Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
51f9b771
Commit
51f9b771
authored
Nov 21, 2023
by
muozturk
Browse files
complex contraction
parents
0c823497
e8cddfdc
Changes
183
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
591 additions
and
25 deletions
+591
-25
example/01_gemm/gemm_xdl_fp16.cpp
example/01_gemm/gemm_xdl_fp16.cpp
+3
-3
example/09_convnd_fwd/convnd_fwd_xdl_bf16.cpp
example/09_convnd_fwd/convnd_fwd_xdl_bf16.cpp
+2
-2
example/09_convnd_fwd/convnd_fwd_xdl_fp16.cpp
example/09_convnd_fwd/convnd_fwd_xdl_fp16.cpp
+2
-2
example/09_convnd_fwd/convnd_fwd_xdl_fp32.cpp
example/09_convnd_fwd/convnd_fwd_xdl_fp32.cpp
+2
-2
example/09_convnd_fwd/convnd_fwd_xdl_fp64.cpp
example/09_convnd_fwd/convnd_fwd_xdl_fp64.cpp
+2
-2
example/09_convnd_fwd/convnd_fwd_xdl_int8.cpp
example/09_convnd_fwd/convnd_fwd_xdl_int8.cpp
+2
-2
example/30_grouped_conv_fwd_multiple_d/README.md
example/30_grouped_conv_fwd_multiple_d/README.md
+1
-1
example/30_grouped_conv_fwd_multiple_d/common.hpp
example/30_grouped_conv_fwd_multiple_d/common.hpp
+1
-1
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_bias_relu_add_example.inc
...multiple_d/run_grouped_conv_fwd_bias_relu_add_example.inc
+1
-1
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_example.inc
...uped_conv_fwd_multiple_d/run_grouped_conv_fwd_example.inc
+1
-1
example/40_conv2d_fwd_quantization/conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
...conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
+2
-2
example/40_conv2d_fwd_quantization/conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
...n/conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
+2
-2
example/40_conv2d_fwd_quantization/conv2d_fwd_xdl_perchannel_quantization_int8.cpp
...ntization/conv2d_fwd_xdl_perchannel_quantization_int8.cpp
+2
-2
example/40_conv2d_fwd_quantization/conv2d_fwd_xdl_perlayer_quantization_int8.cpp
...uantization/conv2d_fwd_xdl_perlayer_quantization_int8.cpp
+2
-2
example/44_elementwise_permute/CMakeLists.txt
example/44_elementwise_permute/CMakeLists.txt
+4
-0
example/44_elementwise_permute/elementwise_permute_4D_fp16_col.cpp
...4_elementwise_permute/elementwise_permute_4D_fp16_col.cpp
+149
-0
example/44_elementwise_permute/elementwise_permute_4D_fp16_row.cpp
...4_elementwise_permute/elementwise_permute_4D_fp16_row.cpp
+132
-0
example/44_elementwise_permute/elementwise_permute_4D_fp32_col.cpp
...4_elementwise_permute/elementwise_permute_4D_fp32_col.cpp
+148
-0
example/44_elementwise_permute/elementwise_permute_4D_fp32_row.cpp
...4_elementwise_permute/elementwise_permute_4D_fp32_row.cpp
+132
-0
example/53_layernorm_bwd/CMakeLists.txt
example/53_layernorm_bwd/CMakeLists.txt
+1
-0
No files found.
example/01_gemm/gemm_xdl_fp16.cpp
View file @
51f9b771
...
@@ -9,13 +9,13 @@
...
@@ -9,13 +9,13 @@
using
ADataType
=
ck
::
half_t
;
using
ADataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
floa
t
;
using
CShuffleDataType
=
ck
::
half_
t
;
using
CDataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
F16
=
ck
::
half_t
;
using
F16
=
ck
::
half_t
;
using
ALayout
=
Row
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
BLayout
=
Row
;
using
CLayout
=
Row
;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
AElementOp
=
PassThrough
;
...
@@ -39,7 +39,7 @@ using DeviceGemmInstance1 = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffl
...
@@ -39,7 +39,7 @@ using DeviceGemmInstance1 = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffl
// ######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// ######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// ######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// ######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
2
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
2
,
S
<
1
,
16
,
1
,
16
>
,
8
,
ck
::
LoopScheduler
::
Interwave
,
ck
::
PipelineVersion
::
v1
>
;
// clang-format on
// clang-format on
using
DeviceGemmInstance
=
DeviceGemmInstance1
;
using
DeviceGemmInstance
=
DeviceGemmInstance1
;
...
...
example/09_convnd_fwd/convnd_fwd_xdl_bf16.cpp
View file @
51f9b771
...
@@ -3,7 +3,7 @@
...
@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp"
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
NDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
...
...
example/09_convnd_fwd/convnd_fwd_xdl_fp16.cpp
View file @
51f9b771
...
@@ -3,7 +3,7 @@
...
@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp"
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
NDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
...
...
example/09_convnd_fwd/convnd_fwd_xdl_fp32.cpp
View file @
51f9b771
...
@@ -3,7 +3,7 @@
...
@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp"
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
NDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
...
...
example/09_convnd_fwd/convnd_fwd_xdl_fp64.cpp
View file @
51f9b771
...
@@ -3,7 +3,7 @@
...
@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp"
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
NDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
...
...
example/09_convnd_fwd/convnd_fwd_xdl_int8.cpp
View file @
51f9b771
...
@@ -3,7 +3,7 @@
...
@@ -3,7 +3,7 @@
#include "convnd_fwd_common.hpp"
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
...
@@ -27,7 +27,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
NDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
...
...
example/30_grouped_conv_fwd_multiple_d/README.md
View file @
51f9b771
...
@@ -26,5 +26,5 @@ out: dim 5, lengths {1, 128, 256, 36, 36}, strides {256, 331776, 1, 9216, 256}
...
@@ -26,5 +26,5 @@ out: dim 5, lengths {1, 128, 256, 36, 36}, strides {256, 331776, 1, 9216, 256}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Warm up 1 time
Start running 10 times...
Start running 10 times...
Perf: 1.55981 ms, 94.0927 TFlops, 213.868 GB/s, DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<256, 128, 256, 16, Default>
Perf: 1.55981 ms, 94.0927 TFlops, 213.868 GB/s, DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle<256, 128, 256, 16, Default>
```
```
example/30_grouped_conv_fwd_multiple_d/common.hpp
View file @
51f9b771
...
@@ -12,7 +12,7 @@
...
@@ -12,7 +12,7 @@
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
...
...
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_bias_relu_add_example.inc
View file @
51f9b771
...
@@ -34,7 +34,7 @@ using ResidualLayout = typename LayoutSettingSelector<NDimSpatial>::ResidualLayo
...
@@ -34,7 +34,7 @@ using ResidualLayout = typename LayoutSettingSelector<NDimSpatial>::ResidualLayo
template
<
ck
::
index_t
NDimSpatial
>
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvFwdInstance
=
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
NDimSpatial
,
InputLayout
<
NDimSpatial
>
,
InputLayout
<
NDimSpatial
>
,
WeightLayout
<
NDimSpatial
>
,
WeightLayout
<
NDimSpatial
>
,
...
...
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_example.inc
View file @
51f9b771
...
@@ -3,7 +3,7 @@
...
@@ -3,7 +3,7 @@
template
<
ck
::
index_t
NDimSpatial
>
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvFwdInstance
=
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
NDimSpatial
,
InputLayout
<
NDimSpatial
>
,
InputLayout
<
NDimSpatial
>
,
WeightLayout
<
NDimSpatial
>
,
WeightLayout
<
NDimSpatial
>
,
...
...
example/40_conv2d_fwd_quantization/conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
View file @
51f9b771
...
@@ -2,7 +2,7 @@
...
@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
using
InDataType
=
int8_t
;
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
...
@@ -33,7 +33,7 @@ template <ck::index_t NDimSpatial,
...
@@ -33,7 +33,7 @@ template <ck::index_t NDimSpatial,
typename
RequantScaleLayout
,
typename
RequantScaleLayout
,
typename
OutLayout
>
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
NDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
...
...
example/40_conv2d_fwd_quantization/conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
View file @
51f9b771
...
@@ -2,7 +2,7 @@
...
@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
using
InDataType
=
int8_t
;
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
...
@@ -31,7 +31,7 @@ template <ck::index_t NDimSpatial,
...
@@ -31,7 +31,7 @@ template <ck::index_t NDimSpatial,
typename
BiasLayout
,
typename
BiasLayout
,
typename
OutLayout
>
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
NDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
...
...
example/40_conv2d_fwd_quantization/conv2d_fwd_xdl_perchannel_quantization_int8.cpp
View file @
51f9b771
...
@@ -2,7 +2,7 @@
...
@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
using
InDataType
=
int8_t
;
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
...
@@ -31,7 +31,7 @@ template <ck::index_t NDimSpatial,
...
@@ -31,7 +31,7 @@ template <ck::index_t NDimSpatial,
typename
RequantScaleLayout
,
typename
RequantScaleLayout
,
typename
OutLayout
>
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
NDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
...
...
example/40_conv2d_fwd_quantization/conv2d_fwd_xdl_perlayer_quantization_int8.cpp
View file @
51f9b771
...
@@ -2,7 +2,7 @@
...
@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_
ab
d_xdl_cshuffle.hpp"
using
InDataType
=
int8_t
;
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
...
@@ -26,7 +26,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
...
@@ -26,7 +26,7 @@ static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecializatio
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle
<
NDimSpatial
,
NDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
...
...
example/44_elementwise_permute/CMakeLists.txt
View file @
51f9b771
add_example_executable
(
example_elementwise_permute_4D_fp16 elementwise_permute_4D_fp16.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16 elementwise_permute_4D_fp16.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_2d elementwise_permute_4D_fp16_2d.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_2d elementwise_permute_4D_fp16_2d.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp32_row elementwise_permute_4D_fp32_row.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_row elementwise_permute_4D_fp16_row.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp32_col elementwise_permute_4D_fp32_col.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_col elementwise_permute_4D_fp16_col.cpp
)
add_example_executable
(
example_elementwise_permute elementwise_permute.cpp
)
add_example_executable
(
example_elementwise_permute elementwise_permute.cpp
)
add_example_executable
(
example_elementwise_permute_3d elementwise_permute_3d.cpp
)
add_example_executable
(
example_elementwise_permute_3d elementwise_permute_3d.cpp
)
example/44_elementwise_permute/elementwise_permute_4D_fp16_col.cpp
0 → 100644
View file @
51f9b771
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_scale_impl.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnaryOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwiseImpl
<
ck
::
Tuple
<
ADataType
>
,
// InDataTypeTuple
ck
::
Tuple
<
BDataType
>
,
// OutDataTypeTuple
PassThrough
,
// ElementwiseOp
UnaryOp
,
// UnaryOp
Scale
,
// Scalar
4
,
// NumDim
8
,
// MPerThread
ck
::
Sequence
<
1
>
,
// InScalarPerVectorSeq
ck
::
Sequence
<
1
>>
;
// OutScalarPerVectorSeq
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
FunctorA
,
typename
FunctorB
>
void
host_elementwise4D
(
HostTensorB
&
B_nhwc
,
const
HostTensorA
&
A_nchw
,
FunctorA
functor_a
,
FunctorB
functor_b
,
float
scale
)
{
std
::
size_t
N
=
A_nchw
.
mDesc
.
GetLengths
()[
0
];
std
::
size_t
C
=
A_nchw
.
mDesc
.
GetLengths
()[
1
];
std
::
size_t
H
=
A_nchw
.
mDesc
.
GetLengths
()[
2
];
std
::
size_t
W
=
A_nchw
.
mDesc
.
GetLengths
()[
3
];
for
(
std
::
size_t
w
=
0
;
w
<
W
;
++
w
)
for
(
std
::
size_t
h
=
0
;
h
<
H
;
++
h
)
for
(
std
::
size_t
c
=
0
;
c
<
C
;
++
c
)
for
(
std
::
size_t
n
=
0
;
n
<
N
;
++
n
)
{
ADataType
tmp_val
;
// auto a_val = A_nchw(n, c, h, w);
auto
a_val
=
A_nchw
.
mData
[(
n
)
+
(
c
*
N
)
+
(
h
*
C
*
N
)
+
(
w
*
H
*
C
*
N
)];
functor_b
(
tmp_val
,
a_val
);
// functor_a(B_nhwc(n, h, w, c), scale * tmp_val);
functor_a
(
B_nhwc
.
mData
[(
n
)
+
(
c
*
W
*
H
*
N
)
+
(
h
*
N
)
+
(
w
*
H
*
N
)],
scale
*
tmp_val
);
}
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
std
::
vector
<
std
::
size_t
>
nchw
=
{
4
,
2
,
1
,
8
};
std
::
vector
<
std
::
size_t
>
nhwc
=
{
4
,
1
,
8
,
2
};
Tensor
<
ADataType
>
a
(
nchw
);
Tensor
<
BDataType
>
b
(
nhwc
);
float
scale
=
1.
f
;
auto
i
=
0
;
for
(
std
::
size_t
w
=
0
;
w
<
a
.
mDesc
.
GetLengths
()[
3
];
++
w
)
for
(
std
::
size_t
h
=
0
;
h
<
a
.
mDesc
.
GetLengths
()[
2
];
++
h
)
for
(
std
::
size_t
c
=
0
;
c
<
a
.
mDesc
.
GetLengths
()[
1
];
++
c
)
for
(
std
::
size_t
n
=
0
;
n
<
a
.
mDesc
.
GetLengths
()[
0
];
++
n
)
{
a
.
mData
[(
n
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
(
c
*
nchw
[
2
]
*
nchw
[
3
])
+
(
h
*
nchw
[
3
])
+
w
]
=
i
;
i
++
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
std
::
array
<
const
void
*
,
1
>
input
=
{
a_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
ck
::
index_t
,
4
>
ab_lengths
;
std
::
array
<
ck
::
index_t
,
4
>
a_strides
=
{
1
,
static_cast
<
int
>
(
nchw
[
0
]),
static_cast
<
int
>
(
nchw
[
0
]
*
nchw
[
1
]),
static_cast
<
int
>
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
])};
std
::
array
<
ck
::
index_t
,
4
>
b_strides
=
{
1
,
static_cast
<
int
>
(
nhwc
[
0
]
*
nhwc
[
1
]
*
nhwc
[
2
]),
static_cast
<
int
>
(
nhwc
[
0
]),
static_cast
<
int
>
(
nhwc
[
0
]
*
nhwc
[
1
])};
ck
::
ranges
::
copy
(
nchw
,
ab_lengths
.
begin
());
auto
broadcastPermute
=
DeviceElementwisePermuteInstance
{};
auto
argument
=
broadcastPermute
.
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
PassThrough
{},
UnaryOp
{},
Scale
{
scale
});
if
(
!
broadcastPermute
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
std
::
cout
<<
"A (nchw): "
<<
a
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"B (nhwc): "
<<
b
.
mDesc
<<
std
::
endl
;
auto
broadcastPermute_invoker_ptr
=
broadcastPermute
.
MakeInvokerPointer
();
float
ave_time
=
broadcastPermute_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
];
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
sizeof
(
BDataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
Tensor
<
BDataType
>
host_b
(
nhwc
);
host_elementwise4D
(
host_b
,
a
,
PassThrough
{},
UnaryOp
{},
scale
);
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/44_elementwise_permute/elementwise_permute_4D_fp16_row.cpp
0 → 100644
View file @
51f9b771
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_scale_impl.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnaryOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwiseImpl
<
ck
::
Tuple
<
ADataType
>
,
// InDataTypeTuple
ck
::
Tuple
<
BDataType
>
,
// OutDataTypeTuple
PassThrough
,
// ElementwiseOp
UnaryOp
,
// UnaryOp
Scale
,
// Scalar
4
,
// NumDim
8
,
// MPerThread
ck
::
Sequence
<
8
>
,
// InScalarPerVectorSeq
ck
::
Sequence
<
1
>>
;
// OutScalarPerVectorSeq
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
FunctorA
,
typename
FunctorB
>
void
host_elementwise4D
(
HostTensorB
&
B_nhwc
,
const
HostTensorA
&
A_nchw
,
FunctorA
functor_a
,
FunctorB
functor_b
,
float
scale
)
{
for
(
std
::
size_t
n
=
0
;
n
<
A_nchw
.
mDesc
.
GetLengths
()[
0
];
++
n
)
for
(
std
::
size_t
c
=
0
;
c
<
A_nchw
.
mDesc
.
GetLengths
()[
1
];
++
c
)
for
(
std
::
size_t
h
=
0
;
h
<
A_nchw
.
mDesc
.
GetLengths
()[
2
];
++
h
)
for
(
std
::
size_t
w
=
0
;
w
<
A_nchw
.
mDesc
.
GetLengths
()[
3
];
++
w
)
{
ADataType
tmp_val
;
auto
a_val
=
A_nchw
(
n
,
c
,
h
,
w
);
functor_b
(
tmp_val
,
a_val
);
functor_a
(
B_nhwc
(
n
,
h
,
w
,
c
),
scale
*
tmp_val
);
}
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
std
::
vector
<
std
::
size_t
>
nchw
=
{
16
,
128
,
32
,
64
};
std
::
vector
<
std
::
size_t
>
nhwc
=
{
16
,
32
,
64
,
128
};
Tensor
<
ADataType
>
a
(
nchw
);
Tensor
<
BDataType
>
b
(
nhwc
);
float
scale
=
2.
f
;
a
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
std
::
array
<
const
void
*
,
1
>
input
=
{
a_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
ck
::
index_t
,
4
>
ab_lengths
;
std
::
array
<
ck
::
index_t
,
4
>
a_strides
=
{
static_cast
<
int
>
(
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]),
static_cast
<
int
>
(
nchw
[
2
]
*
nchw
[
3
]),
static_cast
<
int
>
(
nchw
[
3
]),
1
};
std
::
array
<
ck
::
index_t
,
4
>
b_strides
=
{
static_cast
<
int
>
(
nhwc
[
1
]
*
nhwc
[
2
]
*
nhwc
[
3
]),
1
,
static_cast
<
int
>
(
nhwc
[
2
]
*
nhwc
[
3
]),
static_cast
<
int
>
(
nhwc
[
3
])};
ck
::
ranges
::
copy
(
nchw
,
ab_lengths
.
begin
());
auto
broadcastPermute
=
DeviceElementwisePermuteInstance
{};
auto
argument
=
broadcastPermute
.
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
PassThrough
{},
UnaryOp
{},
Scale
{
scale
});
if
(
!
broadcastPermute
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
std
::
cout
<<
"A (nchw): "
<<
a
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"B (nhwc): "
<<
b
.
mDesc
<<
std
::
endl
;
auto
broadcastPermute_invoker_ptr
=
broadcastPermute
.
MakeInvokerPointer
();
float
ave_time
=
broadcastPermute_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
];
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
sizeof
(
BDataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
Tensor
<
BDataType
>
host_b
(
nhwc
);
host_elementwise4D
(
host_b
,
a
,
PassThrough
{},
UnaryOp
{},
scale
);
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/44_elementwise_permute/elementwise_permute_4D_fp32_col.cpp
0 → 100644
View file @
51f9b771
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_scale_impl.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnaryOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwiseImpl
<
ck
::
Tuple
<
ADataType
>
,
// InDataTypeTuple
ck
::
Tuple
<
BDataType
>
,
// OutDataTypeTuple
PassThrough
,
// ElementwiseOp
UnaryOp
,
// UnaryOp
Scale
,
// Scalar
4
,
// NumDim
1
,
// MPerThread
ck
::
Sequence
<
1
>
,
// InScalarPerVectorSeq
ck
::
Sequence
<
1
>>
;
// OutScalarPerVectorSeq
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
FunctorA
,
typename
FunctorB
>
void
host_elementwise4D
(
HostTensorB
&
B_nhwc
,
const
HostTensorA
&
A_nchw
,
FunctorA
functor_a
,
FunctorB
functor_b
,
float
scale
)
{
std
::
size_t
N
=
A_nchw
.
mDesc
.
GetLengths
()[
0
];
std
::
size_t
C
=
A_nchw
.
mDesc
.
GetLengths
()[
1
];
std
::
size_t
H
=
A_nchw
.
mDesc
.
GetLengths
()[
2
];
std
::
size_t
W
=
A_nchw
.
mDesc
.
GetLengths
()[
3
];
for
(
std
::
size_t
w
=
0
;
w
<
W
;
++
w
)
for
(
std
::
size_t
h
=
0
;
h
<
H
;
++
h
)
for
(
std
::
size_t
c
=
0
;
c
<
C
;
++
c
)
for
(
std
::
size_t
n
=
0
;
n
<
N
;
++
n
)
{
ADataType
tmp_val
;
auto
a_val
=
A_nchw
.
mData
[(
n
)
+
(
c
*
N
)
+
(
h
*
C
*
N
)
+
(
w
*
H
*
C
*
N
)];
functor_b
(
tmp_val
,
a_val
);
functor_a
(
B_nhwc
.
mData
[(
n
)
+
(
c
*
W
*
H
*
N
)
+
(
h
*
N
)
+
(
w
*
H
*
N
)],
scale
*
tmp_val
);
}
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
std
::
vector
<
std
::
size_t
>
nchw
=
{
5
,
4
,
2
,
3
};
std
::
vector
<
std
::
size_t
>
nhwc
=
{
5
,
2
,
3
,
4
};
Tensor
<
ADataType
>
a
(
nchw
);
Tensor
<
BDataType
>
b
(
nhwc
);
float
scale
=
1.
f
;
auto
i
=
0
;
for
(
std
::
size_t
w
=
0
;
w
<
a
.
mDesc
.
GetLengths
()[
3
];
++
w
)
for
(
std
::
size_t
h
=
0
;
h
<
a
.
mDesc
.
GetLengths
()[
2
];
++
h
)
for
(
std
::
size_t
c
=
0
;
c
<
a
.
mDesc
.
GetLengths
()[
1
];
++
c
)
for
(
std
::
size_t
n
=
0
;
n
<
a
.
mDesc
.
GetLengths
()[
0
];
++
n
)
{
a
.
mData
[(
n
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
(
c
*
nchw
[
2
]
*
nchw
[
3
])
+
(
h
*
nchw
[
3
])
+
w
]
=
i
;
i
++
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
std
::
array
<
const
void
*
,
1
>
input
=
{
a_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
ck
::
index_t
,
4
>
ab_lengths
;
std
::
array
<
ck
::
index_t
,
4
>
a_strides
=
{
1
,
static_cast
<
int
>
(
nchw
[
0
]),
static_cast
<
int
>
(
nchw
[
0
]
*
nchw
[
1
]),
static_cast
<
int
>
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
])};
std
::
array
<
ck
::
index_t
,
4
>
b_strides
=
{
1
,
static_cast
<
int
>
(
nhwc
[
0
]
*
nhwc
[
1
]
*
nhwc
[
2
]),
static_cast
<
int
>
(
nhwc
[
0
]),
static_cast
<
int
>
(
nhwc
[
0
]
*
nhwc
[
1
])};
ck
::
ranges
::
copy
(
nchw
,
ab_lengths
.
begin
());
auto
broadcastPermute
=
DeviceElementwisePermuteInstance
{};
auto
argument
=
broadcastPermute
.
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
PassThrough
{},
UnaryOp
{},
Scale
{
scale
});
if
(
!
broadcastPermute
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
std
::
cout
<<
"A (nchw): "
<<
a
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"B (nhwc): "
<<
b
.
mDesc
<<
std
::
endl
;
auto
broadcastPermute_invoker_ptr
=
broadcastPermute
.
MakeInvokerPointer
();
float
ave_time
=
broadcastPermute_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
];
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
sizeof
(
BDataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
Tensor
<
BDataType
>
host_b
(
nhwc
);
host_elementwise4D
(
host_b
,
a
,
PassThrough
{},
UnaryOp
{},
scale
);
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/44_elementwise_permute/elementwise_permute_4D_fp32_row.cpp
0 → 100644
View file @
51f9b771
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_scale_impl.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnaryOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwiseImpl
<
ck
::
Tuple
<
ADataType
>
,
// InDataTypeTuple
ck
::
Tuple
<
BDataType
>
,
// OutDataTypeTuple
PassThrough
,
// ElementwiseOp
UnaryOp
,
// UnaryOp
Scale
,
// Scalar
4
,
// NumDim
8
,
// MPerThread
ck
::
Sequence
<
8
>
,
// InScalarPerVectorSeq
ck
::
Sequence
<
1
>>
;
// OutScalarPerVectorSeq
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
FunctorA
,
typename
FunctorB
>
void
host_elementwise4D
(
HostTensorB
&
B_nhwc
,
const
HostTensorA
&
A_nchw
,
FunctorA
functor_a
,
FunctorB
functor_b
,
float
scale
)
{
for
(
std
::
size_t
n
=
0
;
n
<
A_nchw
.
mDesc
.
GetLengths
()[
0
];
++
n
)
for
(
std
::
size_t
c
=
0
;
c
<
A_nchw
.
mDesc
.
GetLengths
()[
1
];
++
c
)
for
(
std
::
size_t
h
=
0
;
h
<
A_nchw
.
mDesc
.
GetLengths
()[
2
];
++
h
)
for
(
std
::
size_t
w
=
0
;
w
<
A_nchw
.
mDesc
.
GetLengths
()[
3
];
++
w
)
{
ADataType
tmp_val
;
auto
a_val
=
A_nchw
(
n
,
c
,
h
,
w
);
functor_b
(
tmp_val
,
a_val
);
functor_a
(
B_nhwc
(
n
,
h
,
w
,
c
),
scale
*
tmp_val
);
}
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
std
::
vector
<
std
::
size_t
>
nchw
=
{
16
,
128
,
32
,
64
};
std
::
vector
<
std
::
size_t
>
nhwc
=
{
16
,
32
,
64
,
128
};
Tensor
<
ADataType
>
a
(
nchw
);
Tensor
<
BDataType
>
b
(
nhwc
);
float
scale
=
2.
f
;
a
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
std
::
array
<
const
void
*
,
1
>
input
=
{
a_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
ck
::
index_t
,
4
>
ab_lengths
;
std
::
array
<
ck
::
index_t
,
4
>
a_strides
=
{
static_cast
<
int
>
(
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]),
static_cast
<
int
>
(
nchw
[
2
]
*
nchw
[
3
]),
static_cast
<
int
>
(
nchw
[
3
]),
1
};
std
::
array
<
ck
::
index_t
,
4
>
b_strides
=
{
static_cast
<
int
>
(
nhwc
[
1
]
*
nhwc
[
2
]
*
nhwc
[
3
]),
1
,
static_cast
<
int
>
(
nhwc
[
2
]
*
nhwc
[
3
]),
static_cast
<
int
>
(
nhwc
[
3
])};
ck
::
ranges
::
copy
(
nchw
,
ab_lengths
.
begin
());
auto
broadcastPermute
=
DeviceElementwisePermuteInstance
{};
auto
argument
=
broadcastPermute
.
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
PassThrough
{},
UnaryOp
{},
Scale
{
scale
});
if
(
!
broadcastPermute
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
std
::
cout
<<
"A (nchw): "
<<
a
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"B (nhwc): "
<<
b
.
mDesc
<<
std
::
endl
;
auto
broadcastPermute_invoker_ptr
=
broadcastPermute
.
MakeInvokerPointer
();
float
ave_time
=
broadcastPermute_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
];
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
sizeof
(
BDataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
Tensor
<
BDataType
>
host_b
(
nhwc
);
host_elementwise4D
(
host_b
,
a
,
PassThrough
{},
UnaryOp
{},
scale
);
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/53_layernorm_bwd/CMakeLists.txt
0 → 100644
View file @
51f9b771
add_example_executable
(
example_layernorm2d_bwd_fp16 layernorm2d_bwd_fp16.cpp
)
Prev
1
2
3
4
5
6
…
10
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment