataType* __restrict__ p_b_global,
const CDataType* __restrict__ p_c_global,
const DDataType* __restrict__ p_d_global,
const EDataType* __restrict__ p_e_global,
FDataType* __restrict__ p_f_global,
const AGridDesc_M a_grid_desc_m,
const BGridDesc_M b_grid_desc_m,
const CGridDesc_M c_grid_desc_m,
const DGridDesc_M d_grid_desc_m,
const EGridDesc_M e_grid_desc_m,
const FGridDesc_M f_grid_desc_m,
const ElementwiseFunctor functor)
{
Gridwise5AryEltwise::Run(p_a_global,
p_b_global,
p_c_global,
p_d_global,
p_e_global,
p_f_global,
a_grid_desc_m,
b_grid_desc_m,
c_grid_desc_m,
d_grid_desc_m,
e_grid_desc_m,
f_grid_desc_m,
functor);
}
// TODO - implement n-ary Elemenetwise_1D, tuple of inputs and tuple of outputs
template <typename ADataType,
typename BDataType,
typename CDataType,
typename DDataType,
typename EDataType,
typename FDataType,
typename ComputeDataType,
typename AGridDesc_M,
typename BGridDesc_M,
typename CGridDesc_M,
typename DGridDesc_M,
typename EGridDesc_M,
typename FGridDesc_M,
typename ElementwiseFunctor,
index_t MPerThread,
index_t AScalarPerVector,
index_t BScalarPerVector,
index_t CScalarPerVector,
index_t DScalarPerVector,
index_t EScalarPerVector,
index_t FScalarPerVector>
struct Gridwise5AryElementwise_1D
{
static constexpr auto I0 = Number<0>{};
static constexpr auto thread_desc_m =
make_naive_tensor_descriptor_packed(make_tuple(Number<MPerThread>{}));
using PassThrough = tensor_operation::element_wise::PassThrough;
static __device__ auto CalculateElementwiseIndex()
{
const index_t global_thread_id = get_thread_global_1d_id();
return make_multi_index(global_thread_id * MPerThread);
}
__device__ static void Run(const ADataType* __restrict__ p_a_global,
const BDataType* __restrict__ p_b_global,
const CDataType* __restrict__ p_c_global,
const DDataType* __restrict__ p_d_global,
const EDataType* __restrict__ p_e_global,
FDataType* __restrict__ p_f_global,
const AGridDesc_M a_grid_desc_m,
const BGridDesc_M b_grid_desc_m,
const CGridDesc_M c_grid_desc_m,
const DGridDesc_M d_grid_desc_m,
const EGridDesc_M e_grid_desc_m,
const FGridDesc_M f_grid_desc_m,
const ElementwiseFunctor functor)
{
const auto a_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_global, a_grid_desc_m.GetElementSpaceSize());
const auto b_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_global, b_grid_desc_m.GetElementSpaceSize());
const auto c_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_global, c_grid_desc_m.GetElementSpaceSize());
const auto d_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_d_global, d_grid_desc_m.GetElementSpaceSize());
const auto e_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_e_global, e_grid_desc_m.GetElementSpaceSize());
auto f_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_f_global, f_grid_desc_m.GetElementSpaceSize());
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MPerThread, true> a_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MPerThread, true> b_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MPerThread, true> c_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MPerThread, true> d_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MPerThread, true> e_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MPerThread, true> f_thread_buf;
const auto thread_store_global_offset = CalculateElementwiseIndex();
auto a_global_load =
ThreadwiseTensorSliceTransfer_v2<ADataType,
ComputeDataType,
AGridDesc_M,
decltype(thread_desc_m),
Sequence<MPerThread>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
AScalarPerVector, // ScalarPerVector
1, // SrcScalarStrideInVector
false>{a_grid_desc_m, thread_store_global_offset};
auto b_global_load =
ThreadwiseTensorSliceTransfer_v2<BDataType,
ComputeDataType,
BGridDesc_M,
decltype(thread_desc_m),
Sequence<MPerThread>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
BScalarPerVector, // ScalarPerVector
1, // SrcScalarStrideInVector
false>{b_grid_desc_m, thread_store_global_offset};
auto c_global_load =
ThreadwiseTensorSliceTransfer_v2<CDataType,
ComputeDataType,
CGridDesc_M,
decltype(thread_desc_m),
Sequence<MPerThread>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
CScalarPerVector, // ScalarPerVector
1, // SrcScalarStrideInVector
false>{c_grid_desc_m, thread_store_global_offset};
auto d_global_load =
ThreadwiseTensorSliceTransfer_v2<DDataType,
ComputeDataType,
DGridDesc_M,
decltype(thread_desc_m),
Sequence<MPerThread>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
DScalarPerVector, // ScalarPerVector
1, // SrcScalarStrideInVector
false>{d_grid_desc_m, thread_store_global_offset};
auto e_global_load =
ThreadwiseTensorSliceTransfer_v2<EDataType,
ComputeDataType,
EGridDesc_M,
decltype(thread_desc_m),
Sequence<MPerThread>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
EScalarPerVector, // ScalarPerVector
1, // SrcScalarStrideInVector
false>{e_grid_desc_m, thread_store_global_offset};
auto f_global_write =
ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
FDataType,
decltype(thread_desc_m),
FGridDesc_M,
PassThrough,
Sequence<MPerThread>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // DstVectorDim
FScalarPerVector, // ScalarPerVector
InMemoryDataOperationEnum::Set,
1, // DstScalarStrideInVector
false>{
f_grid_desc_m, thread_store_global_offset, PassThrough{}};
const index_t blockSize = get_block_size();
const index_t blockPerGrid = get_grid_size();
const auto M = c_grid_desc_m.GetLength(I0);
const index_t loop_step = blockPerGrid * blockSize * MPerThread;
const auto loop_step_index = make_multi_index(loop_step);
index_t num_iter = M / (loop_step);
do
{
// read and process MPerThread elements
a_global_load.Run(
a_grid_desc_m, a_global_buf, thread_desc_m, make_tuple(I0), a_thread_buf);
b_global_load.Run(
b_grid_desc_m, b_global_buf, thread_desc_m, make_tuple(I0), b_thread_buf);
c_global_load.Run(
c_grid_desc_m, c_global_buf, thread_desc_m, make_tuple(I0), c_thread_buf);
d_global_load.Run(
d_grid_desc_m, d_global_buf, thread_desc_m, make_tuple(I0), d_thread_buf);
e_global_load.Run(
e_grid_desc_m, e_global_buf, thread_desc_m, make_tuple(I0), e_thread_buf);
static_for<0, MPerThread, 1>{}([&](auto m) {
constexpr auto offset = thread_desc_m.CalculateOffset(make_tuple(m));
functor(f_thread_buf(Number<offset>{}),
a_thread_buf(Number<offset>{}),
b_thread_buf(Number<offset>{}),
c_thread_buf(Number<offset>{}),
d_thread_buf(Number<offset>{}),
e_thread_buf(Number<offset>{}));
});
f_global_write.Run(thread_desc_m,
make_tuple(I0), // SrcSliceOriginIdx
f_thread_buf,
f_grid_desc_m,
f_global_buf);
a_global_load.MoveSrcSliceWindow(a_grid_desc_m, loop_step_index);
b_global_load.MoveSrcSliceWindow(b_grid_desc_m, loop_step_index);
c_global_load.MoveSrcSliceWindow(c_grid_desc_m, loop_step_index);
d_global_load.MoveSrcSliceWindow(d_grid_desc_m, loop_step_index);
e_global_load.MoveSrcSliceWindow(e_grid_desc_m, loop_step_index);
f_global_write.MoveDstSliceWindow(f_grid_desc_m, loop_step_index);
} while(--num_iter);
}
};
} // namespace ck
......@@ -21,7 +21,7 @@ template <typename GridwiseGemm,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename DxsInElementwiseOperation,
typename DxsOutElementwiseOperation,
typename DxsAccElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
......@@ -41,7 +41,7 @@ __global__ void
const BElementwiseOperation b_element_op,
const CElementwiseOperation c_element_op,
const DxsInElementwiseOperation dxs_in_element_op,
const DxsOutElementwiseOperation dxs_out_element_op,
const DxsAccElementwiseOperation dxs_out_element_op,
const AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
......@@ -96,7 +96,7 @@ template <typename FloatAB,
typename CElementwiseOperation,
typename DxsReduceOperation,
typename DxsInElementwiseOperation,
typename DxsOutElementwiseOperation,
typename DxsAccElementwiseOperation,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
typename DGlobalMemoryDataOperation,
typename AGridDesc_AK0_M_AK1,
......@@ -329,7 +329,7 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
const BElementwiseOperation& b_element_op,
const CElementwiseOperation& c_element_op,
const DxsInElementwiseOperation& dxs_in_element_op,
const DxsOutElementwiseOperation& dxs_out_element_op,
const DxsAccElementwiseOperation& dxs_out_element_op,
const AGridDesc_AK0_M_AK1& a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock&
......
......@@ -38,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
using device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instances =
std::tuple<
// clang-format off
//##################################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsOutEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//##################################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsAccEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//##################################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//##################################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
......
......@@ -38,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
using device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instances =
std::tuple<
// clang-format off
//##################################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsOutEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//##################################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsAccEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//##################################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//##################################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
......
......@@ -38,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
using device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances =
std::tuple<
// clang-format off
//##################################| ALayout| BLayout| CLayout| AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsOutEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//##################################| ALayout| BLayout| CLayout| AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsAccEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//##################################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//##################################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
......
......@@ -38,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
using device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instances =
std::tuple<
// clang-format off
//##################################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsOutEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//##################################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsAccEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//##################################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//##################################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
......
......@@ -24,10 +24,11 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ReduceSum = ck::reduce::Add<F32>;
using ReduceOps = ck::Tuple<ReduceSum, ReduceSum>;
using Div = ck::tensor_operation::element_wise::UnaryIdentic<F32, F32, true>;
using Identity = ck::tensor_operation::element_wise::UnaryIdentic<F32, F32, false>;
using Square = ck::tensor_operation::element_wise::UnarySquare<F32, F32, false>;
using DInElementOps = ck::Tuple<Identity, Square>;
using DOutElementOps = ck::Tuple<Identity, Identity>;
using DOutElementOps = ck::Tuple<Div, Div>;
using ReduceMemOp = ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicAdd,
ck::InMemoryDataOperationEnum::AtomicAdd>;
......@@ -37,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
// c[m, n] = a[k, m] * b[k, n]
using device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances = std::tuple<
// clang-format off
//###########################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsOutEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//###########################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsAccEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//###########################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//###########################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//###########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
......
......@@ -24,10 +24,11 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ReduceSum = ck::reduce::Add<F32>;
using ReduceOps = ck::Tuple<ReduceSum, ReduceSum>;
using Div = ck::tensor_operation::element_wise::UnaryIdentic<F32, F32, true>;
using Identity = ck::tensor_operation::element_wise::UnaryIdentic<F32, F32, false>;
using Square = ck::tensor_operation::element_wise::UnarySquare<F32, F32, false>;
using DInElementOps = ck::Tuple<Identity, Square>;
using DOutElementOps = ck::Tuple<Identity, Identity>;
using DOutElementOps = ck::Tuple<Div, Div>;
using ReduceMemOp = ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicAdd,
ck::InMemoryDataOperationEnum::AtomicAdd>;
......@@ -37,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
// c[m, n] = a[k, m] * b[n, k]
using device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances = std::tuple<
// clang-format off
//###########################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsOutEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//###########################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsAccEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//###########################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//###########################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//###########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
......
......@@ -24,10 +24,11 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ReduceSum = ck::reduce::Add<F32>;
using ReduceOps = ck::Tuple<ReduceSum, ReduceSum>;
using Div = ck::tensor_operation::element_wise::UnaryIdentic<F32, F32, true>;
using Identity = ck::tensor_operation::element_wise::UnaryIdentic<F32, F32, false>;
using Square = ck::tensor_operation::element_wise::UnarySquare<F32, F32, false>;
using DInElementOps = ck::Tuple<Identity, Square>;
using DOutElementOps = ck::Tuple<Identity, Identity>;
using DOutElementOps = ck::Tuple<Div, Div>;
using ReduceMemOp = ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicAdd,
ck::InMemoryDataOperationEnum::AtomicAdd>;
......@@ -37,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
// c[m, n] = a[m, k] * b[n, k]
using device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances = std::tuple<
// clang-format off
//###########################| ALayout| BLayout| CLayout| AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsOutEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//###########################| ALayout| BLayout| CLayout| AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsAccEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//###########################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//###########################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//###########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
......
......@@ -24,10 +24,11 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ReduceSum = ck::reduce::Add<F32>;
using ReduceOps = ck::Tuple<ReduceSum, ReduceSum>;
using Div = ck::tensor_operation::element_wise::UnaryIdentic<F32, F32, true>;
using Identity = ck::tensor_operation::element_wise::UnaryIdentic<F32, F32, false>;
using Square = ck::tensor_operation::element_wise::UnarySquare<F32, F32, false>;
using DInElementOps = ck::Tuple<Identity, Square>;
using DOutElementOps = ck::Tuple<Identity, Identity>;
using DOutElementOps = ck::Tuple<Div, Div>;
using ReduceMemOp = ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicAdd,
ck::InMemoryDataOperationEnum::AtomicAdd>;
......@@ -37,7 +38,7 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
// c[m, n] = a[m, k] * b[n, k]
using device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances = std::tuple<
// clang-format off
//###########################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsOutEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//###########################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsAccEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//###########################| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//###########################| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//###########################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
......
......@@ -19,10 +19,11 @@ namespace device_gemm_instance {
using F32 = float;
using F16 = ck::half_t;
using DPtrsGlobal = ck::Tuple<F32*, F32*>;
using Div = ck::tensor_operation::element_wise::UnaryIdentic<F32, F32, true>;
using Identity = ck::tensor_operation::element_wise::UnaryIdentic<F32, F32, false>;
using Square = ck::tensor_operation::element_wise::UnarySquare<F32, F32, false>;
using DInElementOps = ck::Tuple<Identity, Square>;
using DOutElementOps = ck::Tuple<Identity, Identity>;
using DOutElementOps = ck::Tuple<Div, Div>;
using DeviceGemmReduceNoOpPtr = ck::tensor_operation::device::DeviceGemmReducePtr<
DPtrsGlobal,
......@@ -122,25 +123,27 @@ bool profile_gemm_reduce_impl(int do_verification,
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
}
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
using D0ReduceOp = ck::reduce::Add<float>;
using D1ReduceOp = ck::reduce::Add<float>;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
using D0ReduceOp = ck::reduce::Add<float>;
using D1ReduceOp = ck::reduce::Add<float>;
using UnaryDivElementOp = ck::tensor_operation::element_wise::UnaryIdentic<float, float, true>;
using UnaryIdenticElementOp =
ck::tensor_operation::element_wise::UnaryIdentic<float, float, false>;
using UnarySquareElementOp =
ck::tensor_operation::element_wise::UnarySquare<float, float, false>;
using DxsInElementOps = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>;
using DxsOutElementOps = ck::Tuple<UnaryIdenticElementOp, UnaryIdenticElementOp>;
using DxsOutElementOps = ck::Tuple<UnaryDivElementOp, UnaryDivElementOp>;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
const auto dxs_in_element_op = DxsInElementOps{};
const auto dxs_out_element_op = DxsOutElementOps{};
const auto d0_reduce_op = D0ReduceOp{};
const auto d1_reduce_op = D1ReduceOp{};
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
const auto d0_reduce_op = D0ReduceOp{};
const auto d1_reduce_op = D1ReduceOp{};
auto dxs_in_element_op = DxsInElementOps{};
auto dxs_out_element_op = DxsOutElementOps{M, M};
if(do_verification)
{
......@@ -167,14 +170,18 @@ bool profile_gemm_reduce_impl(int do_verification,
for(int n = 0; n < N; ++n)
{
float d0_val = ck::type_convert<float>(c_m_n_host_result(m, n));
float d1_val;
float c_val = ck::type_convert<float>(c_m_n_host_result(m, n));
float d0_val = 0;
float d1_val = 0;
UnarySquareElementOp{}(d1_val, d0_val);
dxs_in_element_op(ck::Number<0>{})(d0_val, c_val);
dxs_in_element_op(ck::Number<1>{})(d1_val, c_val);
d0_reduce_op(d0_acc, d0_val);
d1_reduce_op(d1_acc, d1_val);
}
dxs_out_element_op(ck::Number<0>{})(d0_acc, d0_acc);
dxs_out_element_op(ck::Number<1>{})(d1_acc, d1_acc);
d0_m_host_result(m) = ck::type_convert<DDataType>(d0_acc);
d1_m_host_result(m) = ck::type_convert<DDataType>(d1_acc);
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment