Unverified Commit 54b68eb3 authored by Rostyslav Geyyer's avatar Rostyslav Geyyer Committed by GitHub
Browse files

Add generic kernel instances for ck::tensor_operation::device::DeviceGemmMultipleD (#741)

* Add generic instance gemm_add_add_fastgelu

* Add a client example for generic gemm_add_add_fastgelu

* Update CMakeLists

* Format

* Format

* Add generic instance gemm_add_fastgelu

* Format

* Add a gemm_add_fastgelu client example

* Format

* Add generic instance gemm_fastgelu

* Format

* Fix argument order

* Add gemm_fastgelu client example

* Add exceptions if argument is not supported
parent a35456a3
...@@ -11,3 +11,17 @@ target_link_libraries(client_gemm_fastgelu PRIVATE composable_kernel::device_ope ...@@ -11,3 +11,17 @@ target_link_libraries(client_gemm_fastgelu PRIVATE composable_kernel::device_ope
add_dependencies(client_gemm_fastgelu_examples client_gemm_add_add_fastgelu client_gemm_add_fastgelu add_dependencies(client_gemm_fastgelu_examples client_gemm_add_add_fastgelu client_gemm_add_fastgelu
client_gemm_fastgelu) client_gemm_fastgelu)
add_custom_target(client_gemm_fastgelu_generic_examples)
add_executable(client_gemm_add_add_fastgelu_generic gemm_add_add_fastgelu_generic.cpp)
target_link_libraries(client_gemm_add_add_fastgelu_generic PRIVATE composable_kernel::device_operations)
add_executable(client_gemm_add_fastgelu_generic gemm_add_fastgelu_generic.cpp)
target_link_libraries(client_gemm_add_fastgelu_generic PRIVATE composable_kernel::device_operations)
add_executable(client_gemm_fastgelu_generic gemm_fastgelu_generic.cpp)
target_link_libraries(client_gemm_fastgelu_generic PRIVATE composable_kernel::device_operations)
add_dependencies(client_gemm_fastgelu_generic_examples client_gemm_add_add_fastgelu_generic
client_gemm_add_fastgelu_generic client_gemm_fastgelu_generic)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include <stdexcept>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_add_add_fastgelu.hpp"
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddAddFastGelu;
using ADataType = F16;
using BDataType = F16;
using D0DataType = F16;
using D1DataType = F16;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using D0Layout = Row;
using D1Layout = Row;
using ELayout = Row;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideD0 = 0;
ck::index_t StrideD1 = 4096;
ck::index_t StrideE = 4096;
if(argc == 1)
{
// use default case
}
else if(argc == 9)
{
M = std::stoi(argv[1]);
N = std::stoi(argv[2]);
K = std::stoi(argv[3]);
StrideA = std::stoi(argv[4]);
StrideB = std::stoi(argv[5]);
StrideD0 = std::stoi(argv[6]);
StrideD1 = std::stoi(argv[7]);
StrideE = std::stoi(argv[8]);
}
else
{
printf("arg1 to 8: M, N, K, StrideA, StrideB, StrideD0, StrideD1, StrideE\n");
exit(0);
}
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if constexpr(std::is_same<Layout, ck::tensor_layout::gemm::RowMajor>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
SimpleDeviceMem a_device_buf(sizeof(ADataType) * f_matrix_space_size(M, K, StrideA, ALayout{}));
SimpleDeviceMem b_device_buf(sizeof(BDataType) * f_matrix_space_size(K, N, StrideB, BLayout{}));
SimpleDeviceMem d0_m_n_device_buf(sizeof(D0DataType) *
f_matrix_space_size(M, N, StrideD0, D0Layout{}));
SimpleDeviceMem d1_m_n_device_buf(sizeof(D1DataType) *
f_matrix_space_size(M, N, StrideD1, D1Layout{}));
SimpleDeviceMem e_device_buf(sizeof(EDataType) * f_matrix_space_size(M, N, StrideE, ELayout{}));
using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleD<
ALayout,
BLayout,
ck::Tuple<D0Layout, D1Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType, D1DataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::AddAddFastGelu>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{};
// get generic instance
auto& op_ptr = op_ptrs[0];
std::cout << "Run the generic instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
// run the generic instance
auto argument_ptr =
op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 2>{d0_m_n_device_buf.GetDeviceBuffer(),
d1_m_n_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, 2>{StrideD0, StrideD1},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
else
{
throw std::runtime_error(
"Generic instance should be suitable for various input lengths/strides");
}
std::cout << "Done" << std::endl;
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include <stdexcept>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_add_fastgelu.hpp"
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddFastGelu;
using ADataType = F16;
using BDataType = F16;
using D0DataType = F16;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using D0Layout = Row;
using ELayout = Row;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideD0 = 0;
ck::index_t StrideE = 4096;
if(argc == 1)
{
// use default case
}
else if(argc == 8)
{
M = std::stoi(argv[1]);
N = std::stoi(argv[2]);
K = std::stoi(argv[3]);
StrideA = std::stoi(argv[4]);
StrideB = std::stoi(argv[5]);
StrideD0 = std::stoi(argv[6]);
StrideE = std::stoi(argv[7]);
}
else
{
printf("arg1 to 7: M, N, K, StrideA, StrideB, StrideD0, StrideE\n");
exit(0);
}
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if constexpr(std::is_same<Layout, ck::tensor_layout::gemm::RowMajor>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
SimpleDeviceMem a_device_buf(sizeof(ADataType) * f_matrix_space_size(M, K, StrideA, ALayout{}));
SimpleDeviceMem b_device_buf(sizeof(BDataType) * f_matrix_space_size(K, N, StrideB, BLayout{}));
SimpleDeviceMem d0_m_n_device_buf(sizeof(D0DataType) *
f_matrix_space_size(M, N, StrideD0, D0Layout{}));
SimpleDeviceMem e_device_buf(sizeof(EDataType) * f_matrix_space_size(M, N, StrideE, ELayout{}));
using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleD<
ALayout,
BLayout,
ck::Tuple<D0Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::AddFastGelu>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{};
// get generic instance
auto& op_ptr = op_ptrs[0];
std::cout << "Run the generic instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
// run the generic instance
auto argument_ptr =
op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{d0_m_n_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, 1>{StrideD0},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
else
{
throw std::runtime_error(
"Generic instance should be suitable for various input lengths/strides");
}
std::cout << "Done" << std::endl;
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include <stdexcept>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_fastgelu.hpp"
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using FastGelu = ck::tensor_operation::element_wise::FastGelu;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = FastGelu;
using ADataType = F16;
using BDataType = F16;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using ELayout = Row;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideE = 4096;
if(argc == 1)
{
// use default case
}
else if(argc == 7)
{
M = std::stoi(argv[1]);
N = std::stoi(argv[2]);
K = std::stoi(argv[3]);
StrideA = std::stoi(argv[4]);
StrideB = std::stoi(argv[5]);
StrideE = std::stoi(argv[6]);
}
else
{
printf("arg1 to 6: M, N, K, StrideA, StrideB, StrideE\n");
exit(0);
}
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if constexpr(std::is_same<Layout, ck::tensor_layout::gemm::RowMajor>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
SimpleDeviceMem a_device_buf(sizeof(ADataType) * f_matrix_space_size(M, K, StrideA, ALayout{}));
SimpleDeviceMem b_device_buf(sizeof(BDataType) * f_matrix_space_size(K, N, StrideB, BLayout{}));
SimpleDeviceMem e_device_buf(sizeof(EDataType) * f_matrix_space_size(M, N, StrideE, ELayout{}));
using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleD<
ALayout,
BLayout,
ck::Tuple<>,
ELayout,
ADataType,
BDataType,
ck::Tuple<>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::FastGelu>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{};
// get generic instance
auto& op_ptr = op_ptrs[0];
std::cout << "Run the generic instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
// run the generic instance
auto argument_ptr = op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
{},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
{},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
else
{
throw std::runtime_error(
"Generic instance should be suitable for various input lengths/strides");
}
std::cout << "Done" << std::endl;
return 0;
}
...@@ -36,6 +36,17 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial ...@@ -36,6 +36,17 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial
// e = elementwise((a * b), d0, d1) // e = elementwise((a * b), d0, d1)
// outout: e[m, n] // outout: e[m, n]
// input: a[k, m], b[k, n], d0[m, n], d1[m, n] // input: a[k, m], b[k, n], d0[m, n], d1[m, n]
using device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_kn_mn_mn_mn_generic_instance =
std::tuple<
// clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
using device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_kn_mn_mn_mn_instances = using device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_kn_mn_mn_mn_instances =
std::tuple< std::tuple<
// clang-format off // clang-format off
...@@ -139,6 +150,9 @@ void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_kn_mn ...@@ -139,6 +150,9 @@ void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_kn_mn
PassThrough, PassThrough,
AddAddFastGelu>>>& instances) AddAddFastGelu>>>& instances)
{ {
add_device_operation_instances(
instances,
device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_kn_mn_mn_mn_generic_instance{});
add_device_operation_instances( add_device_operation_instances(
instances, instances,
device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_kn_mn_mn_mn_instances{}); device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_kn_mn_mn_mn_instances{});
......
...@@ -36,6 +36,17 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial ...@@ -36,6 +36,17 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial
// e = elementwise((a * b), d0, d1) // e = elementwise((a * b), d0, d1)
// outout: e[m, n] // outout: e[m, n]
// input: a[k, m], b[n, k], d0[m, n], d1[m, n] // input: a[k, m], b[n, k], d0[m, n], d1[m, n]
using device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_nk_mn_mn_mn_generic_instance =
std::tuple<
// clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
using device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_nk_mn_mn_mn_instances = using device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_nk_mn_mn_mn_instances =
std::tuple< std::tuple<
// clang-format off // clang-format off
...@@ -139,6 +150,9 @@ void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_nk_mn ...@@ -139,6 +150,9 @@ void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_nk_mn
PassThrough, PassThrough,
AddAddFastGelu>>>& instances) AddAddFastGelu>>>& instances)
{ {
add_device_operation_instances(
instances,
device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_nk_mn_mn_mn_generic_instance{});
add_device_operation_instances( add_device_operation_instances(
instances, instances,
device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_nk_mn_mn_mn_instances{}); device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_nk_mn_mn_mn_instances{});
......
...@@ -36,6 +36,17 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial ...@@ -36,6 +36,17 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial
// e = elementwise((a * b), d0, d1) // e = elementwise((a * b), d0, d1)
// outout: e[m, n] // outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n] // input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_generic_instance =
std::tuple<
// clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
using device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instances = using device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instances =
std::tuple< std::tuple<
// clang-format off // clang-format off
...@@ -139,6 +150,9 @@ void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn ...@@ -139,6 +150,9 @@ void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn
PassThrough, PassThrough,
AddAddFastGelu>>>& instances) AddAddFastGelu>>>& instances)
{ {
add_device_operation_instances(
instances,
device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_generic_instance{});
add_device_operation_instances( add_device_operation_instances(
instances, instances,
device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instances{}); device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instances{});
......
...@@ -36,6 +36,17 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial ...@@ -36,6 +36,17 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial
// e = elementwise((a * b), d0, d1) // e = elementwise((a * b), d0, d1)
// outout: e[m, n] // outout: e[m, n]
// input: a[m, k], b[n, k], d0[m, n], d1[m ,n] // input: a[m, k], b[n, k], d0[m, n], d1[m ,n]
using device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_generic_instance =
std::tuple<
// clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Row_Tuple, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
using device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instances = using device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instances =
std::tuple< std::tuple<
// clang-format off // clang-format off
...@@ -130,6 +141,9 @@ void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn ...@@ -130,6 +141,9 @@ void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn
PassThrough, PassThrough,
AddAddFastGelu>>>& instances) AddAddFastGelu>>>& instances)
{ {
add_device_operation_instances(
instances,
device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_generic_instance{});
add_device_operation_instances( add_device_operation_instances(
instances, instances,
device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instances{}); device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instances{});
......
...@@ -21,6 +21,17 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial ...@@ -21,6 +21,17 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial
// e = elementwise((a * b), d0) // e = elementwise((a * b), d0)
// outout: e[m, n] // outout: e[m, n]
// input: a[k, m], b[k, n], d0[m, n] // input: a[k, m], b[k, n], d0[m, n]
using device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_generic_instance =
std::tuple<
// clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row_Tuple, Row, F16, F16, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
using device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_instances = std::tuple< using device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_instances = std::tuple<
// clang-format off // clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline| //##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
...@@ -123,6 +134,9 @@ void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_inst ...@@ -123,6 +134,9 @@ void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_inst
PassThrough, PassThrough,
AddFastGelu>>>& instances) AddFastGelu>>>& instances)
{ {
add_device_operation_instances(
instances,
device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_generic_instance{});
add_device_operation_instances( add_device_operation_instances(
instances, device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_instances{}); instances, device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_instances{});
add_device_operation_instances( add_device_operation_instances(
......
...@@ -21,6 +21,17 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial ...@@ -21,6 +21,17 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial
// e = elementwise((a * b), d0, d1) // e = elementwise((a * b), d0, d1)
// outout: e[m, n] // outout: e[m, n]
// input: a[k, m], b[n, k], d0[m, n], d1[m, n] // input: a[k, m], b[n, k], d0[m, n], d1[m, n]
using device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_generic_instance =
std::tuple<
// clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row_Tuple, Row, F16, F16, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
using device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_instances = std::tuple< using device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_instances = std::tuple<
// clang-format off // clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline| //##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
...@@ -123,6 +134,9 @@ void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_inst ...@@ -123,6 +134,9 @@ void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_inst
PassThrough, PassThrough,
AddFastGelu>>>& instances) AddFastGelu>>>& instances)
{ {
add_device_operation_instances(
instances,
device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_generic_instance{});
add_device_operation_instances( add_device_operation_instances(
instances, device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_instances{}); instances, device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_instances{});
add_device_operation_instances( add_device_operation_instances(
......
...@@ -21,6 +21,17 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial ...@@ -21,6 +21,17 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial
// e = elementwise((a * b), d0, d1) // e = elementwise((a * b), d0, d1)
// outout: e[m, n] // outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n] // input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_generic_instance =
std::tuple<
// clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, F16, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
using device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_instances = std::tuple< using device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_instances = std::tuple<
// clang-format off // clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline| //##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
...@@ -123,6 +134,9 @@ void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_inst ...@@ -123,6 +134,9 @@ void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_inst
PassThrough, PassThrough,
AddFastGelu>>>& instances) AddFastGelu>>>& instances)
{ {
add_device_operation_instances(
instances,
device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_generic_instance{});
add_device_operation_instances( add_device_operation_instances(
instances, device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_instances{}); instances, device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_instances{});
add_device_operation_instances( add_device_operation_instances(
......
...@@ -21,6 +21,17 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial ...@@ -21,6 +21,17 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial
// e = elementwise((a * b), d0, d1) // e = elementwise((a * b), d0, d1)
// outout: e[m, n] // outout: e[m, n]
// input: a[m, k], b[n, k], d0[m, n], d1[m ,n] // input: a[m, k], b[n, k], d0[m, n], d1[m ,n]
using device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_generic_instance =
std::tuple<
// clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
using device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instances = std::tuple< using device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instances = std::tuple<
// clang-format off // clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline| //##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
...@@ -114,6 +125,9 @@ void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_inst ...@@ -114,6 +125,9 @@ void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_inst
PassThrough, PassThrough,
AddFastGelu>>>& instances) AddFastGelu>>>& instances)
{ {
add_device_operation_instances(
instances,
device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_generic_instance{});
add_device_operation_instances( add_device_operation_instances(
instances, device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instances{}); instances, device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instances{});
add_device_operation_instances( add_device_operation_instances(
......
...@@ -21,6 +21,16 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial ...@@ -21,6 +21,16 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial
// e = elementwise((a * b)) // e = elementwise((a * b))
// outout: e[m, n] // outout: e[m, n]
// input: a[k, m], b[k, n] // input: a[k, m], b[k, n]
using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_generic_instance = std::tuple<
// clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Empty_Tuple, Row, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, FastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances = std::tuple< using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances = std::tuple<
// clang-format off // clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline| //##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
...@@ -122,6 +132,8 @@ void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances( ...@@ -122,6 +132,8 @@ void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(
PassThrough, PassThrough,
FastGelu>>>& instances) FastGelu>>>& instances)
{ {
add_device_operation_instances(
instances, device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_generic_instance{});
add_device_operation_instances( add_device_operation_instances(
instances, device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances{}); instances, device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances{});
add_device_operation_instances( add_device_operation_instances(
......
...@@ -21,6 +21,16 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial ...@@ -21,6 +21,16 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial
// e = elementwise((a * b)) // e = elementwise((a * b))
// outout: e[m, n] // outout: e[m, n]
// input: a[k, m], b[k, n] // input: a[k, m], b[k, n]
using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_generic_instance = std::tuple<
// clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Empty_Tuple, Row, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, FastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances = std::tuple< using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances = std::tuple<
// clang-format off // clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline| //##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
...@@ -122,6 +132,8 @@ void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances( ...@@ -122,6 +132,8 @@ void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(
PassThrough, PassThrough,
FastGelu>>>& instances) FastGelu>>>& instances)
{ {
add_device_operation_instances(
instances, device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_generic_instance{});
add_device_operation_instances( add_device_operation_instances(
instances, device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances{}); instances, device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances{});
add_device_operation_instances( add_device_operation_instances(
......
...@@ -21,6 +21,16 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial ...@@ -21,6 +21,16 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial
// e = elementwise((a * b)) // e = elementwise((a * b))
// outout: e[m, n] // outout: e[m, n]
// input: a[m, k], b[k, n] // input: a[m, k], b[k, n]
using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_generic_instance = std::tuple<
// clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, FastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances = std::tuple< using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances = std::tuple<
// clang-format off // clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline| //##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
...@@ -122,6 +132,8 @@ void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances( ...@@ -122,6 +132,8 @@ void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(
PassThrough, PassThrough,
FastGelu>>>& instances) FastGelu>>>& instances)
{ {
add_device_operation_instances(
instances, device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_generic_instance{});
add_device_operation_instances( add_device_operation_instances(
instances, device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances{}); instances, device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances{});
add_device_operation_instances( add_device_operation_instances(
......
...@@ -21,6 +21,16 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial ...@@ -21,6 +21,16 @@ static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecial
// e = elementwise((a * b)) // e = elementwise((a * b))
// outout: e[m, n] // outout: e[m, n]
// input: a[m, k], b[n, k] // input: a[m, k], b[n, k]
using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_generic_instance = std::tuple<
// clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, FastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances = std::tuple< using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances = std::tuple<
// clang-format off // clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline| //##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
...@@ -113,6 +123,8 @@ void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances( ...@@ -113,6 +123,8 @@ void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
PassThrough, PassThrough,
FastGelu>>>& instances) FastGelu>>>& instances)
{ {
add_device_operation_instances(
instances, device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_generic_instance{});
add_device_operation_instances( add_device_operation_instances(
instances, device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances{}); instances, device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances{});
add_device_operation_instances( add_device_operation_instances(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment