Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
4978c9e7
Commit
4978c9e7
authored
Apr 19, 2021
by
Chao Liu
Browse files
replacing array with vector for tensor data
parent
e38c1b73
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
436 additions
and
25 deletions
+436
-25
composable_kernel/include/tensor_operation/blockwise_gemm_v2.hpp
...ble_kernel/include/tensor_operation/blockwise_gemm_v2.hpp
+317
-0
composable_kernel/include/tensor_operation/threadwise_dynamic_tensor_slice_transfer.hpp
...or_operation/threadwise_dynamic_tensor_slice_transfer.hpp
+119
-25
No files found.
composable_kernel/include/tensor_operation/blockwise_gemm_v2.hpp
View file @
4978c9e7
...
...
@@ -358,5 +358,322 @@ struct BlockwiseGemm_km_kn_m0m1n0n1_v1
}
};
// blockwise GEMM: C[M, N] += transpose(A[K, M]) * B[K, N]
// A and B are visable to the whole block, C is distributed among each thread
// If following number are power of 2, index calculation shall be greatly reduced:
// MPerThreadSubC, NPerThreadSubC, MLevel0ThreadCluster, NLevel0ThreadCluster,
// MLevel1ThreadCluster, NLevel1ThreadCluster
template
<
index_t
BlockSize
,
typename
BlockMatrixA
,
typename
BlockMatrixB
,
typename
ThreadMatrixC
,
index_t
MPerThreadSubC
,
index_t
NPerThreadSubC
,
index_t
KPerThreadLoop
,
index_t
MLevel0ThreadCluster
,
index_t
NLevel0ThreadCluster
,
index_t
MLevel1ThreadCluster
,
index_t
NLevel1ThreadCluster
,
index_t
ThreadGemmADataPerRead_M
,
index_t
ThreadGemmBDataPerRead_N
>
struct
BlockwiseGemm_km_kn_m0m1n0n1_v1r1
{
struct
MatrixIndex
{
index_t
row
;
index_t
col
;
};
index_t
mMyThreadOffsetA
;
index_t
mMyThreadOffsetB
;
__device__
BlockwiseGemm_km_kn_m0m1n0n1_v1r1
()
{
static_assert
(
BlockMatrixA
::
IsKnownAtCompileTime
()
&&
BlockMatrixB
::
IsKnownAtCompileTime
()
&&
ThreadMatrixC
::
IsKnownAtCompileTime
(),
"wrong! Desc should be known at compile-time"
);
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
index_t
ThreadPerLevel1Cluster
=
MLevel0ThreadCluster
*
NLevel0ThreadCluster
*
MLevel1ThreadCluster
*
NLevel1ThreadCluster
;
static_assert
(
BlockSize
==
ThreadPerLevel1Cluster
,
"wrong! wrong blocksize
\n
"
);
static_assert
(
BlockMatrixA
{}.
GetLength
(
I0
)
==
BlockMatrixB
{}.
GetLength
(
I0
),
"wrong! K dimension not consistent
\n
"
);
constexpr
index_t
M
=
BlockMatrixA
{}.
GetLength
(
I1
);
// A is transposed
constexpr
index_t
N
=
BlockMatrixB
{}.
GetLength
(
I1
);
static_assert
(
M
%
(
MPerThreadSubC
*
MLevel0ThreadCluster
*
MLevel1ThreadCluster
)
==
0
&&
N
%
(
NPerThreadSubC
*
NLevel0ThreadCluster
*
NLevel1ThreadCluster
)
==
0
,
"wrong! Cannot evenly divide work among
\n
"
);
static_assert
(
ThreadMatrixC
{}.
GetLength
(
I0
)
==
GetThreadMatrixCLengths
()[
I0
]
&&
ThreadMatrixC
{}.
GetLength
(
I1
)
==
GetThreadMatrixCLengths
()[
I1
],
"wrong! ThreadMatrixC lengths is wrong"
);
auto
c_thread_mtx_index
=
GetBeginOfThreadMatrixC
(
get_thread_local_1d_id
());
mMyThreadOffsetA
=
BlockMatrixA
{}.
CalculateOffset
(
make_tuple
(
0
,
c_thread_mtx_index
.
row
));
mMyThreadOffsetB
=
BlockMatrixB
{}.
CalculateOffset
(
make_tuple
(
0
,
c_thread_mtx_index
.
col
));
}
__device__
static
constexpr
auto
GetThreadMatrixCLengths
()
{
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
index_t
M
=
BlockMatrixA
{}.
GetLength
(
I1
);
// A is transposed
constexpr
index_t
N
=
BlockMatrixB
{}.
GetLength
(
I1
);
constexpr
index_t
MRepeat
=
M
/
(
MPerThreadSubC
*
MLevel0ThreadCluster
*
MLevel1ThreadCluster
);
constexpr
index_t
NRepeat
=
N
/
(
NPerThreadSubC
*
NLevel0ThreadCluster
*
NLevel1ThreadCluster
);
return
Sequence
<
MRepeat
*
MPerThreadSubC
,
NRepeat
*
NPerThreadSubC
>
{};
}
__device__
static
MatrixIndex
GetBeginOfThreadMatrixC
(
index_t
thread_id
)
{
constexpr
index_t
ThreadPerLevel0Cluster
=
MLevel0ThreadCluster
*
NLevel0ThreadCluster
;
index_t
level1_id
=
thread_id
/
ThreadPerLevel0Cluster
;
index_t
level1_m_id
=
level1_id
/
NLevel1ThreadCluster
;
index_t
level1_n_id
=
level1_id
%
NLevel1ThreadCluster
;
index_t
level0_id
=
thread_id
%
ThreadPerLevel0Cluster
;
index_t
level0_m_id
=
level0_id
/
NLevel0ThreadCluster
;
index_t
level0_n_id
=
level0_id
%
NLevel0ThreadCluster
;
constexpr
index_t
MPerLevel0Cluster
=
MPerThreadSubC
*
MLevel0ThreadCluster
;
constexpr
index_t
NPerLevel0Cluster
=
NPerThreadSubC
*
NLevel0ThreadCluster
;
return
MatrixIndex
{
level1_m_id
*
MPerLevel0Cluster
+
level0_m_id
*
MPerThreadSubC
,
level1_n_id
*
NPerLevel0Cluster
+
level0_n_id
*
NPerThreadSubC
};
}
template
<
typename
FloatA
,
typename
FloatB
,
typename
FloatC
>
__device__
void
Run_pipelined_2x2
(
const
FloatA
*
p_a_block
,
const
FloatB
*
p_b_block
,
FloatC
*
p_c_thread
)
const
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
a_block_mtx
=
BlockMatrixA
{};
constexpr
auto
b_block_mtx
=
BlockMatrixB
{};
constexpr
auto
c_thread_mtx
=
ThreadMatrixC
{};
constexpr
auto
K
=
a_block_mtx
.
GetLength
(
I0
);
constexpr
auto
MPerThread
=
c_thread_mtx
.
GetLength
(
I0
);
constexpr
auto
NPerThread
=
c_thread_mtx
.
GetLength
(
I1
);
constexpr
index_t
MPerLevel1Cluster
=
MPerThreadSubC
*
MLevel0ThreadCluster
*
MLevel1ThreadCluster
;
constexpr
index_t
NPerLevel1Cluster
=
NPerThreadSubC
*
NLevel0ThreadCluster
*
NLevel1ThreadCluster
;
constexpr
index_t
MRepeat
=
MPerThread
/
MPerThreadSubC
;
constexpr
index_t
NRepeat
=
NPerThread
/
NPerThreadSubC
;
static_assert
(
MRepeat
==
2
&&
NRepeat
==
2
,
"wrong! inline asm cannot deal with this GEMM config yet"
);
// thread A, B
constexpr
auto
a_thread_mtx
=
make_dynamic_naive_tensor_descriptor_packed_v2
(
make_tuple
(
Number
<
KPerThreadLoop
>
{},
Number
<
MPerThread
>
{}));
constexpr
auto
b_thread_mtx
=
make_dynamic_naive_tensor_descriptor_packed_v2
(
make_tuple
(
Number
<
KPerThreadLoop
>
{},
Number
<
NPerThread
>
{}));
// thread A-sub, B-sub
constexpr
auto
a_thread_sub_mtx
=
make_dynamic_naive_tensor_descriptor_v2
(
make_tuple
(
Number
<
KPerThreadLoop
>
{},
Number
<
MPerThreadSubC
>
{}),
make_tuple
(
Number
<
MPerThread
>
{},
Number
<
1
>
{}));
constexpr
auto
b_thread_sub_mtx
=
make_dynamic_naive_tensor_descriptor_v2
(
make_tuple
(
Number
<
KPerThreadLoop
>
{},
Number
<
NPerThreadSubC
>
{}),
make_tuple
(
Number
<
NPerThread
>
{},
Number
<
1
>
{}));
constexpr
auto
c_thread_sub_mtx
=
make_dynamic_naive_tensor_descriptor_v2
(
make_tuple
(
Number
<
MPerThreadSubC
>
{},
Number
<
NPerThreadSubC
>
{}),
make_tuple
(
Number
<
NPerThread
>
{},
Number
<
1
>
{}));
FloatA
p_a_thread
[
a_thread_mtx
.
GetElementSpaceSize
()];
FloatB
p_b_thread
[
b_thread_mtx
.
GetElementSpaceSize
()];
constexpr
auto
a_thread_copy
=
ThreadwiseDynamicTensorSliceTransfer_v2
<
FloatA
,
FloatA
,
BlockMatrixA
,
decltype
(
a_thread_mtx
),
Sequence
<
KPerThreadLoop
,
MPerThreadSubC
>
,
Sequence
<
0
,
1
>
,
1
,
ThreadGemmADataPerRead_M
,
AddressSpace
::
Generic
,
AddressSpace
::
Vgpr
,
1
,
true
>
{
BlockMatrixA
{},
make_tuple
()};
constexpr
auto
b_thread_copy
=
ThreadwiseDynamicTensorSliceTransfer_v2
<
FloatB
,
FloatB
,
BlockMatrixB
,
decltype
(
b_thread_mtx
),
Sequence
<
KPerThreadLoop
,
NPerThreadSubC
>
,
Sequence
<
0
,
1
>
,
1
,
ThreadGemmBDataPerRead_N
,
AddressSpace
::
Generic
,
AddressSpace
::
Vgpr
,
1
,
true
>
{};
constexpr
auto
threadwise_gemm
=
ThreadwiseGemm_km_kn_mn_v1
<
decltype
(
a_thread_sub_mtx
),
decltype
(
b_thread_sub_mtx
),
decltype
(
c_thread_sub_mtx
)
>
{};
const
FloatA
*
p_a_block_off
=
p_a_block
+
mMyThreadOffsetA
;
const
FloatB
*
p_b_block_off
=
p_b_block
+
mMyThreadOffsetB
;
// read A_sub_0
a_thread_copy
.
Run
(
BlockMatrixA
{},
p_a_block_off
,
a_thread_mtx
,
make_tuple
(
Number
<
0
>
{},
Number
<
0
>
{}),
p_a_thread
);
// read B_sub_0
b_thread_copy
.
Run
(
BlockMatrixB
{},
p_b_block_off
,
b_thread_mtx
,
make_tuple
(
Number
<
0
>
{},
Number
<
0
>
{}),
p_b_thread
);
// read B_sub_1
b_thread_copy
.
Run
(
BlockMatrixB
{},
p_b_block_off
+
b_block_mtx
.
CalculateOffset
(
make_tuple
(
0
,
NPerLevel1Cluster
)),
b_thread_mtx
,
make_tuple
(
Number
<
0
>
{},
Number
<
NPerThreadSubC
>
{}),
p_b_thread
);
// read A_sub_1
a_thread_copy
.
Run
(
BlockMatrixA
{},
p_a_block_off
+
a_block_mtx
.
CalculateOffset
(
make_tuple
(
0
,
MPerLevel1Cluster
)),
a_thread_mtx
,
make_tuple
(
Number
<
0
>
{},
Number
<
MPerThreadSubC
>
{}),
p_a_thread
);
// C_sub_00 += transpose(A_sub_0) * B_sub_0
threadwise_gemm
.
Run
(
p_a_thread
,
p_b_thread
,
p_c_thread
);
// C_sub_01 += transpose(A_sub_0) * B_sub_1
threadwise_gemm
.
Run
(
p_a_thread
,
p_b_thread
+
b_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
NPerThreadSubC
)),
p_c_thread
+
c_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
NPerThreadSubC
)));
// loop over rest of k
static_for
<
KPerThreadLoop
,
K
,
KPerThreadLoop
>
{}([
&
](
auto
k
)
{
// read A_sub_0
a_thread_copy
.
Run
(
BlockMatrixA
{},
p_a_block_off
+
a_block_mtx
.
CalculateOffset
(
make_tuple
(
k
,
0
)),
a_thread_mtx
,
make_tuple
(
Number
<
0
>
{},
Number
<
0
>
{}),
p_a_thread
);
// C_sub_10 += transpose(A_sub_1) * B_sub_0
threadwise_gemm
.
Run
(
p_a_thread
+
a_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
MPerThreadSubC
)),
p_b_thread
,
p_c_thread
+
c_thread_mtx
.
CalculateOffset
(
make_tuple
(
MPerThreadSubC
,
0
)));
// read B_sub_0
b_thread_copy
.
Run
(
BlockMatrixB
{},
p_b_block_off
+
b_block_mtx
.
CalculateOffset
(
make_tuple
(
k
,
0
)),
b_thread_mtx
,
make_tuple
(
Number
<
0
>
{},
Number
<
0
>
{}),
p_b_thread
);
// C_sub_11 += transpose(A_sub_1) * B_sub_1
threadwise_gemm
.
Run
(
p_a_thread
+
a_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
MPerThreadSubC
)),
p_b_thread
+
b_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
NPerThreadSubC
)),
p_c_thread
+
c_thread_mtx
.
CalculateOffset
(
make_tuple
(
MPerThreadSubC
,
NPerThreadSubC
)));
// read B_sub_1
b_thread_copy
.
Run
(
BlockMatrixB
{},
p_b_block_off
+
b_block_mtx
.
CalculateOffset
(
make_tuple
(
k
,
NPerLevel1Cluster
)),
b_thread_mtx
,
make_tuple
(
Number
<
0
>
{},
Number
<
NPerThreadSubC
>
{}),
p_b_thread
);
// read A_sub_1
a_thread_copy
.
Run
(
BlockMatrixA
{},
p_a_block_off
+
a_block_mtx
.
CalculateOffset
(
make_tuple
(
k
,
MPerLevel1Cluster
)),
a_thread_mtx
,
make_tuple
(
Number
<
0
>
{},
Number
<
MPerThreadSubC
>
{}),
p_a_thread
);
// C_sub_00 += transpose(A_sub_0) * B_sub_0
threadwise_gemm
.
Run
(
p_a_thread
,
p_b_thread
,
p_c_thread
);
// C_sub_01 += transpose(A_sub_0) * B_sub_1
threadwise_gemm
.
Run
(
p_a_thread
,
p_b_thread
+
b_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
NPerThreadSubC
)),
p_c_thread
+
c_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
NPerThreadSubC
)));
});
// C_sub_10 += transpose(A_sub_1) * B_sub_0
threadwise_gemm
.
Run
(
p_a_thread
+
a_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
MPerThreadSubC
)),
p_b_thread
,
p_c_thread
+
c_thread_mtx
.
CalculateOffset
(
make_tuple
(
MPerThreadSubC
,
0
)));
// C_sub_11 += transpose(A_sub_1) * B_sub_1
threadwise_gemm
.
Run
(
p_a_thread
+
a_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
MPerThreadSubC
)),
p_b_thread
+
b_thread_mtx
.
CalculateOffset
(
make_tuple
(
0
,
NPerThreadSubC
)),
p_c_thread
+
c_thread_mtx
.
CalculateOffset
(
make_tuple
(
MPerThreadSubC
,
NPerThreadSubC
)));
}
template
<
typename
FloatA
,
typename
FloatB
,
typename
FloatC
>
__device__
void
Run
(
const
FloatA
*
p_a_block
,
const
FloatB
*
p_b_block
,
FloatC
*
p_c_thread
)
const
{
#if CK_EXPERIMENTAL_BLOCKWISE_GEMM_USE_PIPELINE
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
index_t
MPerThread
=
ThreadMatrixC
{}.
GetLength
(
I0
);
constexpr
index_t
NPerThread
=
ThreadMatrixC
{}.
GetLength
(
I1
);
constexpr
index_t
MRepeat
=
MPerThread
/
MPerThreadSubC
;
constexpr
index_t
NRepeat
=
NPerThread
/
NPerThreadSubC
;
if
constexpr
(
MRepeat
==
2
&&
NRepeat
==
2
)
{
Run_pipelined_2x2
(
p_a_block
,
p_b_block
,
p_c_thread
);
}
else
{
Run_naive
(
p_a_block
,
p_b_block
,
p_c_thread
);
}
#else
Run_naive
(
p_a_block
,
p_b_block
,
p_c_thread
);
#endif
}
};
}
// namespace ck
#endif
composable_kernel/include/tensor_operation/threadwise_dynamic_tensor_slice_transfer.hpp
View file @
4978c9e7
...
...
@@ -7,6 +7,15 @@
namespace
ck
{
// Do following things to avoid "alloca" in LLVM-IR, which would cause scratch memory
// and sometimes useless instructions:
// 1. Don't save a reference to tensor descriptor in class, pass in tensor descriptor as argument
// instead
// 2. Don't construct a new tensor coordinate everytime when using it, update and reuse the same
// tensor coordinate instead
// 3. Don't use a pointer to VGPR buffer, use vector instead
namespace
detail
{
// TODO: How to fix this? It uses an struct instead of lambda because lambda
// doesn't have constructor
template
<
index_t
VectorDim
,
index_t
ScalarPerVector
>
...
...
@@ -26,15 +35,13 @@ struct lambda_scalar_step_in_vector
return
(
i
==
VectorDim
)
?
1
:
0
;
}
};
}
// namespace detail
// Assume:
// 1. src_desc is known at compile-time
// 2. dst_desc is not known at compile-time
// 3. src_slice_origin_idx is known at compile-time and it's 0
// 4. dst_slice_origin_idx is not-known at compile time
// this version is less likely to have scratch memory issue, due to:
// 1. It does not keep reference to tensor descriptor
// 2. It does not construct new tensor coordinate for this->Run()
// TODO: support non-zero src_slice_oring_idx
template
<
typename
SrcData
,
typename
DstData
,
...
...
@@ -98,10 +105,10 @@ struct ThreadwiseDynamicTensorSliceTransfer_v1r3
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
dst_scalar_per_access
=
generate_sequence
(
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
dst_scalar_step_in_vector
=
generate_sequence
(
lambda_scalar_step_in_vector
<
DstVectorDim
>
{},
Number
<
nDim
>
{});
generate_sequence
(
detail
::
lambda_scalar_step_in_vector
<
DstVectorDim
>
{},
Number
<
nDim
>
{});
constexpr
auto
access_lengths
=
SliceLengths
{}
/
dst_scalar_per_access
;
...
...
@@ -288,7 +295,7 @@ struct ThreadwiseDynamicTensorSliceTransfer_v1r3
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
dst_scalar_per_access
=
generate_sequence
(
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
access_lengths
=
SliceLengths
{}
/
dst_scalar_per_access
;
...
...
@@ -368,9 +375,6 @@ struct ThreadwiseDynamicTensorSliceTransfer_v1r3
// 2. dst_desc is known at compile-time
// 3. src_slice_origin_idx is not known at compile-time
// 4. dst_slice_origin_idx is known at compile-time and it's 0
// this version is less likely to have scratch memory issue, due to:
// 1. It does not keep reference to tensor descriptor
// 2. It does not construct new tensor coordinate for this->Run()
template
<
typename
SrcData
,
typename
DstData
,
typename
SrcDesc
,
...
...
@@ -432,10 +436,10 @@ struct ThreadwiseDynamicTensorSliceTransfer_v2
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
src_scalar_step_in_vector
=
generate_sequence
(
lambda_scalar_step_in_vector
<
SrcVectorDim
>
{},
Number
<
nDim
>
{});
generate_sequence
(
detail
::
lambda_scalar_step_in_vector
<
SrcVectorDim
>
{},
Number
<
nDim
>
{});
constexpr
auto
access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
...
...
@@ -623,7 +627,7 @@ struct ThreadwiseDynamicTensorSliceTransfer_v2
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
...
...
@@ -702,12 +706,6 @@ struct ThreadwiseDynamicTensorSliceTransfer_v2
// 1. src_desc and dst_desc are not known at compile-time
// 2. src_slice_origin and dst_slice_origin are not known at compile-time,
// 3. Use thread buffer
// this version does following things to avoid "alloca" in LLVM-IR, which would cause scratch memory
// and sometimes useless instructions
// 1. It does not keep reference to tensor descriptor
// 2. It does not construct new tensor coordinate for this->Run()
// 3. It does not use pointer for VGPR thread buffer
// 4. It calculate offset for thread buffer directly, instead of moving the coordinate
template
<
typename
SliceLengths
,
InMemoryDataOperation
DstInMemOp
,
typename
SrcData
,
...
...
@@ -777,10 +775,10 @@ struct ThreadwiseDynamicTensorSliceTransfer_v3
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
src_scalar_step_in_vector
=
generate_sequence
(
lambda_scalar_step_in_vector
<
SrcVectorDim
>
{},
Number
<
nDim
>
{});
generate_sequence
(
detail
::
lambda_scalar_step_in_vector
<
SrcVectorDim
>
{},
Number
<
nDim
>
{});
constexpr
auto
src_access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
...
...
@@ -955,10 +953,10 @@ struct ThreadwiseDynamicTensorSliceTransfer_v3
// src scalar per access on each dim
// TODO: don't use this
constexpr
auto
dst_scalar_per_access
=
generate_sequence
(
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
dst_scalar_step_in_vector
=
generate_sequence
(
lambda_scalar_step_in_vector
<
DstVectorDim
>
{},
Number
<
nDim
>
{});
generate_sequence
(
detail
::
lambda_scalar_step_in_vector
<
DstVectorDim
>
{},
Number
<
nDim
>
{});
constexpr
auto
dst_access_lengths
=
SliceLengths
{}
/
dst_scalar_per_access
;
...
...
@@ -1142,7 +1140,7 @@ struct ThreadwiseDynamicTensorSliceTransfer_v3
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
src_scalar_per_access
=
generate_sequence
(
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
detail
::
lambda_scalar_per_access
<
SrcVectorDim
,
SrcScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
src_access_lengths
=
SliceLengths
{}
/
src_scalar_per_access
;
...
...
@@ -1204,7 +1202,7 @@ struct ThreadwiseDynamicTensorSliceTransfer_v3
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr
auto
dst_scalar_per_access
=
generate_sequence
(
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
DstScalarPerVector
>
{},
Number
<
nDim
>
{});
constexpr
auto
dst_access_lengths
=
SliceLengths
{}
/
dst_scalar_per_access
;
...
...
@@ -1293,7 +1291,6 @@ struct ThreadwiseDynamicTensorSliceTransfer_v3
move_dynamic_tensor_coordinate
(
src_desc
,
src_slice_origin_coord_
,
adjusted_step
);
}
// dst_slice_origin_step_idx need to be known at compile-time, for performance reason
__device__
void
MoveDstSliceWindow
(
const
DstDesc
&
dst_desc
,
const
Index
&
dst_slice_origin_step_idx
)
...
...
@@ -1322,5 +1319,102 @@ struct ThreadwiseDynamicTensorSliceTransfer_v3
DstCoord
dst_slice_origin_coord_
;
};
// Assume:
// 1. src:
// 1. src_desc is known at compile-time
// 2. a reference src_reference_idx is given at run-time, src_slice_origin_idx has a
// compile-time distance to src_reference_idx
// 3. use #-iterator
// 2. dst:
// 1. dst_desc is known at compile-time
// 2. a reference dst_reference_idx is given at compile-time, dst_slice_origin_idx has a
// compile-time distance to dst_reference_idx
// 3. use direct address calculation (lower of coordinate)
template
<
typename
SrcData
,
typename
DstData
,
typename
SrcDesc
,
typename
DstDesc
,
typename
SliceLengths
,
typename
DimAccessOrder
,
index_t
SrcVectorDim
,
index_t
SrcScalarPerVector
,
AddressSpace
SrcAddressSpace
,
AddressSpace
DstAddressSpace
,
index_t
SrcScalarStrideInVector
,
typename
std
::
enable_if
<
SrcDesc
::
IsKnownAtCompileTime
()
&&
DstDesc
::
IsKnownAtCompileTime
(),
bool
>
::
type
=
false
>
struct
ThreadwiseDynamicTensorSliceTransfer_v4
{
static
constexpr
index_t
nDim
=
SliceLengths
::
Size
();
using
Index
=
MultiIndex
<
nDim
>
;
using
SrcCoord
=
decltype
(
make_dynamic_tensor_coordinate
(
SrcDesc
{},
Index
{}));
using
SrcCoordIterator
=
decltype
(
make_dynamic_tensor_coordinate_iterator
(
SrcDesc
{},
Index
{}));
__device__
constexpr
ThreadwiseDynamicTensorSliceTransfer_v4
(
const
Index
&
src_ref_idx
)
:
src_ref_idx_
(
make_dynamic_tensor_coordinate
(
SrcDesc
{},
src_ref_idx
))
{
static_assert
(
SrcDesc
::
IsKnownAtCompileTime
&&
DstDesc
::
IsKnownAtCompileTime
(),
"wrong! SrcDesc need to known at compile-time"
);
}
template
<
typename
SrcOriginToRefDistance
,
typename
DstOriginToRefDistance
>
__device__
void
Run
(
const
SrcDesc
&
const
SrcOriginToRefDistance
&
const
SrcData
*
p_src
,
const
DstDesc
&
,
const
DstOriginToRefDistance
&
DstData
*
p_dst
)
{
static_ford
<
decltype
(
ordered_access_lengths
)
>
{}([
&
](
auto
ordered_access_idx
)
{
// position in slice window
constexpr
auto
data_to_origin_dist_idx
=
container_reorder_given_old2new
(
ordered_access_idx
,
dim_access_order
)
*
src_scalar_per_access
;
// src coordinate
constexpr
auto
src_data_to_ref_dist_idx
=
SrcOriginToRefDistance
{}
+
data_to_origin_dist_idx
;
constexpr
auto
src_data_to_ref_dist_coord_iterator
=
make_dynamic_tensor_coordinate_iterator
(
SrcDesc
{},
src_data_to_ref_dist
);
auto
src_data_coord
=
src_ref_coord_
;
move_dynamic_tensor_coordinate
(
src_data_coord
,
src_data_coord
,
src_data_to_ref_coord_iterator
);
// copy data from src into buffer
StaticBuffer
<
SrcData
,
SrcScalarPerVector
>
src_buf
;
using
src_vector_t
=
typename
vector_type_maker
<
SrcData
,
SrcScalarPerVector
>::
type
::
type
;
const
bool
is_src_valid
=
coordinate_has_valid_offset_assuming_visible_index_is_valid
(
src_desc
,
src_slice_origin_coord_
);
src_buf
.
template
AsType
<
src_vector_t
>()(
Number
<
0
>
{})
=
is_src_valid
?
*
reinterpret_cast
<
const
src_vector_t
*>
(
&
p_src
[
src_slice_origin_coord_
.
GetOffset
()])
:
src_vector_t
{
0
};
// copy data from buffer into dst
static_for
<
0
,
SrcScalarPerVector
,
1
>
{}([
&
](
auto
i
)
{
constexpr
auto
src_scalar_step_in_vector
=
generate_sequence
(
detail
::
lambda_scalar_step_in_vector
<
SrcVectorDim
>
{},
Number
<
nDim
>
{});
constexpr
index_t
dst_offset
=
dst_desc
.
CalculateOffset
(
to_multi_index
(
DstOriginToRefDistance
{})
+
data_to_origin_dist_idx
+
i
*
src_scalar_step_in_vector
);
p_dst
[
Number
<
dst_offset
>
{}]
=
src_buf
.
template
AsType
<
SrcData
>()[
i
];
});
});
}
private:
SrcCoord
src_ref_idx_
;
};
}
// namespace ck
#endif
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment