Commit 51f9b771 authored by muozturk's avatar muozturk
Browse files

complex contraction

parents 0c823497 e8cddfdc
......@@ -100,18 +100,18 @@ int main()
SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * G * N * Wo * K);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
PassThrough,
PassThrough,
PassThrough>;
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
PassThrough,
PassThrough,
PassThrough>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
......
......@@ -71,18 +71,18 @@ int main()
SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
PassThrough,
PassThrough,
PassThrough>;
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
PassThrough,
PassThrough,
PassThrough>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
......
......@@ -80,7 +80,7 @@ int main(int argc, char* argv[])
SimpleDeviceMem requant_scale(sizeof(RequantScaleDataType) * G * K);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD<
NumDimSpatial,
InLayout,
WeiLayout,
......
......@@ -78,18 +78,18 @@ int main(int argc, char* argv[])
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K);
using DeviceOp =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<BiasLayout>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<BiasDataType>,
OutDataType,
PassThrough,
PassThrough,
OutElementOp>;
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<BiasLayout>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<BiasDataType>,
OutDataType,
PassThrough,
PassThrough,
OutElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
......
......@@ -83,7 +83,7 @@ int main(int argc, char* argv[])
SimpleDeviceMem requant_scale(sizeof(RequantScaleDataType) * G * K);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD<
NumDimSpatial,
InLayout,
WeiLayout,
......
......@@ -79,18 +79,18 @@ int main(int argc, char* argv[])
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K);
using DeviceOp =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<BiasLayout>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<BiasDataType>,
OutDataType,
PassThrough,
PassThrough,
OutElementOp>;
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<BiasLayout>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<BiasDataType>,
OutDataType,
PassThrough,
PassThrough,
OutElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
......
......@@ -76,19 +76,19 @@ int main(int argc, char* argv[])
SimpleDeviceMem requant_scale(sizeof(RequantScaleDataType) * G * K);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K);
using DeviceOp =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<RequantScaleLayout>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<RequantScaleDataType>,
OutDataType,
PassThrough,
PassThrough,
OutElementOp>;
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD<
NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<RequantScaleLayout>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<RequantScaleDataType>,
OutDataType,
PassThrough,
PassThrough,
OutElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
......
......@@ -72,18 +72,18 @@ int main(int argc, char* argv[])
SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
PassThrough,
PassThrough,
OutElementOp>;
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
PassThrough,
PassThrough,
OutElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
......
......@@ -2,8 +2,10 @@ add_executable(client_grouped_conv1d_bwd_weight_fp16 grouped_conv1d_bwd_weight_f
add_executable(client_grouped_conv2d_bwd_weight_fp16 grouped_conv2d_bwd_weight_fp16.cpp)
add_executable(client_grouped_conv3d_bwd_weight_fp16 grouped_conv3d_bwd_weight_fp16.cpp)
add_executable(client_grouped_conv3d_bwd_weight_fp32 grouped_conv3d_bwd_weight_fp32.cpp)
add_executable(client_grouped_conv3d_bwd_weight_fp16_comp_bf8_fp8 grouped_conv3d_bwd_weight_fp16_comp_bf8_fp8.cpp)
target_link_libraries(client_grouped_conv1d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations)
target_link_libraries(client_grouped_conv2d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations)
target_link_libraries(client_grouped_conv3d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations)
target_link_libraries(client_grouped_conv3d_bwd_weight_fp32 PRIVATE composable_kernel::device_operations)
target_link_libraries(client_grouped_conv3d_bwd_weight_fp16_comp_bf8_fp8 PRIVATE composable_kernel::device_operations)
......@@ -85,7 +85,9 @@ template <ck::index_t NumDimSpatial,
typename OutDataType,
typename InLayout,
typename WeiLayout,
typename OutLayout>
typename OutLayout,
typename AComputeType = InDataType,
typename BComputeType = AComputeType>
bool run_grouped_conv_bwd_weight(
const std::array<ck::index_t, NumDimSpatial + 3>& input_lengths,
const std::array<ck::index_t, NumDimSpatial + 3>& input_strides,
......@@ -113,7 +115,9 @@ bool run_grouped_conv_bwd_weight(
OutDataType,
PassThrough,
PassThrough,
PassThrough>;
PassThrough,
AComputeType,
BComputeType>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::NDHWGC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::NDHWGK;
using AComputeType = ck::bf8_t;
using BComputeType = ck::f8_t;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t G = 8;
static constexpr ck::index_t N = 64;
static constexpr ck::index_t K = 128;
static constexpr ck::index_t C = 128;
static constexpr ck::index_t Z = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Di = 28;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 3;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 3;
static constexpr std::array<ck::index_t, NumDimSpatial + 3> input_lengths{G, N, C, Di, Hi, Wi};
static constexpr std::array<ck::index_t, NumDimSpatial + 3> filter_lengths{G, K, C, Z, Y, X};
static constexpr std::array<ck::index_t, NumDimSpatial + 3> output_lengths{G, N, K, Do, Ho, Wo};
static constexpr std::array<ck::index_t, NumDimSpatial + 3> input_strides{
N * Di * Hi * Wi * C, Di* Hi* Wi* C, 1, Hi* Wi* C, Wi* C, C};
static constexpr std::array<ck::index_t, NumDimSpatial + 3> weights_strides{
K * Z * Y * X * C, Z* Y* X* C, 1, Y* X* C, X* C, C};
static constexpr std::array<ck::index_t, NumDimSpatial + 3> output_strides{
N * Do * Ho * Wo * K, Do* Ho* Wo* K, 1, Ho* Wo* K, Wo* K, K};
static constexpr std::array<ck::index_t, NumDimSpatial> conv_filter_strides{1, 1, 1};
static constexpr std::array<ck::index_t, NumDimSpatial> conv_filter_dilations{1, 1, 1};
static constexpr std::array<ck::index_t, NumDimSpatial> input_left_pads{1, 1, 1};
static constexpr std::array<ck::index_t, NumDimSpatial> input_right_pads{1, 1, 1};
int main()
{
return run_grouped_conv_bwd_weight<NumDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InLayout,
WeiLayout,
OutLayout,
AComputeType,
BComputeType>(input_lengths,
input_strides,
filter_lengths,
weights_strides,
output_lengths,
output_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads)
? EXIT_SUCCESS
: EXIT_FAILURE;
}
......@@ -11,7 +11,7 @@
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
......@@ -174,19 +174,19 @@ bool run_grouped_conv_fwd(std::array<ck::index_t, NumDimSpatial + NumNonSpatialD
std::size_t flop = GetFlops<NumDimSpatial>(out_lengths, wei_lengths);
std::size_t num_bytes = in_mem_size + wei_mem_size + out_mem_size;
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
PassThrough,
PassThrough,
PassThrough,
ComputeType>;
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
PassThrough,
PassThrough,
PassThrough,
ComputeType>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
......
......@@ -63,7 +63,7 @@ int execute_conv_fwd_scaleadd_scaleadd_relu()
K * Z * Y * X * C, Z * Y * X * C, 1, Y * X * C, X * C, C};
std::array<ck::index_t, 6> out_lengths{G, N, K, Do, Ho, Wo};
std::array<ck::index_t, 6> out_strides{
C, Do * Ho * Wo * G * C, 1, Ho * Wo * G * C, Wo * G * C, G * C};
K, Do * Ho * Wo * G * K, 1, Ho * Wo * G * K, Wo * G * K, G * K};
std::array<ck::index_t, NumDimSpatial> filter_strides{1, 1, 1};
std::array<ck::index_t, NumDimSpatial> filter_dilations{1, 1, 1};
......@@ -76,7 +76,7 @@ int execute_conv_fwd_scaleadd_scaleadd_relu()
SimpleDeviceMem d0(sizeof(std::tuple_element_t<0, DDataTypes>) * N * Do * Ho * Wo * G * K);
SimpleDeviceMem d1(sizeof(std::tuple_element_t<1, DDataTypes>) * N * Do * Ho * Wo * G * K);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD<
NumDimSpatial,
InLayout,
WeiLayout,
......
add_executable(client_grouped_convnd_fwd_scaleadd_ab_fp32 grouped_conv_fwd_scaleadd_ab_fp32.cpp)
target_link_libraries(client_grouped_convnd_fwd_scaleadd_ab_fp32 PRIVATE composable_kernel::device_operations)
add_executable(client_grouped_convnd_fwd_scaleadd_ab_fp16 grouped_conv_fwd_scaleadd_ab_fp16.cpp)
target_link_libraries(client_grouped_convnd_fwd_scaleadd_ab_fp16 PRIVATE composable_kernel::device_operations)
add_executable(client_grouped_convnd_fwd_scaleadd_ab_bf16 grouped_conv_fwd_scaleadd_ab_bf16.cpp)
target_link_libraries(client_grouped_convnd_fwd_scaleadd_ab_bf16 PRIVATE composable_kernel::device_operations)
add_executable(client_grouped_convnd_fwd_scaleadd_ab_int8 grouped_conv_fwd_scaleadd_ab_int8.cpp)
target_link_libraries(client_grouped_convnd_fwd_scaleadd_ab_int8 PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_scaleadd_ab.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using InLayout = ck::tensor_layout::convolution::NDHWGC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::NDHWGK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ScaleAdd = ck::tensor_operation::element_wise::ScaleAdd;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t G = 32;
static constexpr ck::index_t N = 64; // batch size
static constexpr ck::index_t K = 64; // output channel
static constexpr ck::index_t C = 32; // input channel (per group)
static constexpr ck::index_t Z = 3; // filter D
static constexpr ck::index_t Y = 3; // filter H
static constexpr ck::index_t X = 3; // filter W
static constexpr ck::index_t Di = 14; // input D
static constexpr ck::index_t Hi = 14; // input H
static constexpr ck::index_t Wi = 14; // input W
static constexpr ck::index_t Do = 14; // output D
static constexpr ck::index_t Ho = 14; // output H
static constexpr ck::index_t Wo = 14; // output W
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int execute_conv_fwd_scaleadd_ab()
{
constexpr ck::index_t NumAs = 2;
constexpr ck::index_t NumBs = 2;
constexpr float scale = 1.5f;
// We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space.
// However, CK's API only accepts lengths and strides with order of GNCDHW/GKCZYX/GNKDHW.
// Hence, we need to adjust the order of strides.
std::array<ck::index_t, 6> in_lengths{G, N, C, Di, Hi, Wi};
std::array<ck::index_t, 6> in_strides{
C, Di * Hi * Wi * G * C, 1, Hi * Wi * G * C, Wi * G * C, G * C};
std::array<ck::index_t, 6> wei_lengths{G, K, C, Z, Y, X};
std::array<ck::index_t, 6> wei_strides{
K * Z * Y * X * C, Z * Y * X * C, 1, Y * X * C, X * C, C};
std::array<ck::index_t, 6> out_lengths{G, N, K, Do, Ho, Wo};
std::array<ck::index_t, 6> out_strides{
K, Do * Ho * Wo * G * K, 1, Ho * Wo * G * K, Wo * G * K, G * K};
std::array<ck::index_t, NumDimSpatial> filter_strides{1, 1, 1};
std::array<ck::index_t, NumDimSpatial> filter_dilations{1, 1, 1};
std::array<ck::index_t, NumDimSpatial> input_left_pads{1, 1, 1};
std::array<ck::index_t, NumDimSpatial> input_right_pads{1, 1, 1};
using InputDtype = ck::tuple_element_t<0, InDataType>;
using InputBiasDtype = ck::tuple_element_t<1, InDataType>;
using WeightDtype = ck::tuple_element_t<0, WeiDataType>;
using WeightBiasDtype = ck::tuple_element_t<1, WeiDataType>;
SimpleDeviceMem in(sizeof(InputDtype) * N * Di * Hi * Wi * G * C);
SimpleDeviceMem in_bias(sizeof(InputBiasDtype) * N * Di * Hi * Wi * G * C);
SimpleDeviceMem wei(sizeof(WeightDtype) * G * K * Z * Y * X * C);
SimpleDeviceMem wei_bias(sizeof(WeightBiasDtype) * G * K * Z * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * N * Do * Ho * Wo * G * K);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
ScaleAdd,
ScaleAdd,
PassThrough>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
std::array<const void*, NumAs> as = {in.GetDeviceBuffer(), in_bias.GetDeviceBuffer()};
std::array<const void*, NumBs> bs = {wei.GetDeviceBuffer(), wei_bias.GetDeviceBuffer()};
std::array<const void*, 0> ds{};
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(as,
bs,
ds,
out.GetDeviceBuffer(),
in_lengths,
in_strides,
wei_lengths,
wei_strides,
{},
{},
out_lengths,
out_strides,
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
ScaleAdd{scale},
ScaleAdd{scale},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * G * N * K * C * Do * Ho * Wo * Z * Y * X +
N * Di * Hi * Wi * G * C + G * K * Z * Y * X * C;
std::size_t num_bytes = 2 * sizeof(InDataType) * N * Di * Hi * Wi * G * C +
2 * sizeof(WeiDataType) * G * K * Z * Y * X * C +
sizeof(OutDataType) * N * Do * Ho * Wo * G * K;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cerr << op_name << " does not support this problem" << std::endl;
}
}
if(best_op_id < 0)
{
std::cerr << "no suitable instance" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(as,
bs,
ds,
out.GetDeviceBuffer(),
in_lengths,
in_strides,
wei_lengths,
wei_strides,
{},
{},
out_lengths,
out_strides,
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
ScaleAdd{scale},
ScaleAdd{scale},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using InDataType = ck::Tuple<ck::bhalf_t, ck::bhalf_t>;
using WeiDataType = ck::Tuple<ck::bhalf_t, ck::bhalf_t>;
using OutDataType = ck::bhalf_t;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int main() { return execute_conv_fwd_scaleadd_ab(); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using InDataType = ck::Tuple<ck::half_t, ck::half_t>;
using WeiDataType = ck::Tuple<ck::half_t, ck::half_t>;
using OutDataType = ck::half_t;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int main() { return execute_conv_fwd_scaleadd_ab(); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using InDataType = ck::Tuple<float, float>;
using WeiDataType = ck::Tuple<float, float>;
using OutDataType = float;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int main() { return execute_conv_fwd_scaleadd_ab(); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using InDataType = ck::Tuple<int8_t, int8_t>;
using WeiDataType = ck::Tuple<int8_t, int8_t>;
using OutDataType = int8_t;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int main() { return execute_conv_fwd_scaleadd_ab(); }
......@@ -48,6 +48,12 @@ idna==3.4
# via requests
imagesize==1.4.1
# via sphinx
importlib-metadata==6.8.0
# via
# sphinx
# sphinxcontrib-bibtex
importlib-resources==6.1.0
# via rocm-docs-core
jinja2==3.1.2
# via
# myst-parser
......@@ -90,9 +96,13 @@ pygments==2.14.0
# pydata-sphinx-theme
# sphinx
pyjwt[crypto]==2.6.0
# via pygithub
# via
# pygithub
# pyjwt
pynacl==1.5.0
# via pygithub
pytz==2023.3.post1
# via babel
pyyaml==6.0
# via
# myst-parser
......@@ -103,7 +113,7 @@ requests==2.28.2
# via
# pygithub
# sphinx
rocm-docs-core==0.26.0
rocm-docs-core==0.27.0
# via -r requirements.in
six==1.16.0
# via
......@@ -157,3 +167,7 @@ urllib3==1.26.15
# via requests
wrapt==1.15.0
# via deprecated
zipp==3.17.0
# via
# importlib-metadata
# importlib-resources
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment