Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
561e787e
Commit
561e787e
authored
Aug 25, 2023
by
Bartlomiej Kocot
Browse files
Add instances, tests, profiler, example
parent
9f008852
Changes
13
Hide whitespace changes
Inline
Side-by-side
Showing
13 changed files
with
1082 additions
and
47 deletions
+1082
-47
example/52_image_to_column/image_to_column_f32.cpp
example/52_image_to_column/image_to_column_f32.cpp
+5
-5
include/ck/tensor_operation/gpu/device/impl/device_image_to_column_impl.hpp
...operation/gpu/device/impl/device_image_to_column_impl.hpp
+405
-0
include/ck/tensor_operation/gpu/grid/gridwise_image_to_column.hpp
...ck/tensor_operation/gpu/grid/gridwise_image_to_column.hpp
+1
-3
library/include/ck/library/reference_tensor_operation/cpu/reference_image_to_column.hpp
...erence_tensor_operation/cpu/reference_image_to_column.hpp
+22
-19
library/include/ck/library/tensor_operation_instance/gpu/image_to_column/device_image_to_column_instance.hpp
...e/gpu/image_to_column/device_image_to_column_instance.hpp
+70
-20
library/src/tensor_operation_instance/gpu/image_to_column/CMakeLists.txt
...sor_operation_instance/gpu/image_to_column/CMakeLists.txt
+5
-0
profiler/README.md
profiler/README.md
+39
-0
profiler/include/profiler/profile_image_to_column_impl.hpp
profiler/include/profiler/profile_image_to_column_impl.hpp
+211
-0
profiler/src/CMakeLists.txt
profiler/src/CMakeLists.txt
+2
-0
test/CMakeLists.txt
test/CMakeLists.txt
+1
-0
test/image_to_column/CMakeLists.txt
test/image_to_column/CMakeLists.txt
+4
-0
test/image_to_column/test_image_to_column.cpp
test/image_to_column/test_image_to_column.cpp
+121
-0
test/image_to_column/test_image_to_column_interface.cpp
test/image_to_column/test_image_to_column_interface.cpp
+196
-0
No files found.
example/52_image_to_column/image_to_column_f32.cpp
View file @
561e787e
...
...
@@ -10,11 +10,11 @@ using InLayout = ck::tensor_layout::convolution::GNHWC;
// clang-format off
using
DeviceImgToColInstance
=
ck
::
tensor_operation
::
device
::
DeviceImageToColumnImpl
// ######| NDimSpatial| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfe
r|
// ######| | | | | | Type| Type| Type|
D
ataType
|
Type
|
Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVecto
r|
// ######| | | | | | | | | | | | |
|
|
| | |
| | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock
|
// ######| | | | | | |
|
|
|
|
|
|
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|
<
NDimSpatial
,
InLayout
,
InDataType
,
OutDataType
,
256
,
128
,
128
,
S
<
128
,
128
>
,
S
<
16
,
16
>
,
4
>
;
//#####################| Num| InLayout| InDataType| OutDataType| Block| MPer| KPer| Thread| Scala
r|
//#####################|
D
im
| |
| | Size| Block| Block| Cluster| Pe
r|
//#####################| Spatial|
|
|
| | |
| Lengths| Vector
|
//#####################|
|
|
|
| |
|
|
|
|
<
NDimSpatial
,
InLayout
,
InDataType
,
OutDataType
,
256
,
128
,
128
,
S
<
16
,
16
>
,
1
>
;
// clang-format on
bool
RunImageToColumn
(
const
ExecutionConfig
&
config
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_params
)
...
...
include/ck/tensor_operation/gpu/device/impl/device_image_to_column_impl.hpp
0 → 100644
View file @
561e787e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/device_image_to_column.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_image_to_column.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/stream_utility.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/host_utility/io.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
InputGridDesc
,
typename
InputDataType
,
typename
OutputGridDesc
,
typename
OutputDataType
,
typename
Block2ETileMap
,
typename
GridwiseImageToColumnKernel
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_image_to_column
(
const
InputGridDesc
in_grid_desc
,
const
InputDataType
*
__restrict__
p_in_global
,
const
OutputGridDesc
out_grid_desc
,
OutputDataType
*
__restrict__
p_out_global
,
const
Block2ETileMap
block_2_tile_map
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx1030__) || defined(__gfx1100__) || \
defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx941__) || defined(__gfx942__))
GridwiseImageToColumnKernel
::
Run
(
in_grid_desc
,
p_in_global
,
out_grid_desc
,
p_out_global
,
block_2_tile_map
);
#else
ignore
=
in_grid_desc
;
ignore
=
p_in_global
;
ignore
=
out_grid_desc
;
ignore
=
p_out_global
;
ignore
=
block_2_tile_map
;
#endif
}
// Image to column for input layout NDHWC:
// input : input image [N, Di, Hi, Wi, C],
// output : output image [N * Do * Ho * Wo, Z * Y * X * C]
template
<
index_t
NDimSpatial
,
typename
InputLayout
,
typename
InputDataType
,
typename
OutputDataType
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
KPerBlock
,
typename
ThreadClusterLengths
,
index_t
ScalarPerVector
>
struct
DeviceImageToColumnImpl
:
public
DeviceImageToColumn
<
NDimSpatial
,
InputLayout
,
InputDataType
,
OutputDataType
>
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
conv_to_gemm_transformer
=
TransformConvFwdToGemm
<
NDimSpatial
,
ConvolutionForwardSpecialization
::
Default
>
{};
static
constexpr
auto
matrix_padder
=
MatrixPadder
<
GemmSpecialization
::
MKPadding
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
0
/* NPerBlock*/
,
KPerBlock
};
// Use MakeADescriptor_M_K from grouped convolution forward
static
auto
MakeInputDescriptor_M_K
(
const
ck
::
index_t
N
,
const
ck
::
index_t
C
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_spatial_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
filter_spatial_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
output_spatial_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
input_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
)
{
std
::
array
<
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{
1
};
std
::
array
<
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{
1
};
std
::
array
<
index_t
,
NDimSpatial
+
3
>
c_g_n_k_wos_lengths
{
1
};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
,
index_t
dst_offset
)
{
std
::
copy
(
x
.
begin
(),
x
.
end
(),
y
.
begin
()
+
dst_offset
);
};
constexpr
index_t
spatial_offset
=
3
;
copy
(
input_spatial_lengths
,
a_g_n_c_wis_lengths
,
spatial_offset
);
copy
(
filter_spatial_lengths
,
b_g_k_c_xs_lengths
,
spatial_offset
);
copy
(
output_spatial_lengths
,
c_g_n_k_wos_lengths
,
spatial_offset
);
// fill only significant values (C and N)
a_g_n_c_wis_lengths
[
I1
]
=
N
;
a_g_n_c_wis_lengths
[
I2
]
=
C
;
b_g_k_c_xs_lengths
[
I2
]
=
C
;
c_g_n_k_wos_lengths
[
I1
]
=
N
;
const
auto
in_gemmmraw_gemmkraw_desc
=
conv_to_gemm_transformer
.
template
MakeADescriptor_M_K
<
InputLayout
>(
a_g_n_c_wis_lengths
,
input_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
{},
// not needed for A Descriptor
c_g_n_k_wos_lengths
,
{},
// not needed for A Descriptor
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
const
auto
in_gemmm_gemmk_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_desc
);
return
in_gemmm_gemmk_desc
;
}
static
auto
MakeOutDescriptor_M_K
(
const
ck
::
index_t
N
,
const
ck
::
index_t
C
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
filter_spatial_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
output_spatial_lengths
,
const
std
::
array
<
index_t
,
2
>&
output_m_k_strides
)
{
const
index_t
NDoHoWo
=
N
*
ck
::
accumulate_n
<
index_t
>
(
output_spatial_lengths
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
const
index_t
CZYX
=
C
*
ck
::
accumulate_n
<
index_t
>
(
filter_spatial_lengths
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
const
auto
desc_mraw_kraw
=
make_naive_tensor_descriptor
(
make_tuple
(
NDoHoWo
,
CZYX
),
make_tuple
(
output_m_k_strides
[
I0
],
output_m_k_strides
[
I1
]));
const
auto
desc_m_k
=
matrix_padder
.
PadADescriptor_M_K
(
desc_mraw_kraw
);
return
desc_m_k
;
}
using
InputGridDesc
=
remove_cvref_t
<
decltype
(
MakeInputDescriptor_M_K
(
1
,
1
,
{},
{},
{},
{},
{},
{},
{},
{}))
>
;
using
OutputGridDesc
=
remove_cvref_t
<
decltype
(
MakeOutDescriptor_M_K
(
1
,
1
,
{},
{},
{}))
>
;
using
Block2ETileMap
=
remove_cvref_t
<
decltype
(
BlockToCTileMap_M00_N0_M01Adapt
<
MPerBlock
,
KPerBlock
,
OutputGridDesc
>
(
OutputGridDesc
{}))
>
;
using
GridwiseImageToColumnKernel
=
GridwiseImageToColumn
<
InputGridDesc
,
InputDataType
,
OutputGridDesc
,
OutputDataType
,
BlockSize
,
MPerBlock
,
KPerBlock
,
ThreadClusterLengths
,
ScalarPerVector
,
Block2ETileMap
>
;
struct
Argument
:
public
BaseArgument
{
Argument
(
const
void
*
p_in
,
// input image
void
*
p_out
,
// output image
const
ck
::
index_t
N
,
const
ck
::
index_t
C
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_spatial_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
filter_spatial_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
output_spatial_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
input_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
2
>&
output_m_k_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
)
:
C_
(
C
),
X_
(
filter_spatial_lengths
[
NDimSpatial
-
I1
]),
p_in_
{
static_cast
<
const
InputDataType
*>
(
p_in
)},
p_out_
{
static_cast
<
OutputDataType
*>
(
p_out
)},
input_g_n_c_wis_strides_
{
input_g_n_c_wis_strides
},
conv_filter_strides_
{
conv_filter_strides
},
conv_filter_dilations_
{
conv_filter_dilations
},
input_left_pads_
{
input_left_pads
},
input_right_pads_
{
input_right_pads
}
{
in_grid_desc_m_k_
=
MakeInputDescriptor_M_K
(
N
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
input_g_n_c_wis_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
out_grid_desc_m_k_
=
MakeOutDescriptor_M_K
(
N
,
C
,
filter_spatial_lengths
,
output_spatial_lengths
,
output_m_k_strides
);
}
void
Print
()
const
{
std
::
cout
<<
in_grid_desc_m_k_
<<
std
::
endl
;
std
::
cout
<<
out_grid_desc_m_k_
<<
std
::
endl
;
}
const
ck
::
index_t
C_
;
const
ck
::
index_t
X_
;
const
InputDataType
*
p_in_
;
OutputDataType
*
p_out_
;
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
input_g_n_c_wis_strides_
;
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides_
;
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations_
;
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads_
;
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads_
;
InputGridDesc
in_grid_desc_m_k_
;
OutputGridDesc
out_grid_desc_m_k_
;
};
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
stream_config
.
log_level_
>
0
)
{
arg
.
Print
();
}
const
auto
block_2_tile_map
=
BlockToCTileMap_M00_N0_M01Adapt
<
MPerBlock
,
KPerBlock
,
OutputGridDesc
>
(
arg
.
out_grid_desc_m_k_
,
I1
/*M01*/
);
const
index_t
grid_size
=
block_2_tile_map
.
CalculateGridSize
(
arg
.
out_grid_desc_m_k_
);
const
auto
kernel
=
kernel_image_to_column
<
InputGridDesc
,
InputDataType
,
OutputGridDesc
,
OutputDataType
,
Block2ETileMap
,
GridwiseImageToColumnKernel
>
;
float
elapsed_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
in_grid_desc_m_k_
,
arg
.
p_in_
,
arg
.
out_grid_desc_m_k_
,
arg
.
p_out_
,
block_2_tile_map
);
return
elapsed_time
;
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
using
namespace
tensor_layout
::
convolution
;
if
(
!
(
std
::
is_same_v
<
InputLayout
,
GNWC
>
||
std
::
is_same_v
<
InputLayout
,
GNHWC
>
||
std
::
is_same_v
<
InputLayout
,
GNDHWC
>
))
{
return
false
;
}
if
(
!
(
NDimSpatial
>=
1
&&
NDimSpatial
<=
3
))
{
return
false
;
}
const
auto
x_pad_left
=
arg
.
input_left_pads_
[
NDimSpatial
-
I1
];
const
auto
x_pad_right
=
arg
.
input_right_pads_
[
NDimSpatial
-
I1
];
const
auto
dilation_x
=
arg
.
conv_filter_dilations_
[
NDimSpatial
-
I1
];
const
auto
stride_x
=
arg
.
conv_filter_strides_
[
NDimSpatial
-
I1
];
bool
is_c_packed
=
arg
.
input_g_n_c_wis_strides_
[
NDimSpatial
+
I2
]
==
arg
.
C_
;
// check vector access of filter window row (only C if C is not packed)
if
(
!
is_c_packed
&&
arg
.
C_
%
ScalarPerVector
!=
0
)
return
false
;
// check vector access of filter window row (X * C)
if
(
arg
.
X_
*
arg
.
C_
%
ScalarPerVector
!=
0
)
return
false
;
// check vector access of pads (x_pad_left/x_pad_right * C)
if
(
x_pad_left
*
arg
.
C_
%
ScalarPerVector
!=
0
||
x_pad_right
*
arg
.
C_
%
ScalarPerVector
!=
0
)
return
false
;
// check vector access of with stride and pad
if
((
x_pad_left
!=
0
||
x_pad_right
!=
0
)
&&
stride_x
>
1
&&
arg
.
C_
%
ScalarPerVector
!=
0
)
return
false
;
// check vector access of with dilation
if
(
dilation_x
>
1
&&
arg
.
C_
%
ScalarPerVector
!=
0
)
return
false
;
return
GridwiseImageToColumnKernel
::
CheckValidity
(
arg
.
in_grid_desc_m_k_
,
arg
.
out_grid_desc_m_k_
);
}
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_in
,
// input image
void
*
p_out
,
// output image
const
ck
::
index_t
N
,
const
ck
::
index_t
C
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_spatial_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
filter_spatial_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
output_spatial_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
input_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
2
>&
output_m_k_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
)
{
return
Argument
{
static_cast
<
const
InputDataType
*>
(
p_in
),
static_cast
<
OutputDataType
*>
(
p_out
),
N
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
input_g_n_c_wis_strides
,
output_m_k_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_in
,
// input image
void
*
p_out
,
// output image
const
ck
::
index_t
N
,
const
ck
::
index_t
C
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_spatial_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
filter_spatial_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
output_spatial_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
input_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
2
>&
output_m_k_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
InputDataType
*>
(
p_in
),
static_cast
<
OutputDataType
*>
(
p_out
),
N
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
input_g_n_c_wis_strides
,
output_m_k_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceImageToColumn"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
ScalarPerVector
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_image_to_column.hpp
View file @
561e787e
...
...
@@ -24,7 +24,6 @@ template <typename InputGridDesc,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
KPerBlock
,
typename
SliceLengths
,
typename
ThreadClusterLengths
,
index_t
ScalarPerVector
,
typename
Block2ETileMap
>
...
...
@@ -65,7 +64,7 @@ struct GridwiseImageToColumn
decltype
(
tie
(
out_grid_desc
)),
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
static_cast
<
index_t
>
(
InMemoryDataOperationEnum
::
Set
)
>
,
S
liceLengths
,
S
equence
<
MPerBlock
,
KPerBlock
>
,
ThreadClusterLengths
,
Sequence
<
0
,
1
>
,
Sequence
<
0
,
1
>
,
...
...
@@ -83,7 +82,6 @@ struct GridwiseImageToColumn
tie
(
in_grid_desc
),
tie
(
in_global_buf
),
tie
(
out_grid_desc
),
tie
(
out_global_buf
));
}
// template <typename... TsIn, typename... TsOut>
__host__
static
constexpr
bool
CheckValidity
(
const
InputGridDesc
&
in_grid_desc
,
const
OutputGridDesc
&
out_grid_desc
)
{
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_image_to_column.hpp
View file @
561e787e
...
...
@@ -116,15 +116,15 @@ struct ReferenceImageToColumn : public device::BaseOperator
static_cast
<
ck
::
long_index_t
>
(
x
*
arg
.
conv_dilations_
[
0
])
-
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
0
]);
if
(
wi
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
wi
)
<
arg
.
input_
.
GetLengths
()[
3
])
for
(
index_t
c
=
0
;
c
<
C
;
++
c
)
{
for
(
index_t
c
=
0
;
c
<
C
;
++
c
)
if
(
wi
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
wi
)
<
arg
.
input_
.
GetLengths
()[
3
])
{
column
++
;
InDataType
v_in
=
arg
.
input_
(
0
,
n
,
c
,
wi
);
arg
.
output_
(
row
,
column
)
=
ck
::
type_convert
<
OutDataType
>
(
v_in
);
}
column
++
;
}
}
};
...
...
@@ -154,18 +154,18 @@ struct ReferenceImageToColumn : public device::BaseOperator
static_cast
<
ck
::
long_index_t
>
(
x
*
arg
.
conv_dilations_
[
1
])
-
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
1
]);
if
(
hi
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
hi
)
<
arg
.
input_
.
GetLengths
()[
3
]
&&
wi
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
wi
)
<
arg
.
input_
.
GetLengths
()[
4
])
for
(
index_t
c
=
0
;
c
<
C
;
++
c
)
{
for
(
index_t
c
=
0
;
c
<
C
;
++
c
)
{
if
(
hi
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
hi
)
<
arg
.
input_
.
GetLengths
()[
3
]
&&
wi
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
wi
)
<
arg
.
input_
.
GetLengths
()[
4
])
{
InDataType
v_in
=
arg
.
input_
(
0
,
n
,
c
,
hi
,
wi
);
arg
.
output_
(
row
,
column
)
=
ck
::
type_convert
<
OutDataType
>
(
v_in
);
column
++
;
}
column
++
;
}
}
}
...
...
@@ -201,20 +201,23 @@ struct ReferenceImageToColumn : public device::BaseOperator
static_cast
<
ck
::
long_index_t
>
(
wo
*
arg
.
conv_strides_
[
2
])
+
static_cast
<
ck
::
long_index_t
>
(
x
*
arg
.
conv_dilations_
[
2
])
-
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
2
]);
if
(
di
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
di
)
<
arg
.
input_
.
GetLengths
()[
3
]
&&
hi
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
hi
)
<
arg
.
input_
.
GetLengths
()[
4
]
&&
wi
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
wi
)
<
arg
.
input_
.
GetLengths
()[
5
])
for
(
index_t
c
=
0
;
c
<
C
;
++
c
)
{
for
(
index_t
c
=
0
;
c
<
C
;
++
c
)
if
(
di
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
di
)
<
arg
.
input_
.
GetLengths
()[
3
]
&&
hi
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
hi
)
<
arg
.
input_
.
GetLengths
()[
4
]
&&
wi
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
wi
)
<
arg
.
input_
.
GetLengths
()[
5
])
{
InDataType
v_in
=
arg
.
input_
(
0
,
n
,
c
,
di
,
hi
,
wi
);
arg
.
output_
(
row
,
column
)
=
ck
::
type_convert
<
OutDataType
>
(
v_in
);
column
++
;
}
column
++
;
}
}
}
...
...
library/include/ck/library/tensor_operation_instance/gpu/image_to_column/device_image_to_column_instance.hpp
View file @
561e787e
...
...
@@ -24,44 +24,94 @@ using S = ck::Sequence<Is...>;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
>
using
device_image_to_column_bf16_instances
=
std
::
tuple
<
// clang-format off
//#####################| Num| InLayout| InDataType| OutDataType| Block| MPer| KPer| Slice| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Lengths| Cluster| Per|
//#####################| Spatial| | | | | | | | Lengths| Vector|
//#####################| | | | | | | | | | |
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
256
,
128
,
128
,
S
<
128
,
128
>
,
S
<
16
,
16
>
,
8
>
//#####################| Num| InLayout| InDataType| OutDataType| Block| MPer| KPer| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| | | | | | | | | |
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
64
,
8
,
8
,
S
<
8
,
8
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
64
,
16
,
16
,
S
<
8
,
8
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
64
,
32
,
32
,
S
<
8
,
8
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
64
,
64
,
64
,
S
<
8
,
8
>
,
8
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
128
,
16
,
16
,
S
<
8
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
128
,
64
,
64
,
S
<
8
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
128
,
32
,
64
,
S
<
8
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
128
,
64
,
128
,
S
<
8
,
16
>
,
8
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
256
,
16
,
16
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
256
,
64
,
64
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
256
,
128
,
128
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
256
,
64
,
64
,
S
<
16
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
256
,
128
,
128
,
S
<
16
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
256
,
128
,
128
,
S
<
16
,
16
>
,
8
>
// clang-format on
>
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
>
using
device_image_to_column_f16_instances
=
std
::
tuple
<
// clang-format off
//#####################| Num| InLayout| InDataType| OutDataType| Block| MPer| KPer| Slice| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Lengths| Cluster| Per|
//#####################| Spatial| | | | | | | | Lengths| Vector|
//#####################| | | | | | | | | | |
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
256
,
128
,
128
,
S
<
128
,
128
>
,
S
<
16
,
16
>
,
8
>
//#####################| Num| InLayout| InDataType| OutDataType| Block| MPer| KPer| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| | | | | | | | | |
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
64
,
8
,
8
,
S
<
8
,
8
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
64
,
16
,
16
,
S
<
8
,
8
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
64
,
32
,
32
,
S
<
8
,
8
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
64
,
64
,
64
,
S
<
8
,
8
>
,
8
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
128
,
16
,
16
,
S
<
8
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
128
,
64
,
64
,
S
<
8
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
128
,
32
,
64
,
S
<
8
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
128
,
64
,
128
,
S
<
8
,
16
>
,
8
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
256
,
16
,
16
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
256
,
64
,
64
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
256
,
128
,
128
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
256
,
64
,
64
,
S
<
16
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
256
,
128
,
128
,
S
<
16
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
256
,
128
,
128
,
S
<
16
,
16
>
,
8
>
// clang-format on
>
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
>
using
device_image_to_column_f32_instances
=
std
::
tuple
<
// clang-format off
//#####################| Num| InLayout| InDataType| OutDataType| Block| MPer| KPer| Slice| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Lengths| Cluster| Per|
//#####################| Spatial| | | | | | | | Lengths| Vector|
//#####################| | | | | | | | | | |
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
256
,
128
,
128
,
S
<
128
,
128
>
,
S
<
16
,
16
>
,
4
>
//#####################| Num| InLayout| InDataType| OutDataType| Block| MPer| KPer| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| | | | | | | | | |
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
64
,
8
,
8
,
S
<
8
,
8
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
64
,
16
,
16
,
S
<
8
,
8
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
64
,
32
,
32
,
S
<
8
,
8
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
128
,
16
,
16
,
S
<
8
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
128
,
64
,
64
,
S
<
8
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
128
,
32
,
64
,
S
<
8
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
256
,
16
,
16
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
256
,
64
,
64
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
256
,
128
,
128
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
256
,
64
,
64
,
S
<
16
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
256
,
128
,
128
,
S
<
16
,
16
>
,
4
>
// clang-format on
>
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
>
using
device_image_to_column_i8_instances
=
std
::
tuple
<
// clang-format off
//#####################| Num| InLayout| InDataType| OutDataType| Block| MPer| KPer| Slice| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Lengths| Cluster| Per|
//#####################| Spatial| | | | | | | | Lengths| Vector|
//#####################| | | | | | | | | | |
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
256
,
256
,
256
,
S
<
256
,
256
>
,
S
<
16
,
16
>
,
16
>
//#####################| Num| InLayout| InDataType| OutDataType| Block| MPer| KPer| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| | | | | | | | | |
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
64
,
8
,
8
,
S
<
8
,
8
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
64
,
16
,
16
,
S
<
8
,
8
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
64
,
32
,
32
,
S
<
8
,
8
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
64
,
64
,
64
,
S
<
8
,
8
>
,
8
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
128
,
16
,
16
,
S
<
8
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
128
,
64
,
64
,
S
<
8
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
128
,
32
,
64
,
S
<
8
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
128
,
64
,
128
,
S
<
8
,
16
>
,
8
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
256
,
16
,
16
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
256
,
64
,
64
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
256
,
128
,
128
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
256
,
64
,
64
,
S
<
16
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
256
,
128
,
128
,
S
<
16
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
256
,
128
,
128
,
S
<
16
,
16
>
,
8
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
256
,
256
,
256
,
S
<
16
,
16
>
,
16
>
// clang-format on
>
;
...
...
library/src/tensor_operation_instance/gpu/image_to_column/CMakeLists.txt
0 → 100644
View file @
561e787e
add_instance_library
(
device_image_to_column_instance
device_image_to_column_nhwc_1d_instance.cpp
device_image_to_column_nhwc_2d_instance.cpp
device_image_to_column_nhwc_3d_instance.cpp
)
profiler/README.md
View file @
561e787e
...
...
@@ -184,3 +184,42 @@ tflops: 95.337
GB/s: 69.2301
```
Note: This kernel use atomic add, this will cause output buffer to be accumulated multiple times, causing verification failure. To work around it, do not use CK's own timer and do verification at the same time.
## Profile image to column kernels
```
bash
# arg1: tensor operation (" OP_NAME ": " OP_DESC ")
# arg2: data type (0: Input fp32, Weight fp32, Output fp32
# 1: Input fp16, Weight fp16, Output fp16
# 2: Input bf16, Weight bf16, Output bf16
# 3: Input int8, Weight int8, Output int8)
# arg3: tensor layout (0: Input[N, Hi, Wi, C], Output[N * Ho * Wo, Y * X * C])
# arg4: verification (0: no, 1: yes)
# arg5: initialization (0: no init, 1: integer value, 2: decimal value)
# arg6: print tensor value (0: no; 1: yes)
# arg7: time kernel (0: no, 1: yes)
# Following arguments (depending on number of spatial dims):
# Number of spatial dimensions (1=Conv1d, 2=Conv2d, 3=Conv3d)
# G, N, K, C,
# <filter spatial dimensions>, (ie Y, X for 2D)
# <input image spatial dimensions>, (ie Hi, Wi for 2D)
# <strides>, (ie Sy, Sx for 2D)
# <dilations>, (ie Dy, Dx for 2D)
# <left padding>, (ie LeftPy, LeftPx for 2D)
# <right padding>, (ie RightPy, RightPx for 2D)
################ op datatype layout verify init log time Ndims G N K C Y X Hi Wi Sy Sx Dy Dx LeftPy LeftPx RightPy RightPx
./bin/ckProfiler image_to_column 0 0 1 1 0 1 2 1 256 1 512 3 3 28 28 1 1 1 1 0 0 0 0
```
Result
(
MI250, FP32, NHWC
)
```
input: dim 5, lengths {1, 256, 512, 28, 28}, strides {102760448, 401408, 1, 14336, 512}
output: dim 2, lengths {173056, 4608}, strides {4608, 1}
....
Best configuration parameters:
name: DeviceImageToColumn
<
256,
64,
64,
4
>
avg_time: 3.19792
tflops: 0
GB/s: 1125.99
```
profiler/include/profiler/profile_image_to_column_impl.hpp
0 → 100644
View file @
561e787e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include <limits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_image_to_column.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_image_to_column_impl.hpp"
#include "ck/library/tensor_operation_instance/gpu/image_to_column.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_image_to_column.hpp"
namespace
ck
{
namespace
profiler
{
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
template
<
index_t
NDimSpatial
,
typename
InputLayout
,
typename
InputDataType
,
typename
OutputDataType
>
bool
profile_image_to_column_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
{
const
ck
::
index_t
NDoHoWo
=
conv_param
.
N_
*
ck
::
accumulate_n
<
ck
::
index_t
>
(
conv_param
.
output_spatial_lengths_
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
const
ck
::
index_t
CZYX
=
conv_param
.
C_
*
ck
::
accumulate_n
<
ck
::
index_t
>
(
conv_param
.
filter_spatial_lengths_
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
const
auto
in_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InputLayout
>
(
conv_param
);
const
auto
out_desc
=
HostTensorDescriptor
({
NDoHoWo
,
CZYX
});
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
input_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
2
>
output_m_k_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
std
::
copy
(
x
.
begin
(),
x
.
end
(),
y
.
begin
());
};
copy
(
conv_param
.
input_spatial_lengths_
,
input_spatial_lengths
);
copy
(
conv_param
.
filter_spatial_lengths_
,
filter_spatial_lengths
);
copy
(
conv_param
.
output_spatial_lengths_
,
output_spatial_lengths
);
copy
(
in_desc
.
GetStrides
(),
input_g_n_c_wis_strides
);
copy
(
out_desc
.
GetStrides
(),
output_m_k_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
Tensor
<
InputDataType
>
input
(
in_desc
);
Tensor
<
OutputDataType
>
host_output
(
out_desc
);
Tensor
<
OutputDataType
>
device_output
(
out_desc
);
std
::
cout
<<
"input: "
<<
input
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
host_output
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
input
.
GenerateTensorValue
(
GeneratorTensor_2
<
InputDataType
>
{
-
5
,
5
});
break
;
default:
input
.
GenerateTensorValue
(
GeneratorTensor_3
<
InputDataType
>
{
0.0
,
1.0
});
}
DeviceMem
in_device_buf
(
sizeof
(
InputDataType
)
*
input
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutputDataType
)
*
device_output
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
input
.
mData
.
data
());
// run reference op
if
(
do_verification
)
{
auto
ref_image_to_column
=
ck
::
tensor_operation
::
host
::
ReferenceImageToColumn
<
NDimSpatial
,
InputLayout
,
InputDataType
,
OutputDataType
>
{};
auto
ref_invoker
=
ref_image_to_column
.
MakeInvoker
();
auto
ref_argument
=
ref_image_to_column
.
MakeArgument
(
input
,
host_output
,
conv_param
.
filter_spatial_lengths_
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
);
// init host output to zero
host_output
.
SetZero
();
ref_invoker
.
Run
(
ref_argument
);
}
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceImageToColumn
<
NDimSpatial
,
InputLayout
,
InputDataType
,
OutputDataType
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device op instances
bool
pass
=
true
;
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InputDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutputDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
conv_param
.
N_
,
conv_param
.
C_
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
input_g_n_c_wis_strides
,
output_m_k_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init output to zero before profiling next kernel
out_device_buf
.
SetZero
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
num_btype
=
conv_param
.
GetInputByte
<
InputDataType
>
()
+
NDoHoWo
*
CZYX
*
sizeof
(
OutputDataType
);
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
avg_time
<
best_avg_time
)
{
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
out_device_buf
.
FromDevice
(
device_output
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
device_output
,
host_output
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"input : "
,
input
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"host_output : "
,
host_output
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"device_output: "
,
device_output
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best configuration parameters:"
<<
"
\n
name: "
<<
best_op_name
<<
"
\n
avg_time: "
<<
best_avg_time
<<
"
\n
tflops: "
<<
best_tflops
<<
"
\n
GB/s: "
<<
best_gb_per_sec
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/src/CMakeLists.txt
View file @
561e787e
...
...
@@ -25,6 +25,7 @@ set(PROFILER_SOURCES
profile_contraction_bilinear.cpp
profile_contraction_scale.cpp
profile_grouped_conv_bwd_data.cpp
profile_image_to_column.cpp
)
if
(
DL_KERNELS
)
list
(
APPEND PROFILER_SOURCES profile_batched_gemm_multi_d.cpp
)
...
...
@@ -76,6 +77,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_scale_in
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_pool3d_fwd_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv2d_bwd_data_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv3d_bwd_data_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_image_to_column_instance
)
if
(
DL_KERNELS
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_multi_d_instance
)
endif
()
...
...
test/CMakeLists.txt
View file @
561e787e
...
...
@@ -60,6 +60,7 @@ add_subdirectory(contraction)
add_subdirectory
(
pool_fwd
)
add_subdirectory
(
batched_gemm_multi_d
)
add_subdirectory
(
grouped_convnd_bwd_data
)
add_subdirectory
(
image_to_column
)
if
(
GPU_TARGETS MATCHES
"gfx11"
)
add_subdirectory
(
wmma_op
)
endif
()
test/image_to_column/CMakeLists.txt
0 → 100644
View file @
561e787e
add_gtest_executable
(
test_image_to_column test_image_to_column.cpp
)
target_link_libraries
(
test_image_to_column PRIVATE utility device_image_to_column_instance
)
add_gtest_executable
(
test_image_to_column_interface test_image_to_column_interface.cpp
)
target_link_libraries
(
test_image_to_column_interface PRIVATE utility
)
test/image_to_column/test_image_to_column.cpp
0 → 100644
View file @
561e787e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <tuple>
#include <vector>
#include <gtest/gtest.h>
#include "profiler/profile_image_to_column_impl.hpp"
template
<
typename
Tuple
>
class
TestImageToColumn
:
public
::
testing
::
Test
{
protected:
using
InDataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
OutDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
InLayout
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
std
::
vector
<
ck
::
utils
::
conv
::
ConvParam
>
conv_params
;
template
<
ck
::
index_t
NDimSpatial
>
void
Run
()
{
EXPECT_FALSE
(
conv_params
.
empty
());
bool
pass
=
true
;
for
(
auto
&
param
:
conv_params
)
{
pass
=
pass
&&
ck
::
profiler
::
profile_image_to_column_impl
<
NDimSpatial
,
InLayout
,
InDataType
,
OutDataType
>
(
true
,
// do_verification
1
,
// init_method: integer value
false
,
// do_log
false
,
// time_kernel
param
);
}
EXPECT_TRUE
(
pass
);
}
};
using
namespace
ck
::
tensor_layout
::
convolution
;
using
KernelTypes1d
=
::
testing
::
Types
<
std
::
tuple
<
float
,
float
,
GNWC
>
,
std
::
tuple
<
ck
::
bhalf_t
,
ck
::
bhalf_t
,
GNWC
>
,
std
::
tuple
<
ck
::
half_t
,
ck
::
half_t
,
GNWC
>
,
std
::
tuple
<
int8_t
,
int8_t
,
GNWC
>>
;
using
KernelTypes2d
=
::
testing
::
Types
<
std
::
tuple
<
float
,
float
,
GNHWC
>
,
std
::
tuple
<
ck
::
bhalf_t
,
ck
::
bhalf_t
,
GNHWC
>
,
std
::
tuple
<
ck
::
half_t
,
ck
::
half_t
,
GNHWC
>
,
std
::
tuple
<
int8_t
,
int8_t
,
GNHWC
>>
;
using
KernelTypes3d
=
::
testing
::
Types
<
std
::
tuple
<
float
,
float
,
GNDHWC
>
,
std
::
tuple
<
ck
::
bhalf_t
,
ck
::
bhalf_t
,
GNDHWC
>
,
std
::
tuple
<
ck
::
half_t
,
ck
::
half_t
,
GNDHWC
>
,
std
::
tuple
<
int8_t
,
int8_t
,
GNDHWC
>>
;
template
<
typename
Tuple
>
class
TestImageToColumn1d
:
public
TestImageToColumn
<
Tuple
>
{
};
template
<
typename
Tuple
>
class
TestImageToColumn2d
:
public
TestImageToColumn
<
Tuple
>
{
};
template
<
typename
Tuple
>
class
TestImageToColumn3d
:
public
TestImageToColumn
<
Tuple
>
{
};
TYPED_TEST_SUITE
(
TestImageToColumn1d
,
KernelTypes1d
);
TYPED_TEST_SUITE
(
TestImageToColumn2d
,
KernelTypes2d
);
TYPED_TEST_SUITE
(
TestImageToColumn3d
,
KernelTypes3d
);
TYPED_TEST
(
TestImageToColumn1d
,
Test1D
)
{
this
->
conv_params
.
clear
();
this
->
conv_params
.
push_back
({
1
,
1
,
4
,
1
,
192
,
{
3
},
{
28
},
{
1
},
{
1
},
{
1
},
{
1
}});
this
->
conv_params
.
push_back
({
1
,
1
,
64
,
1
,
64
,
{
3
},
{
14
},
{
1
},
{
1
},
{
1
},
{
1
}});
this
->
conv_params
.
push_back
({
1
,
1
,
64
,
1
,
64
,
{
1
},
{
7
},
{
2
},
{
1
},
{
0
},
{
0
}});
this
->
conv_params
.
push_back
({
1
,
1
,
64
,
1
,
64
,
{
1
},
{
3
},
{
1
},
{
1
},
{
0
},
{
0
}});
// ScalarPerVector should be 1
this
->
conv_params
.
push_back
({
1
,
1
,
4
,
1
,
1
,
{
3
},
{
28
},
{
1
},
{
1
},
{
1
},
{
1
}});
// stride != 1
this
->
conv_params
.
push_back
({
1
,
1
,
1
,
1
,
4
,
{
3
},
{
28
},
{
2
},
{
1
},
{
1
},
{
1
}});
// dilation != 1
this
->
conv_params
.
push_back
({
1
,
1
,
1
,
1
,
4
,
{
3
},
{
28
},
{
1
},
{
2
},
{
1
},
{
1
}});
this
->
template
Run
<
1
>();
}
TYPED_TEST
(
TestImageToColumn2d
,
Test2D
)
{
this
->
conv_params
.
clear
();
this
->
conv_params
.
push_back
(
{
2
,
1
,
4
,
1
,
192
,
{
3
,
3
},
{
28
,
28
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}});
this
->
conv_params
.
push_back
(
{
2
,
1
,
64
,
1
,
64
,
{
3
,
3
},
{
14
,
14
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}});
this
->
conv_params
.
push_back
({
2
,
1
,
64
,
1
,
64
,
{
1
,
1
},
{
7
,
7
},
{
2
,
2
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}});
this
->
conv_params
.
push_back
({
2
,
1
,
64
,
1
,
64
,
{
1
,
1
},
{
3
,
3
},
{
1
,
1
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}});
this
->
template
Run
<
2
>();
}
TYPED_TEST
(
TestImageToColumn3d
,
Test3D
)
{
this
->
conv_params
.
clear
();
this
->
conv_params
.
push_back
(
{
3
,
1
,
16
,
1
,
64
,
{
1
,
1
,
1
},
{
7
,
7
,
7
},
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
0
,
0
,
0
},
{
0
,
0
,
0
}});
this
->
conv_params
.
push_back
(
{
3
,
1
,
2
,
1
,
64
,
{
3
,
3
,
3
},
{
14
,
14
,
3
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}});
this
->
conv_params
.
push_back
(
{
3
,
1
,
32
,
1
,
64
,
{
1
,
1
,
1
},
{
3
,
3
,
3
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
},
{
0
,
0
,
0
}});
this
->
template
Run
<
3
>();
}
test/image_to_column/test_image_to_column_interface.cpp
0 → 100644
View file @
561e787e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <tuple>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_image_to_column_impl.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include <gtest/gtest.h>
using
DataType
=
float
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNWC
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
template
<
ck
::
index_t
ScalarPerVector
,
bool
IsCPacked
>
class
TestImageToColumnInterface
:
public
::
testing
::
Test
{
protected:
static
constexpr
ck
::
index_t
NDimSpatial
=
1
;
// clang-format off
using
DeviceImgToColInstance
=
ck
::
tensor_operation
::
device
::
DeviceImageToColumnImpl
//#####################| Num| InLayout| InDataType| OutDataType| Block| MPer| KPer| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| | | | | | | | | |
<
NDimSpatial
,
InLayout
,
DataType
,
DataType
,
256
,
128
,
128
,
S
<
16
,
16
>
,
ScalarPerVector
>
;
// clang-format on
ck
::
utils
::
conv
::
ConvParam
conv_param
;
bool
Run
()
{
const
auto
N
=
conv_param
.
N_
;
const
auto
C
=
conv_param
.
C_
;
const
auto
FakeC
=
conv_param
.
C_
/
2
;
// Fake C to simulate the behavior that C is not packed
const
ck
::
index_t
NDoHoWo
=
N
*
ck
::
accumulate_n
<
ck
::
index_t
>
(
conv_param
.
output_spatial_lengths_
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
const
ck
::
index_t
CZYX
=
C
*
ck
::
accumulate_n
<
ck
::
index_t
>
(
conv_param
.
filter_spatial_lengths_
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
const
auto
in_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
out_desc
=
HostTensorDescriptor
({
NDoHoWo
,
CZYX
});
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
input_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
2
>
output_m_k_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
std
::
copy
(
x
.
begin
(),
x
.
end
(),
y
.
begin
());
};
copy
(
conv_param
.
input_spatial_lengths_
,
input_spatial_lengths
);
copy
(
conv_param
.
filter_spatial_lengths_
,
filter_spatial_lengths
);
copy
(
conv_param
.
output_spatial_lengths_
,
output_spatial_lengths
);
copy
(
in_desc
.
GetStrides
(),
input_g_n_c_wis_strides
);
copy
(
out_desc
.
GetStrides
(),
output_m_k_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
auto
img2col
=
DeviceImgToColInstance
{};
auto
argument
=
img2col
.
MakeArgument
(
nullptr
,
nullptr
,
N
,
IsCPacked
?
C
:
FakeC
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
input_g_n_c_wis_strides
,
output_m_k_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
return
img2col
.
IsSupportedArgument
(
argument
);
}
};
class
TestImageToColumnInterface1ScalarPerVector
:
public
TestImageToColumnInterface
<
1
,
true
>
{
};
class
TestImageToColumnInterface4ScalarPerVector
:
public
TestImageToColumnInterface
<
4
,
true
>
{
};
class
TestImageToColumnInterface4ScalarPerVectorFakeC
:
public
TestImageToColumnInterface
<
4
,
false
>
{
};
TEST_F
(
TestImageToColumnInterface1ScalarPerVector
,
X1ScalarPerVector
)
{
// vector load C * X % ScalarPerVector
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
3
},
{
3
},
{
1
},
{
1
},
{
0
},
{
0
}};
bool
is_supported
=
this
->
Run
();
EXPECT_TRUE
(
is_supported
);
// vector load C * left_pad_x % ScalarPerVector
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
4
},
{
3
},
{
1
},
{
1
},
{
3
},
{
0
}};
is_supported
=
this
->
Run
();
EXPECT_TRUE
(
is_supported
);
// vector load C * right_pad_x % ScalarPerVector
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
4
},
{
3
},
{
1
},
{
1
},
{
0
},
{
3
}};
is_supported
=
this
->
Run
();
EXPECT_TRUE
(
is_supported
);
// vector load C % ScalarPerVector, right_pad and stride
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
4
},
{
3
},
{
2
},
{
1
},
{
0
},
{
3
}};
is_supported
=
this
->
Run
();
EXPECT_TRUE
(
is_supported
);
// vector load C % ScalarPerVector, left_pad and stride
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
4
},
{
3
},
{
2
},
{
1
},
{
3
},
{
0
}};
is_supported
=
this
->
Run
();
EXPECT_TRUE
(
is_supported
);
// vector load C % ScalarPerVector, dilation
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
4
},
{
3
},
{
1
},
{
2
},
{
0
},
{
0
}};
is_supported
=
this
->
Run
();
EXPECT_TRUE
(
is_supported
);
// C = 4
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
4
,
{
3
},
{
3
},
{
1
},
{
1
},
{
3
},
{
3
}};
is_supported
=
this
->
Run
();
EXPECT_TRUE
(
is_supported
);
}
TEST_F
(
TestImageToColumnInterface4ScalarPerVector
,
X4ScalarPerVector
)
{
// vector load C * X % ScalarPerVector
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
3
},
{
3
},
{
1
},
{
1
},
{
0
},
{
0
}};
bool
is_supported
=
this
->
Run
();
EXPECT_FALSE
(
is_supported
);
// vector load C * left_pad_x % ScalarPerVector
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
4
},
{
3
},
{
1
},
{
1
},
{
3
},
{
0
}};
is_supported
=
this
->
Run
();
EXPECT_FALSE
(
is_supported
);
// vector load C * right_pad_x % ScalarPerVector
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
4
},
{
3
},
{
1
},
{
1
},
{
0
},
{
3
}};
is_supported
=
this
->
Run
();
EXPECT_FALSE
(
is_supported
);
// vector load C % ScalarPerVector, right_pad and stride
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
4
},
{
3
},
{
2
},
{
1
},
{
0
},
{
3
}};
is_supported
=
this
->
Run
();
EXPECT_FALSE
(
is_supported
);
// vector load C % ScalarPerVector, left_pad and stride
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
4
},
{
3
},
{
2
},
{
1
},
{
3
},
{
0
}};
is_supported
=
this
->
Run
();
EXPECT_FALSE
(
is_supported
);
// vector load C % ScalarPerVector, dilation
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
1
,
{
4
},
{
3
},
{
1
},
{
2
},
{
0
},
{
0
}};
is_supported
=
this
->
Run
();
EXPECT_FALSE
(
is_supported
);
// C = 4
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
4
,
{
3
},
{
3
},
{
1
},
{
1
},
{
3
},
{
3
}};
is_supported
=
this
->
Run
();
EXPECT_TRUE
(
is_supported
);
}
TEST_F
(
TestImageToColumnInterface4ScalarPerVectorFakeC
,
X4ScalarPerVectorFakeC
)
{
// C = 3
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
3
,
{
4
},
{
3
},
{
1
},
{
1
},
{
0
},
{
0
}};
bool
is_supported
=
this
->
Run
();
EXPECT_FALSE
(
is_supported
);
// C = 4
this
->
conv_param
=
{
1
,
1
,
1
,
1
,
8
,
{
4
},
{
3
},
{
1
},
{
1
},
{
0
},
{
0
}};
is_supported
=
this
->
Run
();
EXPECT_TRUE
(
is_supported
);
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment