Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
4ed59413
"vscode:/vscode.git/clone" did not exist on "96fb646a86eb7eb5c0b95b709457eb45a569dc10"
Commit
4ed59413
authored
Aug 13, 2022
by
Chao Liu
Browse files
Merge remote-tracking branch 'origin/develop' into fix_0813
parents
8bea6b2d
0bd6b842
Changes
39
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
19 changed files
with
1992 additions
and
101 deletions
+1992
-101
include/ck/tensor_operation/gpu/device/device_normalization.hpp
...e/ck/tensor_operation/gpu/device/device_normalization.hpp
+10
-9
include/ck/tensor_operation/gpu/grid/gridwise_batched_gemm_gemm_xdl_cshuffle_v1.hpp
...n/gpu/grid/gridwise_batched_gemm_gemm_xdl_cshuffle_v1.hpp
+915
-0
include/ck/tensor_operation/gpu/grid/gridwise_layernorm_naive_variance.hpp
..._operation/gpu/grid/gridwise_layernorm_naive_variance.hpp
+1
-35
include/ck/tensor_operation/gpu/grid/gridwise_layernorm_welford_variance.hpp
...peration/gpu/grid/gridwise_layernorm_welford_variance.hpp
+328
-0
include/ck/tensor_operation/gpu/thread/threadwise_welford.hpp
...ude/ck/tensor_operation/gpu/thread/threadwise_welford.hpp
+78
-0
include/ck/utility/math.hpp
include/ck/utility/math.hpp
+6
-0
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_gemm.hpp
...brary/tensor_operation_instance/gpu/batched_gemm_gemm.hpp
+93
-0
library/src/tensor_operation_instance/gpu/CMakeLists.txt
library/src/tensor_operation_instance/gpu/CMakeLists.txt
+1
-0
library/src/tensor_operation_instance/gpu/batched_gemm_gemm/CMakeLists.txt
...r_operation_instance/gpu/batched_gemm_gemm/CMakeLists.txt
+8
-0
library/src/tensor_operation_instance/gpu/batched_gemm_gemm/device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
...xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
+67
-0
library/src/tensor_operation_instance/gpu/normalization/device_layernorm_f16_instance.cpp
...tance/gpu/normalization/device_layernorm_f16_instance.cpp
+14
-14
library/src/tensor_operation_instance/gpu/normalization/device_layernorm_f32_instance.cpp
...tance/gpu/normalization/device_layernorm_f32_instance.cpp
+13
-13
profiler/include/profile_batched_gemm_gemm_impl.hpp
profiler/include/profile_batched_gemm_gemm_impl.hpp
+313
-0
profiler/include/profile_layernorm_impl.hpp
profiler/include/profile_layernorm_impl.hpp
+12
-11
test/CMakeLists.txt
test/CMakeLists.txt
+1
-0
test/batched_gemm_gemm/CMakeLists.txt
test/batched_gemm_gemm/CMakeLists.txt
+5
-0
test/batched_gemm_gemm/test_batched_gemm_gemm_fp16.cpp
test/batched_gemm_gemm/test_batched_gemm_gemm_fp16.cpp
+39
-0
test/batched_gemm_gemm/test_batched_gemm_gemm_util.hpp
test/batched_gemm_gemm/test_batched_gemm_gemm_util.hpp
+68
-0
test/layernorm/test_layernorm_util.hpp
test/layernorm/test_layernorm_util.hpp
+20
-19
No files found.
include/ck/tensor_operation/gpu/device/device_normalization.hpp
View file @
4ed59413
...
@@ -46,13 +46,14 @@ template <typename XDataType,
...
@@ -46,13 +46,14 @@ template <typename XDataType,
typename
AccElementwiseOperation
,
typename
AccElementwiseOperation
,
index_t
Rank
,
index_t
Rank
,
index_t
NumReduceDim
>
index_t
NumReduceDim
>
struct
Device
Normalization2
:
public
BaseOperator
struct
Device
Layernorm
:
public
BaseOperator
{
{
virtual
std
::
unique_ptr
<
BaseArgument
>
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
index_t
>
lengths
,
MakeArgumentPointer
(
const
std
::
vector
<
index_t
>
lengths
,
const
std
::
vector
<
index_t
>
xStrides
,
const
std
::
vector
<
index_t
>
xStrides
,
const
std
::
vector
<
index_t
>
gammaStrides
,
const
std
::
vector
<
index_t
>
gammaStrides
,
const
std
::
vector
<
index_t
>
betaStrides
,
const
std
::
vector
<
index_t
>
betaStrides
,
const
std
::
vector
<
index_t
>
yStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
const
std
::
vector
<
index_t
>
reduceDims
,
AccDataType
epsilon
,
AccDataType
epsilon
,
const
void
*
p_x
,
const
void
*
p_x
,
...
@@ -72,14 +73,14 @@ template <typename XDataType,
...
@@ -72,14 +73,14 @@ template <typename XDataType,
typename
AccElementwiseOperation
,
typename
AccElementwiseOperation
,
index_t
Rank
,
index_t
Rank
,
index_t
NumReduceDim
>
index_t
NumReduceDim
>
using
Device
Normalization2
Ptr
=
std
::
unique_ptr
<
Device
Normalization2
<
XDataType
,
using
Device
Layernorm
Ptr
=
std
::
unique_ptr
<
Device
Layernorm
<
XDataType
,
GammaDataType
,
GammaDataType
,
BetaDataType
,
BetaDataType
,
AccDataType
,
AccDataType
,
YDataType
,
YDataType
,
AccElementwiseOperation
,
AccElementwiseOperation
,
Rank
,
Rank
,
NumReduceDim
>>
;
NumReduceDim
>>
;
}
// namespace device
}
// namespace device
}
// namespace tensor_operation
}
// namespace tensor_operation
...
...
include/ck/tensor_operation/gpu/grid/gridwise_batched_gemm_gemm_xdl_cshuffle_v1.hpp
0 → 100644
View file @
4ed59413
This diff is collapsed.
Click to expand it.
include/ck/tensor_operation/gpu/grid/gridwise_layernorm.hpp
→
include/ck/tensor_operation/gpu/grid/gridwise_layernorm
_naive_variance
.hpp
View file @
4ed59413
...
@@ -14,40 +14,6 @@
...
@@ -14,40 +14,6 @@
namespace
ck
{
namespace
ck
{
template
<
typename
GridwiseReduction
,
typename
XDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
YDataType
,
typename
AccDataType
,
typename
AccElementwiseOperation
,
typename
GridDesc_M_K
,
typename
GridDesc_K
>
__global__
void
kernel_layernorm
(
const
GridDesc_M_K
x_grid_desc_m_k
,
const
GridDesc_K
gamma_grid_desc_k
,
const
GridDesc_K
beta_grid_desc_k
,
const
GridDesc_M_K
y_grid_desc_m_k
,
index_t
num_k_block_tile_iteration
,
AccDataType
epsilon
,
const
XDataType
*
const
__restrict__
p_x_global
,
const
GammaDataType
*
const
__restrict__
p_gamma_global
,
const
BetaDataType
*
const
__restrict__
p_beta_global
,
YDataType
*
const
__restrict__
p_y_global
,
const
AccElementwiseOperation
acc_elementwise_op
)
{
GridwiseReduction
::
Run
(
x_grid_desc_m_k
,
gamma_grid_desc_k
,
beta_grid_desc_k
,
y_grid_desc_m_k
,
num_k_block_tile_iteration
,
epsilon
,
p_x_global
,
p_gamma_global
,
p_beta_global
,
p_y_global
,
acc_elementwise_op
);
};
// Y = LayerNorm(X, Beta, Gamma)
// Y = LayerNorm(X, Beta, Gamma)
template
<
typename
XDataType
,
template
<
typename
XDataType
,
typename
GammaDataType
,
typename
GammaDataType
,
...
@@ -69,7 +35,7 @@ template <typename XDataType,
...
@@ -69,7 +35,7 @@ template <typename XDataType,
index_t
YDstVectorDim
,
index_t
YDstVectorDim
,
index_t
YDstVectorSize
,
index_t
YDstVectorSize
,
bool
SweepOnce
>
bool
SweepOnce
>
struct
GridwiseLayernorm_mk_to_mk
struct
GridwiseLayernorm
NaiveVariance
_mk_to_mk
{
{
static_assert
((
XSrcVectorDim
==
0
&&
MThreadSliceSize
%
XSrcVectorSize
==
0
)
||
static_assert
((
XSrcVectorDim
==
0
&&
MThreadSliceSize
%
XSrcVectorSize
==
0
)
||
(
XSrcVectorDim
==
1
&&
KThreadSliceSize
%
XSrcVectorSize
==
0
),
(
XSrcVectorDim
==
1
&&
KThreadSliceSize
%
XSrcVectorSize
==
0
),
...
...
include/ck/tensor_operation/gpu/grid/gridwise_layernorm_welford_variance.hpp
0 → 100644
View file @
4ed59413
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_welford.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_welford.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace
ck
{
// Y = LayerNorm(X, Beta, Gamma)
template
<
typename
XDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
YDataType
,
typename
AccDataType
,
typename
AccElementwiseOperation
,
typename
GridDesc_M_K
,
typename
GridDesc_K
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
index_t
KThreadClusterSize
,
index_t
MThreadSliceSize
,
index_t
KThreadSliceSize
,
index_t
XSrcVectorDim
,
index_t
XSrcVectorSize
,
index_t
GammaSrcVectorSize
,
index_t
BetaSrcVectorSize
,
index_t
YDstVectorDim
,
index_t
YDstVectorSize
,
bool
SweepOnce
>
struct
GridwiseLayernormWelfordVariance_mk_to_mk
{
static_assert
((
XSrcVectorDim
==
0
&&
MThreadSliceSize
%
XSrcVectorSize
==
0
)
||
(
XSrcVectorDim
==
1
&&
KThreadSliceSize
%
XSrcVectorSize
==
0
),
"Invalid thread slice sizes and/or vector sizes configuration, please check!"
);
static_assert
((
YDstVectorDim
==
0
&&
MThreadSliceSize
%
YDstVectorSize
==
0
)
||
(
YDstVectorDim
==
1
&&
KThreadSliceSize
%
YDstVectorSize
==
0
),
"Invalid thread slice sizes and/or vector sizes configuration, please check!"
);
static
constexpr
bool
reorder_thread_cluster
=
(
XSrcVectorDim
==
0
);
using
ThreadClusterLengths_M_K
=
Sequence
<
MThreadClusterSize
,
KThreadClusterSize
>
;
using
ThreadBufferDimAccessOrder
=
typename
conditional
<
reorder_thread_cluster
,
Sequence
<
1
,
0
>
,
Sequence
<
0
,
1
>>::
type
;
using
ThreadClusterArrangeOrder
=
typename
conditional
<
reorder_thread_cluster
,
Sequence
<
1
,
0
>
,
Sequence
<
0
,
1
>>::
type
;
static
constexpr
auto
thread_cluster_desc
=
make_cluster_descriptor
(
ThreadClusterLengths_M_K
{},
ThreadClusterArrangeOrder
{});
using
ThreadReduceSrcDesc_M_K
=
decltype
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
KThreadSliceSize
>
{})));
using
ThreadReduceDstDesc_M
=
decltype
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{})));
using
ThreadwiseWelford
=
ThreadwiseWelford
<
AccDataType
,
ThreadReduceSrcDesc_M_K
,
ThreadReduceDstDesc_M
>
;
using
BlockwiseWelford
=
BlockwiseWelford
<
AccDataType
,
BlockSize
,
ThreadClusterLengths_M_K
,
ThreadClusterArrangeOrder
>
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
index_t
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
index_t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
__device__
static
int
GetKPerThread
(
const
GridDesc_M_K
&
x_grid_desc_m_k
,
int
thread_k_cluster_id
)
{
int
kPerBlock
=
x_grid_desc_m_k
.
GetTransforms
()[
I0
].
GetUpperLengths
()[
I1
];
int
kPerThread
=
kPerBlock
<
K_BlockTileSize
?
0
:
KThreadSliceSize
*
(
kPerBlock
/
K_BlockTileSize
);
int
kPerBlockTail
=
kPerBlock
-
kPerThread
*
KThreadClusterSize
;
if
(
kPerBlockTail
>
0
)
{
int
thread_max_len
=
(
thread_k_cluster_id
+
1
)
*
KThreadSliceSize
;
int
delta
=
thread_max_len
-
kPerBlockTail
;
delta
=
math
::
clamp
(
thread_max_len
-
kPerBlockTail
,
0
,
KThreadSliceSize
);
kPerThread
+=
KThreadSliceSize
-
delta
;
}
return
kPerThread
;
}
__device__
static
void
Run
(
const
GridDesc_M_K
&
x_grid_desc_m_k
,
const
GridDesc_K
&
gamma_grid_desc_k
,
const
GridDesc_K
&
beta_grid_desc_k
,
const
GridDesc_M_K
&
y_grid_desc_m_k
,
index_t
num_k_block_tile_iteration
,
AccDataType
epsilon
,
const
XDataType
*
const
__restrict__
p_x_global
,
const
GammaDataType
*
const
__restrict__
p_gamma_global
,
const
BetaDataType
*
const
__restrict__
p_beta_global
,
YDataType
*
const
__restrict__
p_y_global
,
const
AccElementwiseOperation
acc_elementwise_op
)
{
if
constexpr
(
SweepOnce
)
{
num_k_block_tile_iteration
=
1
;
}
auto
y_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_y_global
,
y_grid_desc_m_k
.
GetElementSpaceSize
());
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
x_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
KThreadSliceSize
,
true
>
gamma_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
KThreadSliceSize
,
true
>&
beta_thread_buf
=
gamma_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
y_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>
mean_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>
var_thread_buf
;
const
index_t
thread_local_id
=
get_thread_local_1d_id
();
const
index_t
block_global_id
=
get_block_1d_id
();
const
auto
thread_cluster_idx
=
thread_cluster_desc
.
CalculateBottomIndex
(
make_multi_index
(
thread_local_id
));
const
auto
thread_m_cluster_id
=
thread_cluster_idx
[
I0
];
const
auto
thread_k_cluster_id
=
thread_cluster_idx
[
I1
];
using
ThreadBufferLengths_M_K
=
Sequence
<
MThreadSliceSize
,
KThreadSliceSize
>
;
using
ThreadBufferLengths_K
=
Sequence
<
KThreadSliceSize
>
;
constexpr
auto
thread_buffer_desc_m_k
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
KThreadSliceSize
>
{}));
constexpr
auto
thread_buffer_desc_k
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
KThreadSliceSize
>
{}));
auto
threadwise_x_load
=
ThreadwiseTensorSliceTransfer_v2
<
XDataType
,
AccDataType
,
GridDesc_M_K
,
decltype
(
thread_buffer_desc_m_k
),
ThreadBufferLengths_M_K
,
ThreadBufferDimAccessOrder
,
XSrcVectorDim
,
XSrcVectorSize
,
1
,
true
>
(
x_grid_desc_m_k
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSliceSize
));
auto
threadwise_gamma_load
=
ThreadwiseTensorSliceTransfer_v2
<
GammaDataType
,
AccDataType
,
GridDesc_K
,
decltype
(
thread_buffer_desc_k
),
ThreadBufferLengths_K
,
Sequence
<
0
>
,
0
,
GammaSrcVectorSize
,
1
,
true
>
(
gamma_grid_desc_k
,
make_multi_index
(
thread_k_cluster_id
*
KThreadSliceSize
));
auto
threadwise_beta_load
=
ThreadwiseTensorSliceTransfer_v2
<
BetaDataType
,
AccDataType
,
GridDesc_K
,
decltype
(
thread_buffer_desc_k
),
ThreadBufferLengths_K
,
Sequence
<
0
>
,
0
,
BetaSrcVectorSize
,
1
,
true
>
(
beta_grid_desc_k
,
make_multi_index
(
thread_k_cluster_id
*
KThreadSliceSize
));
auto
threadwise_y_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
YDataType
,
decltype
(
thread_buffer_desc_m_k
),
GridDesc_M_K
,
AccElementwiseOperation
,
ThreadBufferLengths_M_K
,
ThreadBufferDimAccessOrder
,
YDstVectorDim
,
YDstVectorSize
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
(
y_grid_desc_m_k
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSliceSize
),
acc_elementwise_op
);
// Copy x from Cache
// one pass: fwd, second pass: bwd
constexpr
auto
thread_copy_fwd_step_k
=
make_multi_index
(
SweepOnce
?
0
:
K_BlockTileSize
);
constexpr
auto
thread_copy_bwd_step_k
=
make_multi_index
(
SweepOnce
?
0
:
-
K_BlockTileSize
);
constexpr
auto
thread_copy_fwd_step_m_k
=
make_multi_index
(
0
,
SweepOnce
?
0
:
K_BlockTileSize
);
constexpr
auto
thread_copy_bwd_step_m_k
=
make_multi_index
(
0
,
SweepOnce
?
0
:
-
K_BlockTileSize
);
const
auto
x_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_x_global
,
x_grid_desc_m_k
.
GetElementSpaceSize
());
const
auto
gamma_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_gamma_global
,
gamma_grid_desc_k
.
GetElementSpaceSize
());
const
auto
beta_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_beta_global
,
beta_grid_desc_k
.
GetElementSpaceSize
());
auto
threadwise_welford
=
ThreadwiseWelford
();
threadwise_welford
.
max_count_
=
GetKPerThread
(
x_grid_desc_m_k
,
thread_k_cluster_id
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
mean_thread_buf
(
I
)
=
type_convert
<
AccDataType
>
(
0.0
f
);
var_thread_buf
(
I
)
=
type_convert
<
AccDataType
>
(
0.0
f
);
});
for
(
index_t
reducedTiles
=
0
;
reducedTiles
<
num_k_block_tile_iteration
;
++
reducedTiles
)
{
threadwise_x_load
.
Run
(
x_grid_desc_m_k
,
x_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
x_thread_buf
);
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
threadwise_welford
.
Run
(
x_thread_buf
,
mean_thread_buf
,
var_thread_buf
);
}
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
if
constexpr
(
I
>
0
)
block_sync_lds
();
int
count
=
threadwise_welford
.
cur_count_
;
BlockwiseWelford
::
Run
(
mean_thread_buf
(
I
),
var_thread_buf
(
I
),
count
);
});
auto
thread_copy_tail_m_k
=
(
num_k_block_tile_iteration
-
1
)
*
thread_copy_fwd_step_m_k
;
auto
thread_copy_tail_k
=
(
num_k_block_tile_iteration
-
1
)
*
thread_copy_fwd_step_k
;
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_bwd_step_m_k
);
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_k
,
thread_copy_tail_k
);
threadwise_beta_load
.
MoveSrcSliceWindow
(
beta_grid_desc_k
,
thread_copy_tail_k
);
threadwise_y_store
.
MoveDstSliceWindow
(
y_grid_desc_m_k
,
thread_copy_tail_m_k
);
for
(
index_t
reducedTiles
=
0
;
reducedTiles
<
num_k_block_tile_iteration
;
++
reducedTiles
)
{
if
constexpr
(
!
SweepOnce
)
{
threadwise_x_load
.
Run
(
x_grid_desc_m_k
,
x_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
x_thread_buf
);
}
threadwise_gamma_load
.
Run
(
gamma_grid_desc_k
,
gamma_global_val_buf
,
thread_buffer_desc_k
,
make_tuple
(
I0
),
gamma_thread_buf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset_m_k
=
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
constexpr
auto
offset_k
=
thread_buffer_desc_k
.
CalculateOffset
(
make_tuple
(
iK
));
// normalize
y_thread_buf
(
Number
<
offset_m_k
>
{})
=
(
x_thread_buf
(
Number
<
offset_m_k
>
{})
-
mean_thread_buf
(
iM
))
/
sqrt
(
var_thread_buf
(
iM
)
+
epsilon
);
// gamma
y_thread_buf
(
Number
<
offset_m_k
>
{})
=
y_thread_buf
(
Number
<
offset_m_k
>
{})
*
gamma_thread_buf
(
Number
<
offset_k
>
{});
});
});
threadwise_beta_load
.
Run
(
beta_grid_desc_k
,
beta_global_val_buf
,
thread_buffer_desc_k
,
make_tuple
(
I0
),
beta_thread_buf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset_m_k
=
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
constexpr
auto
offset_k
=
thread_buffer_desc_k
.
CalculateOffset
(
make_tuple
(
iK
));
// beta
y_thread_buf
(
Number
<
offset_m_k
>
{})
=
y_thread_buf
(
Number
<
offset_m_k
>
{})
+
beta_thread_buf
(
Number
<
offset_k
>
{});
});
});
threadwise_y_store
.
Run
(
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
y_thread_buf
,
y_grid_desc_m_k
,
y_global_val_buf
);
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_bwd_step_m_k
);
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_k
,
thread_copy_bwd_step_k
);
threadwise_beta_load
.
MoveSrcSliceWindow
(
beta_grid_desc_k
,
thread_copy_bwd_step_k
);
threadwise_y_store
.
MoveDstSliceWindow
(
y_grid_desc_m_k
,
thread_copy_bwd_step_m_k
);
}
}
};
}
// namespace ck
include/ck/tensor_operation/gpu/thread/threadwise_welford.hpp
0 → 100644
View file @
4ed59413
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/math_v2.hpp"
namespace
ck
{
// Assume
// 1) XDesc is known at compile-time
// 2) MeanVarDesc is known at compile-time
// 3) XBuffer is static buffer
// 4) MeanBuffer is static buffer
// 5) VarBuffer is static buffer
template
<
typename
T
,
typename
XThreadDesc_M_K
,
typename
MeanVarThreadDesc_M
>
struct
ThreadwiseWelford
{
static
constexpr
auto
x_thread_desc_m_k
=
XThreadDesc_M_K
{};
static
constexpr
auto
mean_var_thread_desc_m
=
MeanVarThreadDesc_M
{};
static
constexpr
auto
thread_x_length_m
=
x_thread_desc_m_k
.
GetLength
(
Number
<
0
>
{});
static
constexpr
auto
thread_x_length_k
=
x_thread_desc_m_k
.
GetLength
(
Number
<
1
>
{});
static
constexpr
auto
thread_mean_var_length_m
=
mean_var_thread_desc_m
.
GetLength
(
Number
<
0
>
{});
static_assert
(
thread_x_length_m
==
thread_mean_var_length_m
,
"lengths of source and mean/var buffer must match!"
);
__device__
constexpr
ThreadwiseWelford
()
:
cur_count_
(
0
),
max_count_
(
0
)
{}
__device__
inline
void
Update
(
T
&
mean
,
T
&
var
,
T
x
)
{
using
ck
::
math
::
isnan
;
if
(
isnan
(
x
))
{
mean
=
x
;
var
=
x
;
}
else
{
T
delta
=
x
-
mean
;
mean
+=
delta
/
cur_count_
;
T
delta2
=
x
-
mean
;
var
+=
delta
*
delta2
;
}
}
template
<
typename
XBufferType
,
typename
MeanBufferType
,
typename
VarBufferType
>
__device__
void
Run
(
const
XBufferType
&
x_buf_m_k
,
MeanBufferType
&
mean_buf_m
,
VarBufferType
&
var_buf_m
)
{
// FIXME - Better naming for var_buf_m
static_for
<
0
,
thread_x_length_k
,
1
>
{}([
&
](
auto
iK
)
{
if
(
cur_count_
<
max_count_
)
{
++
cur_count_
;
static_for
<
0
,
thread_x_length_m
,
1
>
{}([
&
](
auto
iM
)
{
constexpr
index_t
out_offset
=
mean_var_thread_desc_m
.
CalculateOffset
(
make_tuple
(
iM
));
constexpr
auto
in_offset
=
x_thread_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
Update
(
mean_buf_m
(
Number
<
out_offset
>
{}),
var_buf_m
(
Number
<
out_offset
>
{}),
x_buf_m_k
[
Number
<
in_offset
>
{}]);
});
}
});
};
int
cur_count_
;
int
max_count_
;
};
}
// namespace ck
include/ck/utility/math.hpp
View file @
4ed59413
...
@@ -144,6 +144,12 @@ __host__ __device__ constexpr auto min(X x, Ys... ys)
...
@@ -144,6 +144,12 @@ __host__ __device__ constexpr auto min(X x, Ys... ys)
return
min
(
x
,
min
(
ys
...));
return
min
(
x
,
min
(
ys
...));
}
}
template
<
typename
T
>
__host__
__device__
constexpr
T
clamp
(
const
T
&
x
,
const
T
&
lowerbound
,
const
T
&
upperbound
)
{
return
min
(
max
(
x
,
lowerbound
),
upperbound
);
}
// disallow implicit type casting
// disallow implicit type casting
template
<
typename
T
>
template
<
typename
T
>
__device__
T
exp
(
T
x
);
__device__
T
exp
(
T
x
);
...
...
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_gemm.hpp
0 → 100644
View file @
4ed59413
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchedGemmGemm
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
template
<
typename
ALayout
,
typename
B0Layout
,
typename
B1Layout
,
typename
CLayout
,
typename
ADataType
,
typename
B0DataType
,
typename
B1DataType
,
typename
CDataType
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmGemm
<
ALayout
,
B0Layout
,
B1Layout
,
CLayout
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
>>
{
using
DeviceOp
=
DeviceBatchedGemmGemm
<
ALayout
,
B0Layout
,
B1Layout
,
CLayout
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
B0DataType
,
half_t
>
&&
is_same_v
<
B1DataType
,
half_t
>
&&
is_same_v
<
CDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
B0Layout
,
Col
>
&&
is_same_v
<
B1Layout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance
(
op_ptrs
);
}
}
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/CMakeLists.txt
View file @
4ed59413
...
@@ -13,6 +13,7 @@ add_subdirectory(gemm_reduce)
...
@@ -13,6 +13,7 @@ add_subdirectory(gemm_reduce)
add_subdirectory
(
gemm_bias_add_reduce
)
add_subdirectory
(
gemm_bias_add_reduce
)
add_subdirectory
(
batched_gemm
)
add_subdirectory
(
batched_gemm
)
add_subdirectory
(
batched_gemm_reduce
)
add_subdirectory
(
batched_gemm_reduce
)
add_subdirectory
(
batched_gemm_gemm
)
add_subdirectory
(
batched_gemm_softmax_gemm
)
add_subdirectory
(
batched_gemm_softmax_gemm
)
add_subdirectory
(
grouped_gemm
)
add_subdirectory
(
grouped_gemm
)
add_subdirectory
(
contraction_scale
)
add_subdirectory
(
contraction_scale
)
...
...
library/src/tensor_operation_instance/gpu/batched_gemm_gemm/CMakeLists.txt
0 → 100644
View file @
4ed59413
set
(
DEVICE_BATCHED_GEMM_GEMM_INSTANCE_SOURCE
device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
)
add_instance_library
(
device_batched_gemm_gemm_instance OBJECT
${
DEVICE_BATCHED_GEMM_GEMM_INSTANCE_SOURCE
}
)
target_compile_features
(
device_batched_gemm_gemm_instance PUBLIC
)
set_target_properties
(
device_batched_gemm_gemm_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
clang_tidy_check
(
device_batched_gemm_gemm_instance
)
\ No newline at end of file
library/src/tensor_operation_instance/gpu/batched_gemm_gemm/device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
0 → 100644
View file @
4ed59413
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// c[g, m, n] = a[g, m, k] * b[g, n, k]
using
device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances
=
std
::
tuple
<
// clang-format off
//################################| ALayout| B0Layout| B1Layout| CLayout| AData| B0Data| B1Data| CData| AccData| CShuffle| A| B0| Acc0| B1| C| GEMM| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| | | | | Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedGemmGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
2
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
64
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
void
add_device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchedGemmGemm
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/normalization/device_layernorm_f16_instance.cpp
View file @
4ed59413
...
@@ -2,7 +2,7 @@
...
@@ -2,7 +2,7 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm
_impl
.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
...
@@ -21,28 +21,28 @@ template <index_t Rank, index_t Reduce>
...
@@ -21,28 +21,28 @@ template <index_t Rank, index_t Reduce>
using
device_layernorm_f16_instances
=
std
::
tuple
<
using
device_layernorm_f16_instances
=
std
::
tuple
<
// clang-format off
// clang-format off
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize>
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize>
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
1
,
1
,
1
,
1
>
,
// fallback kernel
DeviceLayernorm
Impl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
1
,
1
,
1
,
1
>
,
// fallback kernel
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
2
,
2
,
2
,
2
>
,
// fallback kernel
DeviceLayernorm
Impl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
2
,
2
,
2
,
2
>
,
// fallback kernel
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
4
,
4
,
4
,
4
>
,
// fallback kernel
DeviceLayernorm
Impl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
4
,
4
,
4
,
4
>
,
// fallback kernel
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernorm
Impl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
4
,
64
,
1
,
8
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernorm
Impl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
4
,
64
,
1
,
8
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
8
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernorm
Impl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
8
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
16
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernorm
Impl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
16
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
32
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernorm
Impl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
32
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernorm
Impl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernorm
Impl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
8
,
8
,
8
,
8
>
DeviceLayernorm
Impl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
8
,
8
,
8
,
8
>
// clang-format on
// clang-format on
>
;
>
;
void
add_device_layernorm_f16_rank2_instances
(
void
add_device_layernorm_f16_rank2_instances
(
std
::
vector
<
Device
Normalization2
Ptr
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
2
,
1
>>&
instances
)
std
::
vector
<
Device
Layernorm
Ptr
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
2
,
1
>>&
instances
)
{
{
add_device_operation_instances
(
instances
,
device_layernorm_f16_instances
<
2
,
1
>
{});
add_device_operation_instances
(
instances
,
device_layernorm_f16_instances
<
2
,
1
>
{});
}
}
void
add_device_layernorm_f16_rank4_instances
(
void
add_device_layernorm_f16_rank4_instances
(
std
::
vector
<
Device
Normalization2
Ptr
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
4
,
3
>>&
instances
)
std
::
vector
<
Device
Layernorm
Ptr
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
4
,
3
>>&
instances
)
{
{
add_device_operation_instances
(
instances
,
device_layernorm_f16_instances
<
4
,
3
>
{});
add_device_operation_instances
(
instances
,
device_layernorm_f16_instances
<
4
,
3
>
{});
}
}
...
...
library/src/tensor_operation_instance/gpu/normalization/device_layernorm_f32_instance.cpp
View file @
4ed59413
...
@@ -2,7 +2,7 @@
...
@@ -2,7 +2,7 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm
_impl
.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
...
@@ -20,27 +20,27 @@ template <index_t Rank, index_t Reduce>
...
@@ -20,27 +20,27 @@ template <index_t Rank, index_t Reduce>
using
device_layernorm_f32_instances
=
std
::
tuple
<
using
device_layernorm_f32_instances
=
std
::
tuple
<
// clang-format off
// clang-format off
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize>
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize>
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
1
,
1
,
1
,
1
>
,
// fallback kernel
DeviceLayernorm
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
1
,
1
,
1
,
1
>
,
// fallback kernel
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
2
,
2
,
2
,
2
>
,
// fallback kernel
DeviceLayernorm
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
2
,
2
,
2
,
2
>
,
// fallback kernel
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernorm
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
4
,
64
,
1
,
8
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernorm
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
4
,
64
,
1
,
8
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
8
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernorm
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
8
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
16
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernorm
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
16
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
32
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernorm
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
32
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernorm
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernorm
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
4
,
4
,
4
,
4
>
DeviceLayernorm
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
4
,
4
,
4
,
4
>
// clang-format on
// clang-format on
>
;
>
;
void
add_device_layernorm_f32_rank2_instances
(
void
add_device_layernorm_f32_rank2_instances
(
std
::
vector
<
Device
Normalization2
Ptr
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
2
,
1
>>&
instances
)
std
::
vector
<
Device
Layernorm
Ptr
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
2
,
1
>>&
instances
)
{
{
add_device_operation_instances
(
instances
,
device_layernorm_f32_instances
<
2
,
1
>
{});
add_device_operation_instances
(
instances
,
device_layernorm_f32_instances
<
2
,
1
>
{});
}
}
void
add_device_layernorm_f32_rank4_instances
(
void
add_device_layernorm_f32_rank4_instances
(
std
::
vector
<
Device
Normalization2
Ptr
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
4
,
3
>>&
instances
)
std
::
vector
<
Device
Layernorm
Ptr
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
4
,
3
>>&
instances
)
{
{
add_device_operation_instances
(
instances
,
device_layernorm_f32_instances
<
4
,
3
>
{});
add_device_operation_instances
(
instances
,
device_layernorm_f32_instances
<
4
,
3
>
{});
}
}
...
...
profiler/include/profile_batched_gemm_gemm_impl.hpp
0 → 100644
View file @
4ed59413
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
B0DataType
,
typename
B1DataType
,
typename
CDataType
,
typename
ALayout
,
typename
B0Layout
,
typename
B1Layout
,
typename
CLayout
>
bool
profile_batched_gemm_gemm_impl
(
bool
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
O
,
int
BatchCount
=
1
,
int
StrideA
=
-
1
,
int
StrideB0
=
-
1
,
int
StrideB1
=
-
1
,
int
StrideC
=
-
1
,
int
BatchStrideA
=
-
1
,
int
BatchStrideB0
=
-
1
,
int
BatchStrideB1
=
-
1
,
int
BatchStrideC
=
-
1
)
{
using
Row
=
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
B1ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
using
AccDataType
=
float
;
// Ref Gemm0
using
ReferenceGemm0Instance
=
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B0DataType
,
ADataType
,
AccDataType
,
AElementOp
,
B0ElementOp
,
CElementOp
>
;
// Ref Gemm
using
ReferenceGemm1Instance
=
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
CDataType
,
AccDataType
,
AElementOp
,
B1ElementOp
,
CElementOp
>
;
bool
pass
=
true
;
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB0
=
ck
::
is_same_v
<
B0Layout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideB1
=
ck
::
is_same_v
<
B1Layout
,
Row
>
?
O
:
N
;
const
int
DefaultStrideC
=
ck
::
is_same_v
<
CLayout
,
Row
>
?
O
:
M
;
StrideA
=
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
;
StrideB0
=
(
StrideB0
<
0
)
?
DefaultStrideB0
:
StrideB0
;
StrideB1
=
(
StrideB1
<
0
)
?
DefaultStrideB1
:
StrideB1
;
StrideC
=
(
StrideC
<
0
)
?
DefaultStrideC
:
StrideC
;
const
int
DefaultBatchStrideA
=
(
ck
::
is_same_v
<
ALayout
,
Col
>
?
K
:
M
)
*
StrideA
;
const
int
DefaultBatchStrideB0
=
(
ck
::
is_same_v
<
B0Layout
,
Col
>
?
N
:
K
)
*
StrideB0
;
const
int
DefaultBatchStrideB1
=
(
ck
::
is_same_v
<
B1Layout
,
Col
>
?
O
:
N
)
*
StrideB1
;
const
int
DefaultBatchStrideC
=
(
ck
::
is_same_v
<
CLayout
,
Col
>
?
O
:
M
)
*
StrideC
;
BatchStrideA
=
BatchStrideA
<
0
?
DefaultBatchStrideA
:
BatchStrideA
;
BatchStrideB0
=
BatchStrideB0
<
0
?
DefaultBatchStrideB0
:
BatchStrideB0
;
BatchStrideB1
=
BatchStrideB1
<
0
?
DefaultBatchStrideB1
:
BatchStrideB1
;
BatchStrideC
=
BatchStrideC
<
0
?
DefaultBatchStrideC
:
BatchStrideC
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
Row
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
1
,
stride
}));
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
K
,
StrideA
,
BatchStrideA
,
ALayout
{}));
Tensor
<
B0DataType
>
b0_g_k_n
(
f_host_tensor_descriptor
(
BatchCount
,
K
,
N
,
StrideB0
,
BatchStrideB0
,
B0Layout
{}));
Tensor
<
B1DataType
>
b1_g_n_o
(
f_host_tensor_descriptor
(
BatchCount
,
N
,
O
,
StrideB1
,
BatchStrideB1
,
B1Layout
{}));
Tensor
<
CDataType
>
c_g_m_o_host_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
O
,
StrideC
,
BatchStrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_g_m_o_device_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
O
,
StrideC
,
BatchStrideC
,
CLayout
{}));
// Host verification: Output of Gemm0 is input A of Gemm1
Tensor
<
ADataType
>
acc0_g_m_n
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
N
,
M
*
N
,
Row
{}));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_g_k_n: "
<<
b0_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_g_n_o: "
<<
b1_g_n_o
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_g_m_o: "
<<
c_g_m_o_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
3
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
3
});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
3
});
break
;
case
2
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
break
;
case
3
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
break
;
default:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
DeviceMem
a_g_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSize
());
DeviceMem
b0_g_k_n_device_buf
(
sizeof
(
B0DataType
)
*
b0_g_k_n
.
mDesc
.
GetElementSize
());
DeviceMem
b1_g_n_o_device_buf
(
sizeof
(
B1DataType
)
*
b1_g_n_o
.
mDesc
.
GetElementSize
());
DeviceMem
c_g_m_o_device_buf
(
sizeof
(
CDataType
)
*
c_g_m_o_device_result
.
mDesc
.
GetElementSize
());
a_g_m_k_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b0_g_k_n_device_buf
.
ToDevice
(
b0_g_k_n
.
mData
.
data
());
b1_g_n_o_device_buf
.
ToDevice
(
b1_g_n_o
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
auto
acc0_element_op
=
Acc0ElementOp
{};
auto
b1_element_op
=
B1ElementOp
{};
auto
c_element_op
=
CElementOp
{};
using
DeviceOp
=
tensor_operation
::
device
::
DeviceBatchedGemmGemm
<
ALayout
,
B0Layout
,
B1Layout
,
CLayout
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
if
(
do_verification
)
{
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
a_g_m_k
,
b0_g_k_n
,
acc0_g_m_n
,
a_element_op
,
b0_element_op
,
PassThrough
{});
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
acc0_g_m_n
,
b1_g_n_o
,
c_g_m_o_host_result
,
PassThrough
{},
b1_element_op
,
c_element_op
);
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
}
std
::
string
best_op_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device op instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_g_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B0DataType
*>
(
b0_g_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B1DataType
*>
(
b1_g_n_o_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_g_m_o_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
O
,
BatchCount
,
StrideA
,
StrideB0
,
StrideB1
,
StrideC
,
BatchStrideA
,
BatchStrideB0
,
BatchStrideB1
,
BatchStrideC
,
a_element_op
,
b0_element_op
,
acc0_element_op
,
b1_element_op
,
c_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
BatchCount
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
+
sizeof
(
CDataType
)
*
M
*
O
)
*
BatchCount
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
c_g_m_o_device_buf
.
FromDevice
(
c_g_m_o_device_result
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
c_g_m_o_device_result
.
mData
,
c_g_m_o_host_result
.
mData
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a_g_m_k: "
,
a_g_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b0_g_k_n : "
,
b0_g_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b1_g_n_o : "
,
b1_g_n_o
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_g_m_o_host_result : "
,
c_g_m_o_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_g_m_o_device_result : "
,
c_g_m_o_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profile_layernorm_impl.hpp
View file @
4ed59413
...
@@ -7,7 +7,7 @@
...
@@ -7,7 +7,7 @@
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "profiler/include/data_type_enum.hpp"
#include "profiler/include/data_type_enum.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm
_impl
.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
...
@@ -25,10 +25,10 @@ using F32 = float;
...
@@ -25,10 +25,10 @@ using F32 = float;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
void
add_device_layernorm_f16_rank2_instances
(
void
add_device_layernorm_f16_rank2_instances
(
std
::
vector
<
Device
Normalization2
Ptr
<
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
2
,
1
>>&
);
std
::
vector
<
Device
Layernorm
Ptr
<
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
2
,
1
>>&
);
void
add_device_layernorm_f32_rank2_instances
(
void
add_device_layernorm_f32_rank2_instances
(
std
::
vector
<
Device
Normalization2
Ptr
<
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
2
,
1
>>&
);
std
::
vector
<
Device
Layernorm
Ptr
<
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
2
,
1
>>&
);
}
// namespace instance
}
// namespace instance
}
// namespace device
}
// namespace device
...
@@ -105,14 +105,14 @@ void profile_layernorm_impl(int do_verification,
...
@@ -105,14 +105,14 @@ void profile_layernorm_impl(int do_verification,
// add device normalization instances
// add device normalization instances
constexpr
int
NumReduceDim
=
Rank
-
1
;
constexpr
int
NumReduceDim
=
Rank
-
1
;
std
::
vector
<
tensor_operation
::
device
::
Device
Normalization2
Ptr
<
XDataType
,
std
::
vector
<
tensor_operation
::
device
::
Device
Layernorm
Ptr
<
XDataType
,
GammaDataType
,
GammaDataType
,
BetaDataType
,
BetaDataType
,
AccDataType
,
AccDataType
,
YDataType
,
YDataType
,
PassThrough
,
PassThrough
,
Rank
,
Rank
,
NumReduceDim
>>
NumReduceDim
>>
instances
;
instances
;
if
constexpr
(
is_same
<
XDataType
,
F16
>::
value
&&
is_same
<
GammaDataType
,
F16
>::
value
&&
if
constexpr
(
is_same
<
XDataType
,
F16
>::
value
&&
is_same
<
GammaDataType
,
F16
>::
value
&&
...
@@ -163,6 +163,7 @@ void profile_layernorm_impl(int do_verification,
...
@@ -163,6 +163,7 @@ void profile_layernorm_impl(int do_verification,
strideXY
,
strideXY
,
strideGamma
,
strideGamma
,
strideBeta
,
strideBeta
,
strideXY
,
reduce_dim
,
reduce_dim
,
1e-4
,
1e-4
,
x_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
...
...
test/CMakeLists.txt
View file @
4ed59413
...
@@ -40,6 +40,7 @@ add_subdirectory(gemm_split_k)
...
@@ -40,6 +40,7 @@ add_subdirectory(gemm_split_k)
add_subdirectory
(
gemm_reduce
)
add_subdirectory
(
gemm_reduce
)
add_subdirectory
(
batched_gemm
)
add_subdirectory
(
batched_gemm
)
add_subdirectory
(
batched_gemm_reduce
)
add_subdirectory
(
batched_gemm_reduce
)
add_subdirectory
(
batched_gemm_gemm
)
add_subdirectory
(
batched_gemm_softmax_gemm
)
add_subdirectory
(
batched_gemm_softmax_gemm
)
add_subdirectory
(
grouped_gemm
)
add_subdirectory
(
grouped_gemm
)
add_subdirectory
(
reduce
)
add_subdirectory
(
reduce
)
...
...
test/batched_gemm_gemm/CMakeLists.txt
0 → 100644
View file @
4ed59413
add_custom_target
(
test_batched_gemm_gemm
)
add_gtest_executable
(
test_batched_gemm_gemm_fp16 test_batched_gemm_gemm_fp16.cpp
)
target_link_libraries
(
test_batched_gemm_gemm_fp16 PRIVATE utility device_batched_gemm_gemm_instance
)
add_dependencies
(
test_batched_gemm_gemm test_batched_gemm_gemm_fp16
)
\ No newline at end of file
test/batched_gemm_gemm/test_batched_gemm_gemm_fp16.cpp
0 → 100644
View file @
4ed59413
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "test_batched_gemm_gemm_util.hpp"
template
<
typename
Tuple
>
class
TestBatchedGemmGemmFP16
:
public
TestBatchedGemmGemm
<
Tuple
>
{
};
// clang-format off
using
KernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
F16
,
F16
,
F16
,
F16
,
Row
,
Col
,
Row
,
Row
>
>
;
// clang-format on
TYPED_TEST_SUITE
(
TestBatchedGemmGemmFP16
,
KernelTypes
);
TYPED_TEST
(
TestBatchedGemmGemmFP16
,
Test_FP16
)
{
this
->
Run
();
}
TYPED_TEST
(
TestBatchedGemmGemmFP16
,
DISABLED_Bench_FP16
)
{
this
->
lengths_
=
std
::
vector
<
std
::
vector
<
int
>>
{
{
256
,
256
,
64
,
64
,
768
},
{
256
,
256
,
128
,
128
,
768
},
{
512
,
512
,
64
,
64
,
768
},
{
512
,
512
,
128
,
128
,
768
},
{
1024
,
1024
,
64
,
64
,
768
},
{
1024
,
1024
,
128
,
128
,
768
},
{
2048
,
2048
,
64
,
64
,
768
},
{
2048
,
2048
,
128
,
128
,
768
},
{
4096
,
4096
,
64
,
64
,
768
},
{
4096
,
4096
,
128
,
128
,
768
},
};
this
->
bench_
=
true
;
this
->
verify_
=
false
;
this
->
Run
();
}
test/batched_gemm_gemm/test_batched_gemm_gemm_util.hpp
0 → 100644
View file @
4ed59413
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include "profiler/include/profile_batched_gemm_gemm_impl.hpp"
template
<
ck
::
index_t
N
>
using
I
=
ck
::
Number
<
N
>
;
using
F16
=
ck
::
half_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
typename
Tuple
>
struct
TestBatchedGemmGemm
:
public
::
testing
::
Test
{
using
ADataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
B0DataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
B1DataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
CDataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
ALayout
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
B0Layout
=
std
::
tuple_element_t
<
5
,
Tuple
>
;
using
B1Layout
=
std
::
tuple_element_t
<
6
,
Tuple
>
;
using
CLayout
=
std
::
tuple_element_t
<
7
,
Tuple
>
;
std
::
vector
<
std
::
vector
<
int
>>
lengths_
=
{
{
256
,
256
,
64
,
64
,
4
},
{
256
,
256
,
128
,
128
,
4
},
{
512
,
512
,
64
,
64
,
2
},
{
512
,
512
,
128
,
128
,
2
},
{
1024
,
1024
,
64
,
64
,
1
},
{
1024
,
1024
,
128
,
128
,
1
},
};
bool
bench_
=
false
;
bool
verify_
=
true
;
void
RunSingle
(
int
M
,
int
N
,
int
K
,
int
O
,
int
BatchCount
)
{
bool
pass
=
ck
::
profiler
::
profile_batched_gemm_gemm_impl
<
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
ALayout
,
B0Layout
,
B1Layout
,
CLayout
>
(
verify_
,
1
,
false
,
bench_
,
M
,
N
,
K
,
O
,
BatchCount
);
EXPECT_TRUE
(
pass
);
}
void
Run
()
{
for
(
auto
lengths
:
this
->
lengths_
)
{
int
M
=
lengths
[
0
];
int
N
=
lengths
[
1
];
int
K
=
lengths
[
2
];
int
O
=
lengths
[
3
];
int
BatchCount
=
lengths
[
4
];
this
->
RunSingle
(
M
,
N
,
K
,
O
,
BatchCount
);
}
}
};
test/layernorm/test_layernorm_util.hpp
View file @
4ed59413
...
@@ -9,7 +9,7 @@
...
@@ -9,7 +9,7 @@
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/utility/number.hpp"
#include "ck/utility/number.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm
_impl
.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
...
@@ -63,24 +63,24 @@ class TestLayernorm : public ::testing::Test
...
@@ -63,24 +63,24 @@ class TestLayernorm : public ::testing::Test
Rank
,
Rank
,
NumReduceDim
>
;
NumReduceDim
>
;
using
DeviceInstance
=
tensor_operation
::
device
::
DeviceLayernorm
<
XDataType
,
using
DeviceInstance
=
tensor_operation
::
device
::
DeviceLayernorm
Impl
<
XDataType
,
GammaDataType
,
GammaDataType
,
BetaDataType
,
BetaDataType
,
AccDataType
,
AccDataType
,
YDataType
,
YDataType
,
PassThrough
,
PassThrough
,
Rank
,
Rank
,
NumReduceDim
,
NumReduceDim
,
BlockSize
,
BlockSize
,
MThreadClusterSize
,
MThreadClusterSize
,
KThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
MThreadSliceSize
,
KThreadSliceSize
,
KThreadSliceSize
,
XYSrcVectorDim
,
XYSrcVectorDim
,
XSrcVectorSize
,
XSrcVectorSize
,
GammaSrcVectorSize
,
GammaSrcVectorSize
,
BetaSrcVectorSize
,
BetaSrcVectorSize
,
YDstVectorSize
>
;
YDstVectorSize
>
;
TestLayernorm
()
:
ref_instance_invoker_
(
ReferenceInstance
{}.
MakeInvoker
())
{}
TestLayernorm
()
:
ref_instance_invoker_
(
ReferenceInstance
{}.
MakeInvoker
())
{}
...
@@ -119,6 +119,7 @@ class TestLayernorm : public ::testing::Test
...
@@ -119,6 +119,7 @@ class TestLayernorm : public ::testing::Test
gamma
.
mDesc
.
GetStrides
().
end
()},
gamma
.
mDesc
.
GetStrides
().
end
()},
std
::
vector
<
ck
::
index_t
>
{
beta
.
mDesc
.
GetStrides
().
begin
(),
std
::
vector
<
ck
::
index_t
>
{
beta
.
mDesc
.
GetStrides
().
begin
(),
beta
.
mDesc
.
GetStrides
().
end
()},
beta
.
mDesc
.
GetStrides
().
end
()},
std
::
vector
<
ck
::
index_t
>
{
y
.
mDesc
.
GetStrides
().
begin
(),
y
.
mDesc
.
GetStrides
().
end
()},
reduceDims
,
reduceDims
,
1e-4
,
1e-4
,
x_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment