Commit 4cd8f454 authored by Chao Liu's avatar Chao Liu
Browse files

sync with miopen

parent 6fc49f91
......@@ -56,10 +56,12 @@ if(DEVICE_BACKEND STREQUAL "AMD")
configure_file("${PROJECT_SOURCE_DIR}/composable_kernel/include/utility/config.amd.hpp.in" "${PROJECT_BINARY_DIR}/composable_kernel/include/utility/config.hpp")
configure_file("${PROJECT_SOURCE_DIR}/composable_kernel/include/utility/float_type.amd.hpp.in" "${PROJECT_BINARY_DIR}/composable_kernel/include/utility/float_type.hpp")
configure_file("${PROJECT_SOURCE_DIR}/composable_kernel/include/utility/in_memory_operation.amd.hpp.in" "${PROJECT_BINARY_DIR}/composable_kernel/include/utility/in_memory_operation.hpp")
configure_file("${PROJECT_SOURCE_DIR}/composable_kernel/include/utility/synchronization.amd.hpp.in" "${PROJECT_BINARY_DIR}/composable_kernel/include/utility/synchronization.hpp")
elseif(DEVICE_BACKEND STREQUAL "NVIDIA")
configure_file("${PROJECT_SOURCE_DIR}/composable_kernel/include/utility/config.nvidia.hpp.in" "${PROJECT_BINARY_DIR}/composable_kernel/include/utility/config.hpp")
configure_file("${PROJECT_SOURCE_DIR}/composable_kernel/include/utility/float_type.nvidia.hpp.in" "${PROJECT_BINARY_DIR}/composable_kernel/include/utility/float_type.hpp")
configure_file("${PROJECT_SOURCE_DIR}/composable_kernel/include/utility/in_memory_operation.nvidia.hpp.in" "${PROJECT_BINARY_DIR}/composable_kernel/include/utility/in_memory_operation.hpp")
configure_file("${PROJECT_SOURCE_DIR}/composable_kernel/include/utility/synchronization.nvidia.hpp.in" "${PROJECT_BINARY_DIR}/composable_kernel/include/utility/synchronization.hpp")
endif()
add_subdirectory(driver)
......@@ -36,8 +36,8 @@ template <index_t GridSize,
index_t ThreadGemmDataPerRead_GemmN,
typename GemmABlockCopyThreadSliceLengths_GemmK_GemmM,
typename GemmABlockCopyThreadClusterLengths_GemmK_GemmM,
index_t GemmABlockCopySrcDataPerRead_GemmN,
index_t GemmABlockCopyDstDataPerWrite_GemmN,
index_t GemmABlockCopySrcDataPerRead_GemmM,
index_t GemmABlockCopyDstDataPerWrite_GemmM,
typename GemmBBlockCopyThreadSliceLengths_GemmK_GemmN,
typename GemmBBlockCopyThreadClusterLengths_GemmK_GemmN,
index_t GemmBBlockCopySrcDataPerRead_GemmN,
......@@ -82,13 +82,6 @@ struct GridwiseConvolutionBackwardDataImplicitGemm_v1r1_nchw_kcyx_nkhw
constexpr auto wei_gemmk_gemmm_global_desc =
unfold_tensor_descriptor(wei_k_c_y_x_global_desc, I1, I3);
// output tensor
constexpr auto out_gemmk_gemmn_global_desc =
transform_tensor_descriptor(unfold_tensor_descriptor(out_n_k_ho_wo_global_desc, I2, I3),
make_tuple(PassThrough<K>{}, Merge<Sequence<N, Ho * Wo>>{}),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
// input tensor
constexpr auto in_n_c_hip_wip_global_desc = transform_tensor_descriptor(
in_n_c_hi_wi_global_desc,
......@@ -98,16 +91,15 @@ struct GridwiseConvolutionBackwardDataImplicitGemm_v1r1_nchw_kcyx_nkhw
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}));
constexpr index_t Hip = in_n_c_hip_wip_global_desc.GetLengths()[2];
constexpr index_t Wip = in_n_c_hip_wip_global_desc.GetLengths()[3];
constexpr auto in_n_c_y_ho_x_wo_global_desc = transform_tensor_descriptor(
in_n_c_hip_wip_global_desc,
make_tuple(PassThrough<N>{},
PassThrough<C>{},
Embed<Hi + InLeftPads::At(0) + InRightPads::At(0),
Sequence<Y, Ho>,
Sequence<ConvDilationH, ConvStrideH, 0>>{},
Embed<Wi + InLeftPads::At(1) + InRightPads::At(1),
Sequence<X, Wo>,
Sequence<ConvDilationW, ConvStrideW, 0>>{}),
Embed<Hip, Sequence<Y, Ho>, Sequence<ConvDilationH, ConvStrideH, 0>>{},
Embed<Wip, Sequence<X, Wo>, Sequence<ConvDilationW, ConvStrideW, 0>>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4, 5>{}));
......@@ -117,6 +109,13 @@ struct GridwiseConvolutionBackwardDataImplicitGemm_v1r1_nchw_kcyx_nkhw
make_tuple(Sequence<1, 2, 4>{}, Sequence<0, 3, 5>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
// output tensor
constexpr auto out_gemmk_gemmn_global_desc =
transform_tensor_descriptor(unfold_tensor_descriptor(out_n_k_ho_wo_global_desc, I2, I3),
make_tuple(PassThrough<K>{}, Merge<Sequence<N, Ho * Wo>>{}),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
// GEMM
// \todo there are more combinations of Y, ConvDilationH and ConvStrideH that don't need
// atomic, find out all of them
......@@ -152,8 +151,8 @@ struct GridwiseConvolutionBackwardDataImplicitGemm_v1r1_nchw_kcyx_nkhw
Sequence<0, 1>,
Sequence<0, 1>,
1,
GemmABlockCopySrcDataPerRead_GemmN,
GemmABlockCopyDstDataPerWrite_GemmN,
GemmABlockCopySrcDataPerRead_GemmM,
GemmABlockCopyDstDataPerWrite_GemmM,
GemmBBlockCopyThreadSliceLengths_GemmK_GemmN,
GemmBBlockCopyThreadClusterLengths_GemmK_GemmN,
Sequence<0, 1>,
......
......@@ -86,7 +86,7 @@ struct GridwiseConvolutionImplicitGemm_v4r4_nchw_kcyx_nkhw
#endif
// weight tensor
constexpr auto wei_e_k_global_desc = reorder_tensor_descriptor_given_upper2lower(
constexpr auto wei_gemmk_gemmm_global_desc = reorder_tensor_descriptor_given_upper2lower(
unfold_tensor_descriptor(wei_k_c_y_x_global_desc, I1, I3), Sequence<1, 0>{});
// input tensor
......@@ -110,14 +110,14 @@ struct GridwiseConvolutionImplicitGemm_v4r4_nchw_kcyx_nkhw
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4, 5>{}));
constexpr auto in_e_b_global_desc = transform_tensor_descriptor(
constexpr auto in_gemmm_gemmn_global_desc = transform_tensor_descriptor(
in_n_c_y_ho_x_wo_global_desc,
make_tuple(Merge<Sequence<C, Y, X>>{}, Merge<Sequence<N, Ho, Wo>>{}),
make_tuple(Sequence<1, 2, 4>{}, Sequence<0, 3, 5>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
// output tensor
constexpr auto out_k_b_global_desc =
constexpr auto out_gemmk_gemmn_global_desc =
transform_tensor_descriptor(unfold_tensor_descriptor(out_n_k_ho_wo_global_desc, I2, I3),
make_tuple(PassThrough<K>{}, Merge<Sequence<N, Ho * Wo>>{}),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}),
......@@ -129,9 +129,9 @@ struct GridwiseConvolutionImplicitGemm_v4r4_nchw_kcyx_nkhw
BlockSize,
Float,
AccFloat,
decltype(wei_e_k_global_desc),
decltype(in_e_b_global_desc),
decltype(out_k_b_global_desc),
decltype(wei_gemmk_gemmm_global_desc),
decltype(in_gemmm_gemmn_global_desc),
decltype(out_gemmk_gemmn_global_desc),
InMemoryDataOperation::Set,
GemmMPerBlock,
GemmNPerBlock,
......
......@@ -31,7 +31,9 @@ template <index_t BlockSize,
AddressSpace SrcAddressSpace = AddressSpace::Generic,
AddressSpace ThreadBufferAddressSpace = AddressSpace::Generic,
AddressSpace DstAddressSpace = AddressSpace::Generic,
InMemoryDataOperation DstInMemOp = InMemoryDataOperation::Set>
InMemoryDataOperation DstInMemOp = InMemoryDataOperation::Set,
index_t SrcDataStride = 1,
index_t DstDataStride = 1>
struct BlockwiseGenericTensorSliceCopy_v4
{
static constexpr index_t nDim = BlockSrcDesc::GetNumOfDimension();
......@@ -178,7 +180,9 @@ struct BlockwiseGenericTensorSliceCopy_v4
1,
SrcAddressSpace,
ThreadBufferAddressSpace,
InMemoryDataOperation::Set>;
InMemoryDataOperation::Set,
SrcDataStride,
1>;
using ThreadwiseStore = ThreadwiseGenericTensorSliceCopy_v4r2<ThreadBufferDesc,
BlockDstDesc,
......@@ -189,7 +193,9 @@ struct BlockwiseGenericTensorSliceCopy_v4
DstDataPerWrite,
ThreadBufferAddressSpace,
DstAddressSpace,
DstInMemOp>;
DstInMemOp,
1,
DstDataStride>;
static constexpr auto mThreadClusterDesc =
make_cluster_descriptor(ThreadClusterLengths{}, ThreadClusterArrangeOrder{});
......
......@@ -23,7 +23,9 @@ template <typename SrcDesc,
index_t DstDataPerWrite,
AddressSpace SrcAddressSpace = AddressSpace::Generic,
AddressSpace DstAddressSpace = AddressSpace::Generic,
InMemoryDataOperation DstInMemOp = InMemoryDataOperation::Set>
InMemoryDataOperation DstInMemOp = InMemoryDataOperation::Set,
index_t SrcDataStride = 1,
index_t DstDataStride = 1>
struct ThreadwiseGenericTensorSliceCopy_v4r2
{
static constexpr index_t nDim = SliceLengths::Size();
......
......@@ -16,15 +16,12 @@
#include "functional3.hpp"
#include "functional4.hpp"
#include "in_memory_operation.hpp"
#include "synchronization.hpp"
#if CK_USE_AMD_INLINE_ASM
#include "amd_inline_asm.hpp"
#endif
#if CK_USE_AMD_BUFFER_ADDRESSING
#include "amd_buffer_addressing.hpp"
#endif
#if CK_USE_AMD_XDLOPS
#include "amd_xdlops.hpp"
#endif
......
......@@ -25,11 +25,7 @@
#define CK_USE_AMD_BUFFER_ADDRESSING 1
#endif
#ifndef CK_USE_AMD_BUFFER_ADDRESSING_INTRINSIC
#define CK_USE_AMD_BUFFER_ADDRESSING_INTRINSIC 1
#endif
// only support gfx908
// only gfx908 support native floating point atomic add
#ifndef CK_USE_AMD_BUFFER_ATOMIC_ADD
#define CK_USE_AMD_BUFFER_ATOMIC_ADD 0
#endif
......@@ -47,6 +43,11 @@
#define CK_USE_AMD_XDLOPS_EMULATE 0 // For internal debug purposes
#endif
// block synchronization only s_wait lgkmcnt(0), not vmcnt(0)
#ifndef CK_BLOCK_SYNC_LDS_WITHOUT_SYNC_VMEM
#define CK_BLOCK_SYNC_LDS_WITHOUT_SYNC_VMEM 1
#endif
// experimental implementation
#define CK_EXPERIMENTAL_BLOCKWISE_GEMM_USE_PIPELINE 1
#define CK_EXPERIMENTAL_TENSOR_COORDINATE_USE_CALCULATE_OFFSET_DIFF 0
......@@ -54,8 +55,24 @@
#define CK_EXPERIMENTAL_USE_MORE_COMPILE_STATIC_BLOCKWISE_GENERIC_SLICE_COPY_V1 0
#define CK_EXPERIMENTAL_USE_MORE_COMPILE_STATIC_THREADWISE_GENERIC_TENSOR_SLICE_COPY_V1R2 0
#define CK_EXPERIMENTAL_USE_MORE_COMPILE_STATIC_THREADWISE_GENERIC_TENSOR_SLICE_COPY_V2R1 0
#ifndef CK_EXPERIMENTAL_IMPLICIT_GEMM_BACKWARD_DATA_V4R1_OUTPUT_SKIP_OUT_OF_BOUND_CHECK
#define CK_EXPERIMENTAL_IMPLICIT_GEMM_BACKWARD_DATA_V4R1_OUTPUT_SKIP_OUT_OF_BOUND_CHECK 0
#endif
#ifndef CK_EXPERIMENTAL_IMPLICIT_GEMM_BACKWARD_DATA_V4R1_INPUT_SKIP_OUT_OF_BOUND_CHECK
#define CK_EXPERIMENTAL_IMPLICIT_GEMM_BACKWARD_DATA_V4R1_INPUT_SKIP_OUT_OF_BOUND_CHECK 0
#endif
// workaround: put all workaround here
// workaround for unnecessary VGPA <--> AGRP data movement when using mfma LLVM intrinsic
#ifndef CK_WORKAROUND_SWDEV_229564
#define CK_WORKAROUND_SWDEV_229564 1
#endif
// workaround for buffer load/store fp16/bfp16 intrinsic bug
#ifndef CK_WORKAROUND_SWDEV_231101
#define CK_WORKAROUND_SWDEV_231101 1
#endif
namespace ck {
......
......@@ -14,10 +14,12 @@ typedef float float32_t __attribute__((ext_vector_type(32)));
typedef _Float16 half_t;
typedef _Float16 half2_t __attribute__((ext_vector_type(2)));
typedef _Float16 half4_t __attribute__((ext_vector_type(4)));
typedef _Float16 half8_t __attribute__((ext_vector_type(8)));
// bfloat16
typedef ushort ushort2_t __attribute__((ext_vector_type(2)));
typedef ushort ushort4_t __attribute__((ext_vector_type(4)));
typedef ushort ushort8_t __attribute__((ext_vector_type(8)));
template <class T, index_t N>
struct vector_type
......@@ -152,6 +154,25 @@ struct vector_type<half_t, 4>
}
};
template <>
struct vector_type<half_t, 8>
{
using MemoryType = half8_t;
union DataType
{
MemoryType vector;
half_t scalar[8];
};
template <index_t I>
__host__ __device__ static void SetScalar(MemoryType& v, half_t s, Number<I>)
{
static_assert(I < 8, "wrong");
*(reinterpret_cast<half_t*>(&v) + I) = s;
}
};
template <>
struct vector_type<ushort, 1>
{
......@@ -221,6 +242,25 @@ struct vector_type<ushort, 4>
}
};
template <>
struct vector_type<ushort, 8>
{
using MemoryType = ushort8_t;
union DataType
{
MemoryType vector;
ushort scalar[8];
};
template <index_t I>
__host__ __device__ static void SetScalar(MemoryType& v, ushort s, Number<I>)
{
static_assert(I < 8, "wrong");
*(reinterpret_cast<ushort*>(&v) + I) = s;
}
};
// data type conversion
template <typename T>
struct type_convert
......@@ -251,6 +291,34 @@ struct inner_product_with_conversion
{
static constexpr auto convert = type_convert<T>();
__device__ T operator()(float4_t a, float4_t b) const
{
const float* p_a_float = reinterpret_cast<const float*>(&a);
const float* p_b_float = reinterpret_cast<const float*>(&b);
T acc = 0;
for(index_t v = 0; v < 4; ++v)
{
acc += convert(p_a_float[v]) * convert(p_b_float[v]);
}
return acc;
}
__device__ T operator()(float2_t a, float2_t b) const
{
const float* p_a_float = reinterpret_cast<const float*>(&a);
const float* p_b_float = reinterpret_cast<const float*>(&b);
T acc = 0;
for(index_t v = 0; v < 2; ++v)
{
acc += convert(p_a_float[v]) * convert(p_b_float[v]);
}
return acc;
}
__device__ T operator()(float a, float b) const { return convert(a) * convert(b); }
__device__ T operator()(half2_t a, half2_t b) const
......@@ -280,6 +348,19 @@ struct inner_product_with_conversion
return acc;
}
__device__ T operator()(half8_t a, half8_t b) const
{
const half_t* p_a_half = reinterpret_cast<const half_t*>(&a);
const half_t* p_b_half = reinterpret_cast<const half_t*>(&b);
T acc = 0;
for(index_t v = 0; v < 8; ++v)
{
acc += convert(p_a_half[v]) * convert(p_b_half[v]);
}
return acc;
}
__device__ T operator()(ushort2_t a, ushort2_t b) const
{
const ushort* p_a_bfloat16 = reinterpret_cast<const ushort*>(&a);
......@@ -306,6 +387,19 @@ struct inner_product_with_conversion
}
return acc;
}
__device__ T operator()(ushort8_t a, ushort8_t b) const
{
const ushort* p_a_bfloat16 = reinterpret_cast<const ushort*>(&a);
const ushort* p_b_bfloat16 = reinterpret_cast<const ushort*>(&b);
T acc = 0;
for(index_t v = 0; v < 8; ++v)
{
acc += convert(p_a_bfloat16[v]) * convert(p_b_bfloat16[v]);
}
return acc;
}
};
} // namespace ck
......
......@@ -2,91 +2,159 @@
#define CK_IN_MEMORY_OPERATION_AMD_HPP
#include "float_type.hpp"
#if CK_USE_AMD_BUFFER_ADDRESSING
#include "amd_buffer_addressing.hpp"
#endif
namespace ck {
template <typename T,
index_t DataPerAccess,
AddressSpace SrcAddressSpace,
AddressSpace DstAddressSpace>
__device__ void set_data(const T* p_src, index_t src_offset, T* p_dst, index_t dst_offset)
template <typename T>
__device__ void atomic_add_impl(T* p_dst, T src)
{
atomicAdd(p_dst, src);
}
// atomicAdd for float does not support vector type
template <>
__device__ void atomic_add_impl<float2_t>(float2_t* p_dst, float2_t src)
{
float* p_dst_float = reinterpret_cast<float*>(p_dst);
const float* p_src_float = reinterpret_cast<const float*>(&src);
for(index_t i = 0; i < 2; ++i)
{
atomicAdd(&(p_dst_float[i]), p_src_float[i]);
}
}
template <>
__device__ void atomic_add_impl<float4_t>(float4_t* p_dst, float4_t src)
{
float* p_dst_float = reinterpret_cast<float*>(p_dst);
const float* p_src_float = reinterpret_cast<const float*>(&src);
for(index_t i = 0; i < 4; ++i)
{
atomicAdd(&(p_dst_float[i]), p_src_float[i]);
}
}
template <typename T, index_t DataPerAccess>
struct SetData
{
using vector_t = typename vector_type<T, DataPerAccess>::MemoryType;
// This version is only for compatibility, don't use this version if possible
template <AddressSpace SrcAddressSpace, AddressSpace DstAddressSpace>
__device__ void Run(const T* p_src, index_t src_offset, T* p_dst, index_t dst_offset) const
{
*reinterpret_cast<vector_t*>(&p_dst[dst_offset]) =
*reinterpret_cast<const vector_t*>(&p_src[src_offset]);
}
#if CK_USE_AMD_BUFFER_ADDRESSING
// TODO: use static_if::ElseIf, instead of nested static_if
static_if<SrcAddressSpace == AddressSpace::Global &&
DstAddressSpace == AddressSpace::Vgpr>{}([&](auto) {
// buffer_load requires:
// 1) p_src must be in global memory space, d_dst must be vgpr
// 2) p_src to be a block-invariant pointer.
// It is user's responsibility to make sure that is true.
// buffer_load requires:
// 1) p_src must be in global memory space, d_dst must be vgpr
// 2) p_src to be a block-invariant pointer.
// It is user's responsibility to make sure that is true.
template <>
__device__ void Run<AddressSpace::Global, AddressSpace::Vgpr>(const T* p_src,
index_t src_offset,
T* p_dst,
index_t dst_offset) const
{
*reinterpret_cast<vector_t*>(&p_dst[dst_offset]) =
amd_intrinsic_buffer_load<T, DataPerAccess>(p_src, src_offset, 0);
}).Else([&](auto) {
static_if<SrcAddressSpace == AddressSpace::Vgpr &&
DstAddressSpace == AddressSpace::Global>{}([&](auto) {
// buffer_store requires:
// 1) p_src must be in vgpr space, d_dst must be global memory
// 2) p_dst to be a block-invariant pointer.
// It is user's responsibility to make sure that is true.
amd_intrinsic_buffer_store<T, DataPerAccess>(
*reinterpret_cast<const vector_t*>(&p_src[src_offset]), p_dst, dst_offset, 0);
}).Else([&](auto) {
*reinterpret_cast<vector_t*>(&p_dst[dst_offset]) =
*reinterpret_cast<const vector_t*>(&p_src[src_offset]);
});
});
#else
*reinterpret_cast<vector_t*>(&p_dst[dst_offset]) =
*reinterpret_cast<const vector_t*>(&p_src[src_offset]);
amd_buffer_load<T, DataPerAccess>(p_src, src_offset, 0);
}
// buffer_store requires:
// 1) p_src must be in vgpr space, d_dst must be global memory
// 2) p_dst to be a block-invariant pointer.
// It is user's responsibility to make sure that is true.
template <>
__device__ void Run<AddressSpace::Vgpr, AddressSpace::Global>(const T* p_src,
index_t src_offset,
T* p_dst,
index_t dst_offset) const
{
amd_buffer_store<T, DataPerAccess>(&(p_src[src_offset]), p_dst, dst_offset, 0);
}
#endif
}
};
template <typename T,
index_t DataPerAccess,
AddressSpace SrcAddressSpace,
AddressSpace DstAddressSpace>
__device__ void atomic_add_data(const T* p_src, index_t src_offset, T* p_dst, index_t dst_offset)
template <typename T, index_t DataPerAccess>
struct AtomicAddData
{
using vector_t = typename vector_type<T, DataPerAccess>::MemoryType;
static_if<SrcAddressSpace == AddressSpace::Vgpr &&
DstAddressSpace == AddressSpace::Global>{}([&](auto) {
#if CK_USE_AMD_BUFFER_ATOMIC_ADD
amd_intrinsic_buffer_atomic_add<T, DataPerAccess>(
*reinterpret_cast<const vector_t*>(&p_src[src_offset]), p_dst, dst_offset, 0);
#else
atomicAdd(reinterpret_cast<vector_t*>(&p_dst[dst_offset]),
*reinterpret_cast<const vector_t*>(&p_src[src_offset]));
// This version is only for compatibility, don't use this version if possible
template <AddressSpace SrcAddressSpace, AddressSpace DstAddressSpace>
__device__ void Run(const T* p_src, index_t src_offset, T* p_dst, index_t dst_offset) const
{
atomic_add_impl(reinterpret_cast<vector_t*>(&p_dst[dst_offset]),
*reinterpret_cast<const vector_t*>(&p_src[src_offset]));
}
#if CK_USE_AMD_BUFFER_ADDRESSING && CK_USE_AMD_BUFFER_ATOMIC_ADD
// buffer_atomic_add requires:
// 1) p_src must be in vgpr space, d_dst must be global memory
// 2) p_dst to be a block-invariant pointer.
// It is user's responsibility to make sure that is true.
template <>
__device__ void Run<AddressSpace::Vgpr, AddressSpace::Global>(const T* p_src,
index_t src_offset,
T* p_dst,
index_t dst_offset) const
{
amd_buffer_atomic_add<T, DataPerAccess>(&(p_src[src_offset]), p_dst, dst_offset, 0);
}
#endif
}).Else([&](auto fwd) {
static_assert(fwd(false), "atomic_add doesn't support this memory space");
});
}
};
template <typename T,
index_t DataPerAccess,
AddressSpace SrcAddressSpace,
AddressSpace DstAddressSpace,
InMemoryDataOperation DstInMemOp>
InMemoryDataOperation DstInMemOp,
index_t SrcDataStride = 1,
index_t DstDataStride = 1>
__device__ void transfer_data(const T* p_src, index_t src_offset, T* p_dst, index_t dst_offset)
{
static_assert(DstInMemOp == InMemoryDataOperation::Set ||
DstInMemOp == InMemoryDataOperation::AtomicAdd,
"wrong! InMemoryDataOperation not supported!");
// TODO: use static_if::ElseIf
static_if<DstInMemOp == InMemoryDataOperation::Set>{}([&](auto) {
set_data<T, DataPerAccess, SrcAddressSpace, DstAddressSpace>(
p_src, src_offset, p_dst, dst_offset);
});
// keep it simple, don't use static_if here, otherwise compiler will do weird things
if(SrcDataStride == 1 && DstDataStride == 1)
{
// TODO: use static_if::ElseIf
static_if<DstInMemOp == InMemoryDataOperation::Set>{}([&](auto) {
SetData<T, DataPerAccess>{}.template Run<SrcAddressSpace, DstAddressSpace>(
p_src, src_offset, p_dst, dst_offset);
});
static_if<DstInMemOp == InMemoryDataOperation::AtomicAdd>{}([&](auto) {
AtomicAddData<T, DataPerAccess>{}.template Run<SrcAddressSpace, DstAddressSpace>(
p_src, src_offset, p_dst, dst_offset);
});
}
else
{
for(index_t i = 0; i < DataPerAccess; i++)
{
// TODO: use static_if::ElseIf
static_if<DstInMemOp == InMemoryDataOperation::Set>{}([&](auto) {
SetData<T, 1>{}.template Run<SrcAddressSpace, DstAddressSpace>(
p_src, src_offset + i * SrcDataStride, p_dst, dst_offset + i * DstDataStride);
});
static_if<DstInMemOp == InMemoryDataOperation::AtomicAdd>{}([&](auto) {
atomic_add_data<T, DataPerAccess, SrcAddressSpace, DstAddressSpace>(
p_src, src_offset, p_dst, dst_offset);
});
static_if<DstInMemOp == InMemoryDataOperation::AtomicAdd>{}([&](auto) {
AtomicAddData<T, 1>{}.template Run<SrcAddressSpace, DstAddressSpace>(
p_src, src_offset + i * SrcDataStride, p_dst, dst_offset + i * DstDataStride);
});
}
}
}
} // namespace ck
......
#ifndef CK_SYNCHRONIZATION_AMD_HPP
#define CK_SYNCHRONIZATION_AMD_HPP
#include "config.hpp"
namespace ck {
__device__ void __llvm_amdgcn_s_barrier() __asm("llvm.amdgcn.s.barrier");
__device__ void block_sync_lds()
{
#if CK_BLOCK_SYNC_LDS_WITHOUT_SYNC_VMEM
asm volatile("\
s_waitcnt lgkmcnt(0) \n \
s_barrier \
" ::);
#else
__llvm_amdgcn_s_barrier();
#endif
}
__device__ void block_sync_lds_vmem() { __llvm_amdgcn_s_barrier(); }
} // namespace ck
#endif
......@@ -160,10 +160,10 @@ int main(int argc, char* argv[])
#elif 0
// 1x7 filter, 0x3 pad, 17x17 input
constexpr index_t N = 128;
constexpr index_t C = 128;
constexpr index_t C = 1024;
constexpr index_t HI = 17;
constexpr index_t WI = 17;
constexpr index_t K = 128;
constexpr index_t K = 1024;
constexpr index_t Y = 1;
constexpr index_t X = 7;
......@@ -247,7 +247,7 @@ int main(int argc, char* argv[])
#if 0
device_convolution_backward_data_implicit_gemm_v1r1_nchw_kcyx_nkhw
#elif 0
#elif 1
device_convolution_backward_data_implicit_gemm_v1r2_nchw_kcyx_nkhw
#elif 0
device_convolution_backward_data_implicit_gemm_v2r1_nchw_kcyx_nkhw
......
......@@ -19,7 +19,7 @@ int main(int argc, char* argv[])
{
using namespace ck;
#if 1
#if 0
// 1x1, 17x17
constexpr index_t N = 128;
constexpr index_t C = 1024;
......@@ -97,10 +97,10 @@ int main(int argc, char* argv[])
#elif 0
// 7x1, 17x17
constexpr index_t N = 128;
constexpr index_t C = 256;
constexpr index_t C = 128;
constexpr index_t HI = 17;
constexpr index_t WI = 17;
constexpr index_t K = 320;
constexpr index_t K = 128;
constexpr index_t Y = 7;
constexpr index_t X = 1;
......@@ -109,13 +109,13 @@ int main(int argc, char* argv[])
using LeftPads = Sequence<3, 0>;
using RightPads = Sequence<3, 0>;
#elif 0
#elif 1
// 1x7, 17x17
constexpr index_t N = 128;
constexpr index_t C = 224;
constexpr index_t C = 128;
constexpr index_t HI = 17;
constexpr index_t WI = 17;
constexpr index_t K = 224;
constexpr index_t K = 128;
constexpr index_t Y = 1;
constexpr index_t X = 7;
......@@ -124,7 +124,7 @@ int main(int argc, char* argv[])
using LeftPads = Sequence<0, 3>;
using RightPads = Sequence<0, 3>;
#elif 1
#elif 0
// 3x3, 299x299 stride=2
constexpr index_t N = 128;
constexpr index_t C = 3;
......@@ -565,7 +565,7 @@ int main(int argc, char* argv[])
#endif
}
#if 0
#if 1
device_convolution_implicit_gemm_v4r1_nchw_kcyx_nkhw(in_nchw_desc,
in_nchw,
wei_kcyx_desc,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment