Commit 4769425e authored by Chao Liu's avatar Chao Liu
Browse files

Merge remote-tracking branch 'origin/develop' into gelu

parents b548c0be ba58a93f
#pragma once
#include "cluster_descriptor.hpp"
#include "data_type.hpp"
#include "element_wise_operation.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
namespace ck {
template <typename GridwiseBinEltwise,
typename ADataType,
typename BDataType,
typename CDataType,
typename GridDesc_M0,
typename ElementwiseFunctor>
__global__ void kernel_binary_elementwise_1d(const ADataType* __restrict__ p_a_global,
const BDataType* __restrict__ p_b_global,
CDataType* __restrict__ p_c_global,
const GridDesc_M0 a_grid_desc_m0,
const GridDesc_M0 b_grid_desc_m0,
const GridDesc_M0 c_grid_desc_m0,
const ElementwiseFunctor functor)
{
GridwiseBinEltwise::Run(p_a_global,
p_b_global,
p_c_global,
a_grid_desc_m0,
b_grid_desc_m0,
c_grid_desc_m0,
functor);
}
template <typename ADataType,
typename BDataType,
typename CDataType,
typename ComputeDataType,
typename GridDesc_M0,
typename ElementwiseFunctor,
index_t ScalarPerVector>
struct GridwiseBinaryElementwise_1D
{
static constexpr auto I0 = Number<0>{};
static constexpr auto thread_desc_m0 =
make_naive_tensor_descriptor_packed(make_tuple(Number<ScalarPerVector>{}));
using PassThrough = tensor_operation::element_wise::PassThrough;
static __device__ auto CalculateElementwiseIndex()
{
const index_t global_thread_id = get_thread_global_1d_id();
return make_multi_index(global_thread_id * ScalarPerVector);
}
__device__ static void Run(const ADataType* __restrict__ p_a_global,
const BDataType* __restrict__ p_b_global,
CDataType* __restrict__ p_c_global,
const GridDesc_M0 a_grid_desc_m0,
const GridDesc_M0 b_grid_desc_m0,
const GridDesc_M0 c_grid_desc_m0,
const ElementwiseFunctor functor)
{
const auto a_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_global, a_grid_desc_m0.GetElementSpaceSize());
const auto b_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_global, b_grid_desc_m0.GetElementSpaceSize());
auto c_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_global, c_grid_desc_m0.GetElementSpaceSize());
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, ScalarPerVector, true> a_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, ScalarPerVector, true> b_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, ScalarPerVector, true> c_thread_buf;
const auto thread_store_global_offset = CalculateElementwiseIndex();
auto a_global_load =
ThreadwiseTensorSliceTransfer_v2<ADataType,
ComputeDataType,
GridDesc_M0,
decltype(thread_desc_m0),
Sequence<ScalarPerVector>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
ScalarPerVector,
1, // SrcScalarStrideInVector
false>{a_grid_desc_m0, thread_store_global_offset};
auto b_global_load =
ThreadwiseTensorSliceTransfer_v2<BDataType,
ComputeDataType,
GridDesc_M0,
decltype(thread_desc_m0),
Sequence<ScalarPerVector>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
ScalarPerVector,
1, // SrcScalarStrideInVector
false>{b_grid_desc_m0, thread_store_global_offset};
auto c_global_write =
ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
CDataType,
decltype(thread_desc_m0),
GridDesc_M0,
PassThrough,
Sequence<ScalarPerVector>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // DstVectorDim
ScalarPerVector,
InMemoryDataOperationEnum::Set,
1, // DstScalarStrideInVector
false>{
c_grid_desc_m0, thread_store_global_offset, PassThrough{}};
const index_t blockSize = get_block_size();
const index_t blockPerGrid = get_grid_size();
const auto m0 = c_grid_desc_m0.GetLength(I0);
const index_t loop_step = blockPerGrid * blockSize * ScalarPerVector;
const auto loop_step_index = make_multi_index(loop_step);
index_t num_iter = m0 / (loop_step);
do
{
// read and process ScalarPerVector elements
a_global_load.Run(
a_grid_desc_m0, a_global_buf, thread_desc_m0, make_tuple(I0), a_thread_buf);
b_global_load.Run(
b_grid_desc_m0, b_global_buf, thread_desc_m0, make_tuple(I0), b_thread_buf);
static_for<0, ScalarPerVector, 1>{}([&](auto m) {
constexpr auto offset = thread_desc_m0.CalculateOffset(make_tuple(m));
functor(c_thread_buf(Number<offset>{}),
a_thread_buf(Number<offset>{}),
b_thread_buf(Number<offset>{}));
});
c_global_write.Run(thread_desc_m0,
make_tuple(I0), // SrcSliceOriginIdx
c_thread_buf,
c_grid_desc_m0,
c_global_buf);
a_global_load.MoveSrcSliceWindow(a_grid_desc_m0, loop_step_index);
b_global_load.MoveSrcSliceWindow(b_grid_desc_m0, loop_step_index);
c_global_write.MoveDstSliceWindow(c_grid_desc_m0, loop_step_index);
} while(--num_iter);
}
};
} // namespace ck
......@@ -3,6 +3,7 @@
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "thread_group_tensor_slice_transfer_v4r1.hpp"
#include "thread_group_tensor_slice_transfer_v6r1.hpp"
......@@ -15,11 +16,12 @@ namespace ck {
template <typename GridwiseGemm,
typename FloatAB,
typename FloatC,
typename FloatD,
typename DPtrsGlobal,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename D1ElementwiseOperation,
typename DxsInElementwiseOperation,
typename DxsOutElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
......@@ -34,12 +36,12 @@ __global__ void
const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
FloatD* __restrict__ p_d0_grid,
FloatD* __restrict__ p_d1_grid,
DPtrsGlobal p_ds_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CElementwiseOperation c_element_op,
const D1ElementwiseOperation d1_element_op,
const DxsInElementwiseOperation dxs_in_element_op,
const DxsOutElementwiseOperation dxs_out_element_op,
const AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
......@@ -53,13 +55,13 @@ __global__ void
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
p_b_grid,
p_c_grid,
p_d0_grid,
p_d1_grid,
p_ds_grid,
p_shared,
a_element_op,
b_element_op,
c_element_op,
d1_element_op,
dxs_in_element_op,
dxs_out_element_op,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock,
......@@ -69,12 +71,12 @@ __global__ void
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_c_grid;
ignore = p_d0_grid;
ignore = p_d1_grid;
ignore = p_ds_grid;
ignore = a_element_op;
ignore = b_element_op;
ignore = c_element_op;
ignore = d1_element_op;
ignore = dxs_in_element_op;
ignore = dxs_out_element_op;
ignore = a_grid_desc_ak0_m_ak1;
ignore = b_grid_desc_bk0_n_bk1;
ignore = c_grid_desc_mblock_mperblock_nblock_nperblock;
......@@ -88,15 +90,15 @@ template <typename FloatAB,
typename FloatCShuffle,
typename FloatC,
typename FloatReduceAcc,
typename FloatD,
typename DPtrsGlobal,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename D0ReduceOperation,
typename D1ReduceOperation,
typename D1ElementwiseOperation,
typename DxsReduceOperation,
typename DxsInElementwiseOperation,
typename DxsOutElementwiseOperation,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
InMemoryDataOperationEnum DGlobalMemoryDataOperation,
typename DGlobalMemoryDataOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename CGridDesc_M_N,
......@@ -217,10 +219,12 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template <typename Block2CTileMap>
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_AK0_M_AK1& a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1,
const CGridDesc_M_N& c_grid_desc_m_n)
const CGridDesc_M_N& c_grid_desc_m_n,
const Block2CTileMap& block_2_ctile_map)
{
// static_assert(is_known_at_compile_time<remove_cv_t<decltype(AK1)>>::value &&
// is_known_at_compile_time<remove_cv_t<decltype(BK1)>>::value,
......@@ -248,21 +252,15 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
return false;
}
if(!block_2_ctile_map.CheckValidity(c_grid_desc_m_n))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr index_t
CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock);
return grid_size;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / KPerBlock;
......@@ -308,40 +306,8 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
__host__ __device__ static constexpr auto
MakeDefaultBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
// FIXME: remove
constexpr auto M01 = I1;
constexpr auto N01 = I1;
const auto M00 = M0 / M01;
const auto N00 = N0 / N01;
const auto m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1, 3>{}));
const auto cblockid_to_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3>{}),
make_tuple(Sequence<0>{}));
const auto cblockid_to_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor);
return cblockid_to_m0_n0_block_cluster_adaptor;
return BlockToCTileMap_M00_N00_M01_N01<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n);
}
using CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t<decltype(
......@@ -357,13 +323,13 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
__device__ static void Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
FloatD* __restrict__ p_d0_grid,
FloatD* __restrict__ p_d1_grid,
DPtrsGlobal p_ds_grid,
void* __restrict__ p_shared,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CElementwiseOperation& c_element_op,
const D1ElementwiseOperation& d1_element_op,
const DxsInElementwiseOperation& dxs_in_element_op,
const DxsOutElementwiseOperation& dxs_out_element_op,
const AGridDesc_AK0_M_AK1& a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock&
......@@ -377,15 +343,19 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
p_b_grid, b_grid_desc_bk0_n_bk1.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_grid, c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
auto d0_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_d0_grid, d_grid_desc_mblock_mperblock.GetElementSpaceSize());
auto d1_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_d1_grid, d_grid_desc_mblock_mperblock.GetElementSpaceSize());
// divide block work by [M, N]
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
make_tuple(c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I0),
c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I2))))
{
return;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
......@@ -527,7 +497,7 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
c_thread_buf,
num_k_block_main_loop);
// shuffle C and write out
// shuffle C + reduction + write out
{
static_assert(MXdlPerWave % CShuffleMXdlPerWavePerShuffle == 0 &&
NXdlPerWave % CShuffleNXdlPerWavePerShuffle == 0,
......@@ -666,6 +636,29 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
make_multi_index(block_work_idx[I0], 0, block_work_idx[I1], 0),
c_element_op};
// space filling curve for threadwise C in VGPR
constexpr auto sfc_c_vgpr =
SpaceFillingCurve<Sequence<MXdlPerWave, NXdlPerWave, 1, 1, M2, 1, M4, 1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
1,
1,
M2,
1,
M4,
1>>{};
// space filling curve for shuffled blockwise C in global mem
constexpr auto sfc_c_global =
SpaceFillingCurve<Sequence<1, MPerBlock, 1, NPerBlock>,
Sequence<0, 2, 1, 3>,
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>>{};
// TODO: this should be implemented as a blockwise reduction
// LDS c_reduce_block_desc_mperblock_nperblock
constexpr auto c_reduce_block_desc_mperblock_nperblock = transform_tensor_descriptor(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
......@@ -716,16 +709,9 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
constexpr auto d_reduce_thread_desc_mblock_mperblock =
make_naive_tensor_descriptor_packed(make_tuple(I1, Number<mreduce_per_thread>{}));
// TODO: this should be implemented as a blockwise reduction
auto c_reduce_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatReduceAcc>(
c_reduce_thread_desc_mperblock_nperblock.GetElementSpaceSize());
auto d0_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatReduceAcc>(
d_reduce_thread_desc_mperblock.GetElementSpaceSize());
auto d1_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatReduceAcc>(
d_reduce_thread_desc_mperblock.GetElementSpaceSize());
// reduce: threadwise copy from LDS to VGPR
constexpr auto c_reduce_thread_cluster_desc = make_cluster_descriptor(
CReduceThreadClusterLengths_MPerBlock_NPerBlock{}, Sequence<1, 0>{});
......@@ -749,47 +735,29 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
1,
true>{c_reduce_block_desc_mperblock_nperblock, c_reduce_thread_data_idx_begin};
// reduce: copy from VGPR to global
auto d0_reduce_thread_copy_vgpr_to_global = ThreadwiseTensorSliceTransfer_v1r3<
FloatReduceAcc,
FloatD,
decltype(d_reduce_thread_desc_mblock_mperblock),
decltype(d_grid_desc_mblock_mperblock),
ck::tensor_operation::element_wise::PassThrough,
Sequence<1, mreduce_per_thread>,
Sequence<0, 1>,
1,
CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock,
DGlobalMemoryDataOperation,
1,
false>{d_grid_desc_mblock_mperblock,
make_multi_index(block_work_idx[I0], // mblock
c_reduce_thread_data_idx_begin[I0]), // mperblock
ck::tensor_operation::element_wise::PassThrough{}};
auto d1_reduce_thread_copy_vgpr_to_global = d0_reduce_thread_copy_vgpr_to_global;
// space filling curve for threadwise C in VGPR
constexpr auto sfc_c_vgpr =
SpaceFillingCurve<Sequence<MXdlPerWave, NXdlPerWave, 1, 1, M2, 1, M4, 1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
1,
1,
M2,
1,
M4,
1>>{};
// space filling curve for shuffled blockwise C in global mem
constexpr auto sfc_c_global =
SpaceFillingCurve<Sequence<1, MPerBlock, 1, NPerBlock>,
Sequence<0, 2, 1, 3>,
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>>{};
auto dxs_reduce_thread_copy_vgpr_to_global = generate_tuple(
[&](auto I) {
auto p_d_grid = p_ds_grid[I];
auto d_out_element_op = dxs_out_element_op[I];
return ThreadwiseTensorSliceTransfer_v1r3<
FloatReduceAcc,
remove_pointer_t<decltype(p_d_grid)>,
decltype(d_reduce_thread_desc_mblock_mperblock),
decltype(d_grid_desc_mblock_mperblock),
decltype(d_out_element_op),
Sequence<1, mreduce_per_thread>,
Sequence<0, 1>,
1,
CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock,
DGlobalMemoryDataOperation::At(I),
1,
false>{d_grid_desc_mblock_mperblock,
make_multi_index(block_work_idx[I0], // mblock
c_reduce_thread_data_idx_begin[I0]), // mperblock
d_out_element_op};
},
Number<p_ds_grid.Size()>{});
constexpr index_t num_access = sfc_c_vgpr.GetNumOfAccess();
......@@ -816,64 +784,73 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
c_grid_desc_mblock_mperblock_nblock_nperblock,
c_grid_buf);
using ThreadwiseReduce_D0 =
ThreadwiseReduction<FloatReduceAcc,
decltype(c_reduce_thread_desc_mperblock_nperblock),
decltype(d_reduce_thread_desc_mperblock),
D0ReduceOperation,
false>;
using ThreadwiseReduce_D1 =
ThreadwiseReduction<FloatReduceAcc,
decltype(c_reduce_thread_desc_mperblock_nperblock),
decltype(d_reduce_thread_desc_mperblock),
D1ReduceOperation,
false>;
const auto d0_zeroVal = D0ReduceOperation::GetReductionZeroVal();
const auto d1_zeroVal = D0ReduceOperation::GetReductionZeroVal();
static_for<0, mreduce_per_thread, 1>{}(
[&](auto I) { d0_thread_buf(I) = d0_zeroVal; });
static_for<0, mreduce_per_thread, 1>{}(
[&](auto I) { d1_thread_buf(I) = d1_zeroVal; });
// reduce
// TODO - extract following into reduction_blockwise
{
// copy from LDS to VGPR
c_reduce_thread_copy_lds_to_vgpr.Run(c_reduce_block_desc_mperblock_nperblock,
c_shuffle_block_buf,
c_reduce_thread_desc_mperblock_nperblock,
make_tuple(I0, I0),
c_reduce_thread_buf);
// reduce in VGPR
ThreadwiseReduce_D0::Reduce(c_reduce_thread_buf, d0_thread_buf);
static_for<0, p_ds_grid.Size(), 1>{}([&](auto In) {
auto& p_d_grid = p_ds_grid[In];
static_for<0, mreduce_per_thread, 1>{}([&](auto im) {
static_for<0, nreduce_per_thread, 1>{}([&](auto in) {
constexpr auto offset =
Number<c_reduce_thread_desc_mperblock_nperblock.CalculateOffset(
make_tuple(im, in))>{};
auto d_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_d_grid, d_grid_desc_mblock_mperblock.GetElementSpaceSize());
d1_element_op(c_reduce_thread_buf(offset), c_reduce_thread_buf(offset));
});
});
auto d_thread_buf =
make_static_buffer<AddressSpaceEnum::Vgpr, FloatReduceAcc>(
d_reduce_thread_desc_mperblock.GetElementSpaceSize());
auto& d_in_element_op = dxs_in_element_op[In];
auto& d_reduce_thread_copy_vgpr_to_global =
dxs_reduce_thread_copy_vgpr_to_global(In);
ThreadwiseReduce_D1::Reduce(c_reduce_thread_buf, d1_thread_buf);
using DReduceOperation = remove_cvref_t<decltype(DxsReduceOperation{}[In])>;
using ThreadwiseReduce =
ThreadwiseReduction<FloatReduceAcc,
decltype(c_reduce_thread_desc_mperblock_nperblock),
decltype(d_reduce_thread_desc_mperblock),
DReduceOperation,
false>;
// copy from VGPR to Global
d0_reduce_thread_copy_vgpr_to_global.Run(d_reduce_thread_desc_mblock_mperblock,
make_tuple(I0, I0),
d0_thread_buf,
d_grid_desc_mblock_mperblock,
d0_grid_buf);
// Global write Gemm shuffle + reduction
const auto d_zeroVal = DReduceOperation::GetReductionZeroVal();
d1_reduce_thread_copy_vgpr_to_global.Run(d_reduce_thread_desc_mblock_mperblock,
make_tuple(I0, I0),
d1_thread_buf,
d_grid_desc_mblock_mperblock,
d1_grid_buf);
static_for<0, mreduce_per_thread, 1>{}(
[&](auto I) { d_thread_buf(I) = d_zeroVal; });
// reduce in VGPR
static_for<0, mreduce_per_thread, 1>{}([&](auto im) {
static_for<0, nreduce_per_thread, 1>{}([&](auto in) {
constexpr auto offset =
Number<c_reduce_thread_desc_mperblock_nperblock.CalculateOffset(
make_tuple(im, in))>{};
d_in_element_op(c_reduce_thread_buf(offset),
c_reduce_thread_buf(offset));
});
});
ThreadwiseReduce::Reduce(c_reduce_thread_buf, d_thread_buf);
// copy from VGPR to Global
d_reduce_thread_copy_vgpr_to_global.Run(
d_reduce_thread_desc_mblock_mperblock,
make_tuple(I0, I0),
d_thread_buf,
d_grid_desc_mblock_mperblock,
d_grid_buf);
if constexpr(access_id < num_access - 1)
{
constexpr auto c_global_step = sfc_c_global.GetForwardStep(access_id);
d_reduce_thread_copy_vgpr_to_global.MoveDstSliceWindow(
d_grid_desc_mblock_mperblock,
make_tuple(c_global_step[I0], c_global_step[I1]));
}
});
}
if constexpr(access_id < num_access - 1)
......@@ -883,18 +860,10 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
// move on C
c_shuffle_block_copy_lds_to_global.MoveDstSliceWindow(
c_grid_desc_mblock_mperblock_nblock_nperblock, c_global_step);
// move on D0
d0_reduce_thread_copy_vgpr_to_global.MoveDstSliceWindow(
d_grid_desc_mblock_mperblock,
make_tuple(c_global_step[I0], c_global_step[I1]));
// move on D1
d1_reduce_thread_copy_vgpr_to_global.MoveDstSliceWindow(
d_grid_desc_mblock_mperblock,
make_tuple(c_global_step[I0], c_global_step[I1]));
}
});
// Reduction
}
}
};
......
......@@ -3,6 +3,7 @@
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "thread_group_tensor_slice_transfer_v4r1.hpp"
#include "thread_group_tensor_slice_transfer_v6r1.hpp"
......@@ -190,10 +191,12 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template <typename Block2CTileMap>
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_AK0_M_AK1& a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1,
const CGridDesc_M_N& c_grid_desc_m_n)
const CGridDesc_M_N& c_grid_desc_m_n,
const Block2CTileMap& block_2_ctile_map)
{
static_assert((MPerBlock % (MPerXdl * MXdlPerWave) == 0) &&
(NPerBlock % (NXdlPerWave * NPerXdl)) == 0,
......@@ -217,21 +220,15 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
return false;
}
if(!block_2_ctile_map.CheckValidity(c_grid_desc_m_n))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr index_t
CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock);
return grid_size;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / KPerBlock;
......@@ -262,40 +259,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
__host__ __device__ static constexpr auto
MakeDefaultBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
// FIXME: remove
constexpr auto M01 = I1;
constexpr auto N01 = I1;
const auto M00 = M0 / M01;
const auto N00 = N0 / N01;
const auto m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1, 3>{}));
const auto cblockid_to_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3>{}),
make_tuple(Sequence<0>{}));
const auto cblockid_to_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor);
return cblockid_to_m0_n0_block_cluster_adaptor;
return BlockToCTileMap_M00_N00_M01_N01<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n);
}
using CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t<decltype(
......@@ -329,6 +294,14 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
make_tuple(c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I0),
c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I2))))
{
return;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
......
#pragma once
#include "common_header.hpp"
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "thread_group_tensor_slice_transfer_v4r1.hpp"
#include "thread_group_tensor_slice_transfer_v6r1.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "gridwise_gemm_pipeline_v1.hpp"
namespace ck {
// Implementation of "Merge" transformation primitive that uses division and mod. It is supposed to
// be used for low_lengths that are known at compile time and are power of 2, otherwise performance
// will be very bad
template <typename LowLengths>
struct Merge_v4_no_carry
{
static constexpr index_t NDimLow = LowLengths::Size();
using LowerIndex = MultiIndex<NDimLow>;
using UpperIndex = MultiIndex<1>;
using LowLengthsScan =
decltype(container_reverse_exclusive_scan(LowLengths{}, math::multiplies{}, Number<1>{}));
using UpLengths =
decltype(make_tuple(container_reduce(LowLengths{}, math::multiplies{}, Number<1>{})));
LowLengths low_lengths_;
LowLengthsScan low_lengths_scan_;
UpLengths up_lengths_;
__host__ __device__ constexpr Merge_v4_no_carry() = default;
__host__ __device__ constexpr Merge_v4_no_carry(const LowLengths& low_lengths)
: low_lengths_{low_lengths},
low_lengths_scan_{
container_reverse_exclusive_scan(low_lengths, math::multiplies{}, Number<1>{})},
up_lengths_{make_tuple(container_reduce(low_lengths, math::multiplies{}, Number<1>{}))}
{
static_assert(LowerIndex::Size() == NDimLow, "wrong!");
}
__host__ __device__ static constexpr index_t GetNumOfLowerDimension() { return NDimLow; }
__host__ __device__ static constexpr index_t GetNumOfUpperDimension() { return 1; }
__host__ __device__ constexpr const auto& GetUpperLengths() const { return up_lengths_; }
template <typename LowIdx, typename UpIdx>
__host__ __device__ constexpr void CalculateLowerIndex(LowIdx& idx_low,
const UpIdx& idx_up) const
{
static_assert(LowIdx::Size() == NDimLow && UpIdx::Size() == 1,
"wrong! inconsistent # of dimension");
index_t tmp = idx_up[Number<0>{}];
// division and mod
static_for<0, NDimLow - 1, 1>{}([&](auto i) {
idx_low(i) = tmp / this->low_lengths_scan_[i];
tmp %= this->low_lengths_scan_[i];
});
idx_low(Number<NDimLow - 1>{}) = tmp;
}
template <typename LowIdxDiff,
typename UpIdxDiff,
typename LowIdx,
typename UpIdx,
index_t Hack>
__host__ __device__ void UpdateLowerIndex(LowIdxDiff& idx_diff_low,
const UpIdxDiff& idx_up_diff,
LowIdx& idx_low,
const UpIdx& idx_up_new,
Number<Hack>) const
{
static_assert(LowIdxDiff::Size() == NDimLow && UpIdxDiff::Size() == 1 &&
LowIdx::Size() == NDimLow && UpIdx::Size() == 1,
"wrong! inconsistent # of dimension");
constexpr auto I0 = Number<0>{};
constexpr auto INm1 = Number<NDimLow - 1>{};
index_t tmp = idx_up_new[I0];
idx_low(INm1) = tmp;
idx_diff_low(INm1) = idx_up_diff[I0];
}
__host__ __device__ static constexpr bool IsLinearTransform() { return false; }
__host__ __device__ static constexpr bool IsValidUpperIndexAlwaysMappedToValidLowerIndex()
{
return true;
}
__host__ __device__ static constexpr bool IsKnownAtCompileTime()
{
return is_known_at_compile_time<LowLengths>::value &&
is_known_at_compile_time<LowLengthsScan>::value &&
is_known_at_compile_time<UpLengths>::value;
}
template <typename UpIdx>
__host__ __device__ static constexpr bool
IsValidUpperIndexMappedToValidLowerIndex(const UpIdx& /* idx_up */)
{
return true;
}
__host__ __device__ void Print() const
{
printf("{");
printf("Merge_v3_direct_division_mod_wrw, ");
printf("low_lengths_ ");
print_multi_index(low_lengths_);
printf("low_lengths_scan_ ");
print_multi_index(low_lengths_scan_);
printf("up_lengths_ ");
print_multi_index(up_lengths_);
printf("}");
}
};
template <typename LowLengths>
__host__ __device__ constexpr auto make_merge_transform_v4_no_carry(const LowLengths& low_lengths)
{
return Merge_v4_no_carry<LowLengths>{low_lengths};
}
template <typename GridwiseGemm,
typename FloatAB,
typename FloatC,
typename AGridDesc_B_K0_M_K1,
typename BGridDesc_B_K0_N_K1,
typename CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename CBlockClusterAdaptor,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_xdlops_bwd_weight(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
const AGridDesc_B_K0_M_K1 a_b_k0_m_k1_grid_desc,
const BGridDesc_B_K0_N_K1 b_b_k0_n_k1_grid_desc,
const CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CElementwiseOperation c_element_op,
const CBlockClusterAdaptor c_block_cluster_adaptor)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
constexpr index_t shared_block_size =
GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(FloatAB);
__shared__ FloatAB p_shared_block[shared_block_size];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
p_b_grid,
p_c_grid,
p_shared_block,
a_b_k0_m_k1_grid_desc,
b_b_k0_n_k1_grid_desc,
c_grid_desc_mblock_mperblock_nblock_nperblock,
a_element_op,
b_element_op,
c_element_op,
c_block_cluster_adaptor);
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_c_grid;
ignore = a_b_k0_m_k1_grid_desc;
ignore = b_b_k0_n_k1_grid_desc;
ignore = c_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = a_element_op;
ignore = b_element_op;
ignore = c_element_op;
ignore = c_block_cluster_adaptor;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template <index_t BlockSize,
typename FloatAB,
typename FloatAcc,
typename FloatC,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
typename AGridDesc_B_K0_M_K1,
typename BGridDesc_B_K0_N_K1,
typename CMNGridDesc,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t K1Value,
index_t MRepeat,
index_t NRepeat,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_K1,
bool AThreadTransferSrcResetCoordinateAfterRun,
bool ABlockLdsExtraM,
index_t ABlockLdsM1PerBlock,
index_t ABlockLdsM0PerBlock,
index_t ABlockLdsM1Padding,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_K1,
bool BThreadTransferSrcResetCoordinateAfterRun,
bool BBlockLdsExtraN,
index_t BBlockLdsN1PerBlock,
index_t BBlockLdsN0PerBlock,
index_t BBlockLdsN1Padding,
index_t CShuffleMRepeatPerShuffle,
index_t CShuffleNRepeatPerShuffle,
index_t CBlockTransferScalarPerVector_NWaveNPerXDL,
typename CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
bool ABlockLdsExtraM1Wrw = false,
bool BBlockLdsExtraN1Wrw = false,
index_t NumGemmKPrefetchStage = 1>
struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
static constexpr auto I7 = Number<7>{};
// K1 should be Number<...>
static constexpr auto K1 = Number<K1Value>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
using GridwiseGemmPipe = GridwiseGemmPipeline_v1<NumGemmKPrefetchStage>;
// M0/M1/M1Padding
static constexpr auto M1PerBlock = Number<ABlockLdsM1PerBlock>{};
static constexpr auto M0PerBlock = Number<ABlockLdsM0PerBlock>{};
static constexpr auto M1Padding = Number<ABlockLdsM1Padding>{};
// N0/N1/N1Padding
static constexpr auto N1PerBlock = Number<BBlockLdsN1PerBlock>{};
static constexpr auto N0PerBlock = Number<BBlockLdsN0PerBlock>{};
static constexpr auto N1Padding = Number<BBlockLdsN1Padding>{};
__host__ __device__ static constexpr auto GetABlockDescriptor_K0PerBlock_MPerBlock_K1()
{
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_k0_m_k1 = [&]() {
if constexpr(ABlockLdsExtraM)
{
if constexpr(ABlockLdsExtraM1Wrw)
{
constexpr auto a_block_desc_k0_m0_m1_k1 = make_naive_tensor_descriptor(
make_tuple(
Number<K0PerBlock>{}, Number<M0PerBlock>{}, Number<M1PerBlock>{}, K1),
make_tuple(Number<M0PerBlock>{} * (Number<M1PerBlock>{} * K1 + M1Padding),
Number<M1PerBlock>{} * K1 + M1Padding,
K1,
I1));
constexpr auto a_block_desc_k0_m_k1_tmp = transform_tensor_descriptor(
a_block_desc_k0_m0_m1_k1,
make_tuple(make_pass_through_transform(Number<K0PerBlock>{}),
make_merge_transform_v3_division_mod(
make_tuple(Number<M0PerBlock>{}, Number<M1PerBlock>{})),
make_pass_through_transform(K1)),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
return a_block_desc_k0_m_k1_tmp;
}
else
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1),
make_tuple(Number<MPerBlock + 1>{} * K1, K1, I1));
}
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
}
}();
return a_block_desc_k0_m_k1;
}
__host__ __device__ static constexpr auto GetABlockDescriptor_Batch_K0PerBlock_MPerBlock_K1()
{
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_b_k0_m_k1 = [&]() {
if constexpr(ABlockLdsExtraM)
{
if constexpr(ABlockLdsExtraM1Wrw)
{
constexpr auto a_block_desc_b_k0_m0_m1_k1 = make_naive_tensor_descriptor(
make_tuple(Number<1>{},
Number<K0PerBlock>{},
Number<M0PerBlock>{},
Number<M1PerBlock>{},
K1),
make_tuple(Number<K0PerBlock>{} * Number<M0PerBlock>{} *
(Number<M1PerBlock>{} * K1 + M1Padding),
Number<M0PerBlock>{} * (Number<M1PerBlock>{} * K1 + M1Padding),
Number<M1PerBlock>{} * K1 + M1Padding,
K1,
I1));
constexpr auto a_block_desc_b_k0_m_k1_tmp = transform_tensor_descriptor(
a_block_desc_b_k0_m0_m1_k1,
make_tuple(make_pass_through_transform(Number<1>{}),
make_pass_through_transform(Number<K0PerBlock>{}),
make_merge_transform_v4_no_carry(
make_tuple(Number<M0PerBlock>{}, Number<M1PerBlock>{})),
make_pass_through_transform(K1)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
return a_block_desc_b_k0_m_k1_tmp;
}
else
{
return make_naive_tensor_descriptor(
make_tuple(Number<1>{}, Number<K0PerBlock>{}, Number<MPerBlock>{}, K1),
make_tuple(Number<K0PerBlock>{} * Number<MPerBlock + 1>{} * K1,
Number<MPerBlock + 1>{} * K1,
K1,
I1));
}
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<1>{}, Number<K0PerBlock>{}, Number<MPerBlock>{}, K1),
max_lds_align);
}
}();
return a_block_desc_b_k0_m_k1;
}
__host__ __device__ static constexpr auto GetBBlockDescriptor_K0PerBlock_NPerBlock_K1()
{
constexpr auto max_lds_align = K1;
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_k0_n_k1 = [&]() {
if constexpr(BBlockLdsExtraN)
{
if constexpr(BBlockLdsExtraN1Wrw)
{
constexpr auto b_block_desc_k0_n0_n1_k1 = make_naive_tensor_descriptor(
make_tuple(
Number<K0PerBlock>{}, Number<N0PerBlock>{}, Number<N1PerBlock>{}, K1),
make_tuple(Number<N0PerBlock>{} * (Number<N1PerBlock>{} * K1 + N1Padding),
Number<N1PerBlock>{} * K1 + N1Padding,
K1,
I1));
constexpr auto b_block_desc_k0_n_k1_tmp = transform_tensor_descriptor(
b_block_desc_k0_n0_n1_k1,
make_tuple(make_pass_through_transform(Number<K0PerBlock>{}),
make_merge_transform_v3_division_mod(
make_tuple(Number<N0PerBlock>{}, Number<N1PerBlock>{})),
make_pass_through_transform(K1)),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
return b_block_desc_k0_n_k1_tmp;
}
else
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1),
make_tuple(Number<NPerBlock + 1>{} * K1, K1, I1));
}
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
}
}();
return b_block_desc_k0_n_k1;
}
__host__ __device__ static constexpr auto GetBBlockDescriptor_Batch_K0PerBlock_NPerBlock_K1()
{
constexpr auto max_lds_align = K1;
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_b_k0_n_k1 = [&]() {
if constexpr(BBlockLdsExtraN)
{
if constexpr(BBlockLdsExtraN1Wrw)
{
constexpr auto b_block_desc_b_k0_n0_n1_k1 = make_naive_tensor_descriptor(
make_tuple(Number<1>{},
Number<K0PerBlock>{},
Number<N0PerBlock>{},
Number<N1PerBlock>{},
K1),
make_tuple(Number<K0PerBlock>{} * Number<N0PerBlock>{} *
(Number<N1PerBlock>{} * K1 + N1Padding),
Number<N0PerBlock>{} * (Number<N1PerBlock>{} * K1 + N1Padding),
Number<N1PerBlock>{} * K1 + N1Padding,
K1,
I1));
constexpr auto b_block_desc_b_k0_n_k1_tmp = transform_tensor_descriptor(
b_block_desc_b_k0_n0_n1_k1,
make_tuple(make_pass_through_transform(Number<1>{}),
make_pass_through_transform(Number<K0PerBlock>{}),
make_merge_transform_v4_no_carry(
make_tuple(Number<N0PerBlock>{}, Number<N1PerBlock>{})),
make_pass_through_transform(K1)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
return b_block_desc_b_k0_n_k1_tmp;
}
else
{
return make_naive_tensor_descriptor(
make_tuple(Number<1>{}, Number<K0PerBlock>{}, Number<NPerBlock>{}, K1),
make_tuple(Number<K0PerBlock>{} * Number<NPerBlock + 1>{} * K1,
Number<NPerBlock + 1>{} * K1,
K1,
I1));
}
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<1>{}, Number<K0PerBlock>{}, Number<NPerBlock>{}, K1),
max_lds_align);
}
}();
return b_block_desc_b_k0_n_k1;
}
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_b_k0_m_k1_block_desc = GetABlockDescriptor_Batch_K0PerBlock_MPerBlock_K1();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_b_k0_n_k1_block_desc = GetBBlockDescriptor_Batch_K0PerBlock_NPerBlock_K1();
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size = math::integer_least_multiple(
a_b_k0_m_k1_block_desc.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size = math::integer_least_multiple(
b_b_k0_n_k1_block_desc.GetElementSpaceSize(), max_lds_align);
constexpr auto c_block_size =
GetCBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock().GetElementSpaceSize();
return math::max((a_block_space_size + b_block_space_size) * sizeof(FloatAB),
c_block_size * sizeof(FloatC));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template <typename Block2CTileMap>
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_B_K0_M_K1& a_b_k0_m_k1_grid_desc,
const BGridDesc_B_K0_N_K1& b_b_k0_n_k1_grid_desc,
const CMNGridDesc& c_m_n_grid_desc,
const Block2CTileMap& block_2_ctile_map)
{
static_assert(is_known_at_compile_time<remove_cv_t<decltype(K1)>>::value,
"wrong! K1 need to be known at compile-time");
static_assert((MPerBlock % (MPerXDL * MRepeat) == 0) &&
(NPerBlock % (NRepeat * NPerXDL)) == 0,
"Invalid tuning param!");
const auto M = a_b_k0_m_k1_grid_desc.GetLength(I2);
const auto N = b_b_k0_n_k1_grid_desc.GetLength(I2);
const auto K0 = a_b_k0_m_k1_grid_desc.GetLength(I1);
const auto KBatch = a_b_k0_m_k1_grid_desc.GetLength(I0);
// check gridwise gemm pipeline
const auto num_k_loop = K0 / K0PerBlock;
if(!GridwiseGemmPipe::IsSupported(num_k_loop))
{
return false;
}
if(!(M == c_m_n_grid_desc.GetLength(I0) && N == c_m_n_grid_desc.GetLength(I1) &&
K0 == b_b_k0_n_k1_grid_desc.GetLength(I1) &&
K1 == a_b_k0_m_k1_grid_desc.GetLength(I3) &&
K1 == b_b_k0_n_k1_grid_desc.GetLength(I3) &&
KBatch == b_b_k0_n_k1_grid_desc.GetLength(I0)))
return false;
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K0 % K0PerBlock == 0))
return false;
if(!block_2_ctile_map.CheckValidity(c_m_n_grid_desc))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr bool CalculateHasMainK0BlockLoop(index_t K0)
{
// const bool has_main_k0_block_loop = K0 > K0PerBlock;
const index_t num_loop = K0 / K0PerBlock;
return GridwiseGemmPipe::CalculateHasMainLoop(num_loop);
// return has_main_k0_block_loop;
}
__host__ __device__ static constexpr auto
MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(const CMNGridDesc& c_m_n_grid_desc)
{
const auto M = c_m_n_grid_desc.GetLength(I0);
const auto N = c_m_n_grid_desc.GetLength(I1);
const auto MBlock = M / MPerBlock;
const auto NBlock = N / NPerBlock;
return transform_tensor_descriptor(
c_m_n_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(MBlock, Number<MPerBlock>{})),
make_unmerge_transform(make_tuple(NBlock, Number<NPerBlock>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2, 3>{}));
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto MakeCBlockClusterAdaptor(
const CMNGridDesc& c_m_n_grid_desc, index_t M01, index_t N01, index_t KBatch)
{
return BlockToCTileMap_KSplit_M00_N00_M01_N01<MPerBlock, NPerBlock, CMNGridDesc>(
c_m_n_grid_desc, M01, N01, KBatch);
}
__host__ __device__ static constexpr auto
GetCBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock()
{
constexpr index_t MWave = MPerBlock / (MRepeat * MPerXDL);
constexpr index_t NWave = NPerBlock / (NRepeat * NPerXDL);
return make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<CShuffleMRepeatPerShuffle * MWave * MPerXDL>{},
I1,
Number<CShuffleNRepeatPerShuffle * NWave * NPerXDL>{}));
}
using CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
decltype(MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(CMNGridDesc{}));
using CBlockClusterAdaptor = decltype(MakeCBlockClusterAdaptor(CMNGridDesc{}, 1, 1, 1));
template <bool HasMainKBlockLoop>
__device__ static void Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
FloatAB* __restrict__ p_shared_block,
const AGridDesc_B_K0_M_K1& a_b_k0_m_k1_grid_desc,
const BGridDesc_B_K0_N_K1& b_b_k0_n_k1_grid_desc,
const CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock&
c_grid_desc_mblock_mperblock_nblock_nperblock,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CElementwiseOperation& c_element_op,
const CBlockClusterAdaptor& c_block_cluster_adaptor)
{
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_b_k0_m_k1_grid_desc.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_b_k0_n_k1_grid_desc.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_grid, c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
const auto K0 = a_b_k0_m_k1_grid_desc.GetLength(I1);
// divide block work by [M, N]
const auto block_work_idx =
c_block_cluster_adaptor.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
const index_t k_batch_id = block_work_idx[I0];
if(!c_block_cluster_adaptor.ValidCTileIndex(
make_tuple(block_work_idx[I1], block_work_idx[I2]),
make_tuple(c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I0),
c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I2))))
{
return;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I1] * MPerBlock);
const index_t n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I2] * NPerBlock);
// lds max alignment
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_k0_m_k1_block_desc = GetABlockDescriptor_K0PerBlock_MPerBlock_K1();
constexpr auto a_b_k0_m_k1_block_desc = GetABlockDescriptor_Batch_K0PerBlock_MPerBlock_K1();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_k0_n_k1_block_desc = GetBBlockDescriptor_K0PerBlock_NPerBlock_K1();
constexpr auto b_b_k0_n_k1_block_desc = GetBBlockDescriptor_Batch_K0PerBlock_NPerBlock_K1();
// A matrix blockwise copy
auto a_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
AElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<1, K0PerBlock, MPerBlock, K1>,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
decltype(a_b_k0_m_k1_grid_desc),
decltype(a_b_k0_m_k1_block_desc),
ABlockTransferSrcAccessOrder,
Sequence<0, 2, 1, 3>,
ABlockTransferSrcVectorDim,
3,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
1,
1,
AThreadTransferSrcResetCoordinateAfterRun,
true>(
a_b_k0_m_k1_grid_desc,
make_multi_index(k_batch_id, 0, m_block_data_idx_on_grid, 0),
a_element_op,
a_b_k0_m_k1_block_desc,
make_multi_index(0, 0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// B matrix blockwise copy
auto b_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<1, K0PerBlock, NPerBlock, K1>,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
decltype(b_b_k0_n_k1_grid_desc),
decltype(b_b_k0_n_k1_block_desc),
BBlockTransferSrcAccessOrder,
Sequence<0, 2, 1, 3>,
BBlockTransferSrcVectorDim,
3,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true>(
b_b_k0_n_k1_grid_desc,
make_multi_index(k_batch_id, 0, n_block_data_idx_on_grid, 0),
b_element_op,
b_b_k0_n_k1_block_desc,
make_multi_index(0, 0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[K0PerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr index_t KPack =
math::max(K1, MfmaSelector<FloatAB, MPerXDL, NPerXDL>::selected_mfma.k_per_blk);
auto blockwise_gemm =
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
FloatAB,
FloatAcc,
decltype(a_k0_m_k1_block_desc),
decltype(b_k0_n_k1_block_desc),
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>{};
auto c_thread_buf = blockwise_gemm.GetCThreadBuffer();
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size =
math::integer_least_multiple(a_k0_m_k1_block_desc.GetElementSpaceSize(), max_lds_align);
FloatAB* p_a_block = p_shared_block;
FloatAB* p_b_block = p_shared_block + a_block_space_size;
constexpr auto a_block_slice_copy_step = make_multi_index(0, K0PerBlock, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(0, K0PerBlock, 0, 0);
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
p_a_block, a_k0_m_k1_block_desc.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
p_b_block, b_k0_n_k1_block_desc.GetElementSpaceSize());
// gridwise GEMM pipeline
const index_t K0BlockMainLoop = __builtin_amdgcn_readfirstlane(K0 / K0PerBlock);
GridwiseGemmPipe::template Run<HasMainKBlockLoop>(a_b_k0_m_k1_grid_desc,
a_b_k0_m_k1_block_desc,
a_blockwise_copy,
a_grid_buf,
a_block_buf,
a_block_slice_copy_step,
b_b_k0_n_k1_grid_desc,
b_b_k0_n_k1_block_desc,
b_blockwise_copy,
b_grid_buf,
b_block_buf,
b_block_slice_copy_step,
blockwise_gemm,
c_thread_buf,
K0BlockMainLoop);
// output: register to global memory
{
constexpr index_t MWave = MPerBlock / (MRepeat * MPerXDL);
constexpr index_t NWave = NPerBlock / (NRepeat * NPerXDL);
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc =
blockwise_gemm.GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc =
blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
constexpr auto M0 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I0);
constexpr auto N0 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I1);
constexpr auto M1 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I2);
constexpr auto N1 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I3);
constexpr auto M2 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I4);
constexpr auto M3 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I5);
constexpr auto M4 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I6);
constexpr auto N2 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I7);
constexpr auto c_block_desc_mblock_mperblock_nblock_nperblock =
GetCBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
auto c_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<FloatC*>(p_shared_block),
c_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
static_assert(M1 == MWave, "");
static_assert(N1 == NWave, "");
static_assert(M2 * M3 * M4 == MPerXDL, "");
static_assert(N2 == NPerXDL, "");
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2 = transform_tensor_descriptor(
c_block_desc_mblock_mperblock_nblock_nperblock,
make_tuple(
make_freeze_transform(I0), // freeze mblock
make_unmerge_transform(make_tuple(CShuffleMRepeatPerShuffle,
M1,
M2,
M3,
M4)), // M1 = MWave, M2 * M3 * M4 = MPerXDL
make_freeze_transform(I0), // freeze nblock
make_unmerge_transform(make_tuple(CShuffleNRepeatPerShuffle,
N1,
N2))), // M1 = MWave, M2 * M3 * M4 = MPerXDL
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(
Sequence<>{}, Sequence<0, 2, 4, 5, 6>{}, Sequence<>{}, Sequence<1, 3, 7>{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const index_t m_thread_data_on_block = c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_block = c_thread_mtx_on_block[I1];
const auto m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M0, M1, M2, M3, M4))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto m_thread_data_on_block_idx =
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor.CalculateBottomIndex(
make_multi_index(m_thread_data_on_block));
const auto n_thread_data_on_block_to_n0_n1_n2_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(N0, N1, N2))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
const auto n_thread_data_on_block_idx =
n_thread_data_on_block_to_n0_n1_n2_adaptor.CalculateBottomIndex(
make_multi_index(n_thread_data_on_block));
// VGPR to LDS
auto c_thread_copy_vgpr_to_lds =
ThreadwiseTensorSliceTransfer_v1r3<FloatAcc,
FloatC,
decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc),
decltype(c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2),
ck::tensor_operation::element_wise::PassThrough,
Sequence<CShuffleMRepeatPerShuffle,
CShuffleNRepeatPerShuffle,
I1,
I1,
M2,
I1,
M4,
I1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
7,
1,
InMemoryDataOperationEnum::Set,
1,
true>{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
make_multi_index(0,
0,
m_thread_data_on_block_idx[I1],
n_thread_data_on_block_idx[I1],
m_thread_data_on_block_idx[I2],
m_thread_data_on_block_idx[I3],
m_thread_data_on_block_idx[I4],
n_thread_data_on_block_idx[I2]),
ck::tensor_operation::element_wise::PassThrough{}};
// LDS to global
auto c_block_copy_lds_to_global = ThreadGroupTensorSliceTransfer_v6r1<
ThisThreadBlock, // index_t BlockSize,
CElementwiseOperation, // ElementwiseOperation,
CGlobalMemoryDataOperation, // DstInMemOp,
Sequence<1,
CShuffleMRepeatPerShuffle * MWave * MPerXDL,
1,
CShuffleNRepeatPerShuffle * NWave * NPerXDL>, // BlockSliceLengths,
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
Sequence<0, 1, 2, 3>, // typename ThreadClusterArrangeOrder,
FloatC, // typename SrcData,
FloatC, // typename DstData,
decltype(c_block_desc_mblock_mperblock_nblock_nperblock),
decltype(c_grid_desc_mblock_mperblock_nblock_nperblock),
Sequence<0, 1, 2, 3>, // typename DimAccessOrder,
3, // index_t VectorDim,
CBlockTransferScalarPerVector_NWaveNPerXDL, // index_t ScalarPerVector,
true, // bool ThreadTransferSrcResetCoordinateAfterRun,
false> // bool ThreadTransferDstResetCoordinateAfterRun
{c_block_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(0, 0, 0, 0),
c_grid_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(block_work_idx[I1], 0, block_work_idx[I2], 0),
c_element_op};
constexpr auto mxdlperwave_forward_step =
make_multi_index(0, CShuffleMRepeatPerShuffle * MWave * MPerXDL, 0, 0);
constexpr auto nxdlperwave_forward_step =
make_multi_index(0, 0, 0, CShuffleNRepeatPerShuffle * NWave * NPerXDL);
constexpr auto nxdlperwave_backward_step =
make_multi_index(0, 0, 0, -CShuffleNRepeatPerShuffle * NWave * NPerXDL);
static_for<0, MRepeat, CShuffleMRepeatPerShuffle>{}([&](auto mxdlperwave_iter) {
constexpr auto mxdlperwave = mxdlperwave_iter;
static_for<0, NRepeat, CShuffleNRepeatPerShuffle>{}([&](auto nxdlperwave_iter) {
constexpr bool nxdlperwave_forward_sweep =
(mxdlperwave % (2 * CShuffleMRepeatPerShuffle) == 0);
constexpr index_t nxdlperwave_value =
nxdlperwave_forward_sweep
? nxdlperwave_iter
: (NRepeat - nxdlperwave_iter - CShuffleNRepeatPerShuffle);
constexpr auto nxdlperwave = Number<nxdlperwave_value>{};
// make sure it's safe to do ds_write
block_sync_lds();
// VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(
c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc,
make_tuple(mxdlperwave, nxdlperwave, I0, I0, I0, I0, I0, I0),
c_thread_buf,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
c_block_buf);
// make sure it's safe to do ds_read
block_sync_lds();
// LDS to global
c_block_copy_lds_to_global.Run(c_block_desc_mblock_mperblock_nblock_nperblock,
c_block_buf,
c_grid_desc_mblock_mperblock_nblock_nperblock,
c_grid_buf);
// move on nxdlperwave dimension
if constexpr(nxdlperwave_forward_sweep &&
(nxdlperwave < NRepeat - CShuffleNRepeatPerShuffle))
{
c_block_copy_lds_to_global.MoveDstSliceWindow(
c_grid_desc_mblock_mperblock_nblock_nperblock,
nxdlperwave_forward_step);
}
else if constexpr((!nxdlperwave_forward_sweep) && (nxdlperwave > 0))
{
c_block_copy_lds_to_global.MoveDstSliceWindow(
c_grid_desc_mblock_mperblock_nblock_nperblock,
nxdlperwave_backward_step);
}
});
// move on mxdlperwave dimension
if constexpr(mxdlperwave < MRepeat - CShuffleMRepeatPerShuffle)
{
c_block_copy_lds_to_global.MoveDstSliceWindow(
c_grid_desc_mblock_mperblock_nblock_nperblock, mxdlperwave_forward_step);
}
});
}
}
}; // namespace ck
} // namespace ck
......@@ -3,6 +3,7 @@
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "thread_group_tensor_slice_transfer_v4r1.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
......@@ -185,12 +186,12 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template <typename Block2CTileMap>
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_K0_M_K1& a_grid_desc_k0_m_k1,
const BGridDesc_K0_N_K1& b_grid_desc_k0_n_k1,
const CGridDesc_M_N& c_grid_desc_m_n,
index_t M01,
index_t N01)
const Block2CTileMap& block_2_ctile_map)
{
static_assert(is_known_at_compile_time<remove_cv_t<decltype(K1)>>::value,
"wrong! K1 need to be known at compile-time");
......@@ -219,31 +220,15 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
return false;
}
// check M01, N01
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
if(!(M0 % M01 == 0 && N0 % N01 == 0))
if(!block_2_ctile_map.CheckValidity(c_grid_desc_m_n))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr index_t
CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock);
return grid_size;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / (K0PerBlock * K1);
......@@ -305,36 +290,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
__host__ __device__ static constexpr auto
MakeDefaultBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n, index_t M01, index_t N01)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
const auto M00 = M0 / M01;
const auto N00 = N0 / N01;
const auto m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1, 3>{}));
const auto cblockid_to_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3>{}),
make_tuple(Sequence<0>{}));
const auto cblockid_to_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor);
return cblockid_to_m0_n0_block_cluster_adaptor;
return BlockToCTileMap_M00_N00_M01_N01<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n, M01, N01);
}
using CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 =
......@@ -368,6 +325,14 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
make_tuple(c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2.GetLength(I0),
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2.GetLength(I1))))
{
return;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
......
......@@ -5,6 +5,7 @@
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "thread_group_tensor_slice_transfer_v4r1.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
......@@ -167,12 +168,12 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template <typename Block2CTileMap>
__host__ __device__ static constexpr bool
CheckValidity(const ABK0MK1GridDesc& a_b_k0_m_k1_grid_desc,
const BBK0NK1GridDesc& b_b_k0_n_k1_grid_desc,
const CMNGridDesc& c_m_n_grid_desc,
index_t M01,
index_t N01)
const Block2CTileMap& block_2_ctile_map)
{
static_assert(is_known_at_compile_time<remove_cv_t<decltype(K1)>>::value,
"wrong! K1 need to be known at compile-time");
......@@ -196,31 +197,15 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K0 % K0PerBlock == 0))
return false;
// check M01, N01
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
if(!(M0 % M01 == 0 && N0 % N01 == 0))
if(!block_2_ctile_map.CheckValidity(c_m_n_grid_desc))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr index_t
CalculateGridSize(const CMNGridDesc& c_m_n_grid_desc, index_t KBatch)
{
const auto M = c_m_n_grid_desc.GetLength(I0);
const auto N = c_m_n_grid_desc.GetLength(I1);
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock) * KBatch;
return grid_size;
}
__host__ __device__ static constexpr bool CalculateHasMainK0BlockLoop(index_t K0)
{
const bool has_main_k0_block_loop = K0 > K0PerBlock;
......@@ -282,37 +267,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4
__host__ __device__ static constexpr auto MakeCBlockClusterAdaptor(
const CMNGridDesc& c_m_n_grid_desc, index_t M01, index_t N01, index_t KBatch)
{
const auto M = c_m_n_grid_desc.GetLength(I0);
const auto N = c_m_n_grid_desc.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
const auto M00 = M0 / M01;
const auto N00 = N0 / N01;
const auto kbatch_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_pass_through_transform(KBatch),
make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 3>{}, Sequence<2, 4>{}));
const auto cblockid_to_kbatch_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(KBatch, M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto cblockid_to_kbatch_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(kbatch_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
cblockid_to_kbatch_m00_m01_n00_n01_block_cluster_adaptor);
return cblockid_to_kbatch_m0_n0_block_cluster_adaptor;
return BlockToCTileMap_KSplit_M00_N00_M01_N01<MPerBlock, NPerBlock, CMNGridDesc>(
c_m_n_grid_desc, M01, N01, KBatch);
}
using CM0N0M1N1M2M3M4N2GridDesc = decltype(MakeCM0N0M1N1M2M3M4N2GridDescriptor(CMNGridDesc{}));
......@@ -344,6 +300,14 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4
const auto block_work_idx =
c_block_cluster_adaptor.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!c_block_cluster_adaptor.ValidCTileIndex(
make_tuple(block_work_idx[I1], block_work_idx[I2]),
make_tuple(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc.GetLength(I0),
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc.GetLength(I1))))
{
return;
}
const index_t k_batch_id = block_work_idx[I0];
// HACK: this force m/n_block_data_idx_on_grid into SGPR
......
......@@ -5,6 +5,7 @@
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "thread_group_tensor_slice_transfer_v4r1.hpp"
#include "thread_group_tensor_slice_transfer_v6r1.hpp"
......@@ -174,12 +175,12 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template <typename Block2CTileMap>
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_B_K0_M_K1& a_b_k0_m_k1_grid_desc,
const BGridDesc_B_K0_N_K1& b_b_k0_n_k1_grid_desc,
const CMNGridDesc& c_m_n_grid_desc,
index_t M01,
index_t N01)
const Block2CTileMap& block_2_ctile_map)
{
static_assert(is_known_at_compile_time<remove_cv_t<decltype(K1)>>::value,
"wrong! K1 need to be known at compile-time");
......@@ -203,31 +204,15 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K0 % K0PerBlock == 0))
return false;
// check M01, N01
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
if(!(M0 % M01 == 0 && N0 % N01 == 0))
if(!block_2_ctile_map.CheckValidity(c_m_n_grid_desc))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr index_t
CalculateGridSize(const CMNGridDesc& c_m_n_grid_desc, index_t KBatch)
{
const auto M = c_m_n_grid_desc.GetLength(I0);
const auto N = c_m_n_grid_desc.GetLength(I1);
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock) * KBatch;
return grid_size;
}
__host__ __device__ static constexpr bool CalculateHasMainK0BlockLoop(index_t K0)
{
const bool has_main_k0_block_loop = K0 > K0PerBlock;
......@@ -256,37 +241,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
__host__ __device__ static constexpr auto MakeCBlockClusterAdaptor(
const CMNGridDesc& c_m_n_grid_desc, index_t M01, index_t N01, index_t KBatch)
{
const auto M = c_m_n_grid_desc.GetLength(I0);
const auto N = c_m_n_grid_desc.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
const auto M00 = M0 / M01;
const auto N00 = N0 / N01;
const auto kbatch_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_pass_through_transform(KBatch),
make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 3>{}, Sequence<2, 4>{}));
const auto c_blockid_to_kbatch_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(KBatch, M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto c_blockid_to_kbatch_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(kbatch_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
c_blockid_to_kbatch_m00_m01_n00_n01_block_cluster_adaptor);
return c_blockid_to_kbatch_m0_n0_block_cluster_adaptor;
return BlockToCTileMap_KSplit_M00_N00_M01_N01<MPerBlock, NPerBlock, CMNGridDesc>(
c_m_n_grid_desc, M01, N01, KBatch);
}
__host__ __device__ static constexpr auto
......@@ -333,6 +289,14 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
const auto block_work_idx =
c_block_cluster_adaptor.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!c_block_cluster_adaptor.ValidCTileIndex(
make_tuple(block_work_idx[I1], block_work_idx[I2]),
make_tuple(c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I0),
c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I2))))
{
return;
}
const index_t k_batch_id = block_work_idx[I0];
// HACK: this force m/n_block_data_idx_on_grid into SGPR
......
......@@ -3,6 +3,7 @@
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "thread_group_tensor_slice_transfer_v4r1.hpp"
#include "thread_group_tensor_slice_transfer_v6r1.hpp"
......@@ -223,12 +224,12 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template <typename Block2CTileMap>
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_AK0_M_AK1& a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1,
const CGridDesc_M_N& c_grid_desc_m_n,
index_t M01,
index_t N01)
const Block2CTileMap& block_2_ctile_map)
{
// static_assert(is_known_at_compile_time<remove_cv_t<decltype(AK1)>>::value &&
// is_known_at_compile_time<remove_cv_t<decltype(BK1)>>::value,
......@@ -256,31 +257,15 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1
return false;
}
// check M01, N01
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
if(!(M0 % M01 == 0 && N0 % N01 == 0))
if(!block_2_ctile_map.CheckValidity(c_grid_desc_m_n))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr index_t
CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock);
return grid_size;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / KPerBlock;
......@@ -318,36 +303,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1
__host__ __device__ static constexpr auto
MakeDefaultBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n, index_t M01, index_t N01)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
const auto M00 = M0 / M01;
const auto N00 = N0 / N01;
const auto m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1, 3>{}));
const auto cblockid_to_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3>{}),
make_tuple(Sequence<0>{}));
const auto cblockid_to_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor);
return cblockid_to_m0_n0_block_cluster_adaptor;
return BlockToCTileMap_M00_N00_M01_N01<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n, M01, N01);
}
using CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl =
remove_cvref_t<decltype(
......@@ -385,6 +342,17 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
make_tuple(
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl
.GetLength(I0),
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl
.GetLength(I3))))
{
return;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
......
......@@ -5,6 +5,7 @@
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "thread_group_tensor_slice_transfer_v4r1.hpp"
#include "thread_group_tensor_slice_transfer_v6r2.hpp"
......@@ -230,12 +231,12 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r2
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template <typename Block2CTileMap>
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_K0_M_K1& a_grid_desc_k0_m_k1,
const BGridDesc_K0_N_K1& b_grid_desc_k0_n_k1,
const CGridDesc_M_N& c_grid_desc_m_n,
index_t M01,
index_t N01)
const Block2CTileMap& block_2_ctile_map)
{
static_assert(is_known_at_compile_time<remove_cv_t<decltype(K1)>>::value,
"wrong! K1 need to be known at compile-time");
......@@ -264,31 +265,15 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r2
return false;
}
// check M01, N01
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
if(!(M0 % M01 == 0 && N0 % N01 == 0))
if(!block_2_ctile_map.CheckValidity(c_grid_desc_m_n))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr index_t
CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock);
return grid_size;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / (K0PerBlock * K1);
......@@ -327,37 +312,10 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r2
__host__ __device__ static constexpr auto
MakeDefaultBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n, index_t M01, index_t N01)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
const auto M00 = M0 / M01;
const auto N00 = N0 / N01;
const auto m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1, 3>{}));
const auto cblockid_to_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3>{}),
make_tuple(Sequence<0>{}));
const auto cblockid_to_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor);
return cblockid_to_m0_n0_block_cluster_adaptor;
return BlockToCTileMap_M00_N00_M01_N01<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n, M01, N01);
}
using CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl =
remove_cvref_t<decltype(
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
......@@ -408,6 +366,17 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r2
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
make_tuple(
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl
.GetLength(I0),
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl
.GetLength(I3))))
{
return;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
......
......@@ -3,6 +3,7 @@
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "thread_group_tensor_slice_transfer_v4r1.hpp"
#include "thread_group_tensor_slice_transfer_v6r3.hpp"
......@@ -237,12 +238,12 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template <typename Block2CTileMap>
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_K0_M_K1& a_grid_desc_k0_m_k1,
const BGridDesc_K0_N_K1& b_grid_desc_k0_n_k1,
const CGridDesc_M_N& c_grid_desc_m_n,
index_t M01,
index_t N01)
const Block2CTileMap& block_2_ctile_map)
{
static_assert(is_known_at_compile_time<remove_cv_t<decltype(K1)>>::value,
"wrong! K1 need to be known at compile-time");
......@@ -271,31 +272,15 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3
return false;
}
// check M01, N01
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
if(!(M0 % M01 == 0 && N0 % N01 == 0))
if(!block_2_ctile_map.CheckValidity(c_grid_desc_m_n))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr index_t
CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock);
return grid_size;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / (K0PerBlock * K1);
......@@ -334,36 +319,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3
__host__ __device__ static constexpr auto
MakeDefaultBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n, index_t M01, index_t N01)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
const auto M00 = M0 / M01;
const auto N00 = N0 / N01;
const auto m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1, 3>{}));
const auto cblockid_to_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3>{}),
make_tuple(Sequence<0>{}));
const auto cblockid_to_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor);
return cblockid_to_m0_n0_block_cluster_adaptor;
return BlockToCTileMap_M00_N00_M01_N01<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n, M01, N01);
}
using CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl =
remove_cvref_t<decltype(
......@@ -427,6 +384,17 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
make_tuple(
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl
.GetLength(I0),
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl
.GetLength(I3))))
{
return;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
......
......@@ -258,6 +258,14 @@ __device__ float llvm_amdgcn_raw_buffer_atomic_add_fp32(
index_t soffset,
index_t glc_slc) __asm("llvm.amdgcn.raw.buffer.atomic.fadd.f32");
// buffer atomic-add fp32
__device__ double
llvm_amdgcn_raw_buffer_atomic_max_fp64(double vdata,
int32x4_t rsrc, // dst_wave_buffer_resource
int voffset, // dst_thread_addr_offset
int soffset, // dst_wave_addr_offset
int glc_slc) __asm("llvm.amdgcn.raw.buffer.atomic.fmax.f64");
template <typename T, index_t N>
__device__ typename vector_type<T, N>::type amd_buffer_load_impl(int32x4_t src_wave_buffer_resource,
index_t src_thread_addr_offset,
......@@ -915,6 +923,71 @@ __device__ void amd_buffer_atomic_add_impl(const typename vector_type<T, N>::typ
}
}
template <typename T, index_t N>
__device__ void amd_buffer_atomic_max_impl(const typename vector_type<T, N>::type src_thread_data,
int32x4_t dst_wave_buffer_resource,
index_t dst_thread_addr_offset,
index_t dst_wave_addr_offset)
{
static_assert((is_same<T, double>::value && (N == 1 || N == 2 || N == 4)),
"wrong! not implemented");
if constexpr(is_same<T, double>::value)
{
if constexpr(N == 1)
{
llvm_amdgcn_raw_buffer_atomic_max_fp64(src_thread_data,
dst_wave_buffer_resource,
dst_thread_addr_offset,
dst_wave_addr_offset,
0);
}
else if constexpr(N == 2)
{
vector_type<double, 2> tmp{src_thread_data};
llvm_amdgcn_raw_buffer_atomic_max_fp64(tmp.AsType<double>()[Number<0>{}],
dst_wave_buffer_resource,
dst_thread_addr_offset,
dst_wave_addr_offset,
0);
llvm_amdgcn_raw_buffer_atomic_max_fp64(tmp.AsType<double>()[Number<1>{}],
dst_wave_buffer_resource,
dst_thread_addr_offset,
dst_wave_addr_offset + sizeof(double),
0);
}
else if constexpr(N == 4)
{
vector_type<double, 4> tmp{src_thread_data};
llvm_amdgcn_raw_buffer_atomic_max_fp64(tmp.AsType<double>()[Number<0>{}],
dst_wave_buffer_resource,
dst_thread_addr_offset,
dst_wave_addr_offset,
0);
llvm_amdgcn_raw_buffer_atomic_max_fp64(tmp.AsType<double>()[Number<1>{}],
dst_wave_buffer_resource,
dst_thread_addr_offset,
dst_wave_addr_offset + sizeof(double),
0);
llvm_amdgcn_raw_buffer_atomic_max_fp64(tmp.AsType<double>()[Number<2>{}],
dst_wave_buffer_resource,
dst_thread_addr_offset,
dst_wave_addr_offset + 2 * sizeof(double),
0);
llvm_amdgcn_raw_buffer_atomic_max_fp64(tmp.AsType<double>()[Number<3>{}],
dst_wave_buffer_resource,
dst_thread_addr_offset,
dst_wave_addr_offset + 3 * sizeof(double),
0);
}
}
}
// buffer_load requires:
// 1) p_src_wave must point to global memory space
// 2) p_src_wave must be a wavewise pointer.
......@@ -1046,4 +1119,39 @@ amd_buffer_atomic_add(const typename vector_type_maker<T, N>::type::type src_thr
#endif
}
// buffer_atomic_max requires:
// 1) p_dst_wave must point to global memory
// 2) p_dst_wave must be a wavewise pointer.
// It is user's responsibility to make sure that is true.
template <typename T, index_t N>
__device__ void
amd_buffer_atomic_max(const typename vector_type_maker<T, N>::type::type src_thread_data,
T* p_dst_wave,
const index_t dst_thread_element_offset,
const bool dst_thread_element_valid,
const index_t dst_element_space_size)
{
const int32x4_t dst_wave_buffer_resource =
make_wave_buffer_resource(p_dst_wave, dst_element_space_size);
index_t dst_thread_addr_offset = dst_thread_element_offset * sizeof(T);
using vector_t = typename vector_type_maker<T, N>::type::type;
using scalar_t = typename scalar_type<vector_t>::type;
constexpr index_t vector_size = scalar_type<vector_t>::vector_size;
#if CK_EXPERIMENTAL_USE_BUFFER_ATOMIC_MAX_OOB_CHECK_OFFSET_TRICK
uint32_t dst_addr_shift = dst_thread_element_valid ? 0 : 0x7fffffff;
amd_buffer_atomic_max_impl<scalar_t, vector_size>(
src_thread_data, dst_wave_buffer_resource, dst_addr_shift + dst_thread_addr_offset, 0);
#else
if(dst_thread_element_valid)
{
amd_buffer_atomic_max_impl<scalar_t, vector_size>(
src_thread_data, dst_wave_buffer_resource, dst_thread_addr_offset, 0);
}
#endif
}
} // namespace ck
......@@ -32,7 +32,7 @@
#include "debug.hpp"
#include "amd_buffer_addressing.hpp"
#include "generic_memory_space_atomic_add.hpp"
#include "generic_memory_space_atomic.hpp"
#include "get_id.hpp"
#include "synchronization.hpp"
#include "amd_address_space.hpp"
......
......@@ -3,7 +3,7 @@
#include "enable_if.hpp"
#include "c_style_pointer_cast.hpp"
#include "amd_buffer_addressing.hpp"
#include "generic_memory_space_atomic_add.hpp"
#include "generic_memory_space_atomic.hpp"
namespace ck {
......@@ -125,6 +125,10 @@ struct DynamicBuffer
{
this->template AtomicAdd<X>(i, is_valid_element, x);
}
else if constexpr(Op == InMemoryDataOperationEnum::AtomicMax)
{
this->template AtomicMax<X>(i, is_valid_element, x);
}
else if constexpr(Op == InMemoryDataOperationEnum::Add)
{
auto tmp = this->template Get<X>(i, is_valid_element);
......@@ -326,6 +330,42 @@ struct DynamicBuffer
}
}
template <typename X,
typename enable_if<is_same<typename scalar_type<remove_cvref_t<X>>::type,
typename scalar_type<remove_cvref_t<T>>::type>::value,
bool>::type = false>
__host__ __device__ void AtomicMax(index_t i, bool is_valid_element, const X& x)
{
// X contains multiple T
constexpr index_t scalar_per_t_vector = scalar_type<remove_cvref_t<T>>::vector_size;
constexpr index_t scalar_per_x_vector = scalar_type<remove_cvref_t<X>>::vector_size;
static_assert(scalar_per_x_vector % scalar_per_t_vector == 0,
"wrong! X should contain multiple T");
static_assert(GetAddressSpace() == AddressSpaceEnum::Global, "only support global mem");
#if CK_USE_AMD_BUFFER_ATOMIC_MAX_FLOAT64
using scalar_t = typename scalar_type<remove_cvref_t<T>>::type;
bool constexpr use_amd_buffer_addressing = is_same_v<remove_cvref_t<scalar_t>, double>;
#else
bool constexpr use_amd_buffer_addressing = false;
#endif
if constexpr(use_amd_buffer_addressing)
{
constexpr index_t t_per_x = scalar_per_x_vector / scalar_per_t_vector;
amd_buffer_atomic_max<remove_cvref_t<T>, t_per_x>(
x, p_data_, i, is_valid_element, element_space_size_);
}
else if(is_valid_element)
{
atomic_max<X>(c_style_pointer_cast<X*>(&p_data_[i]), x);
}
}
__host__ __device__ static constexpr bool IsStaticBuffer() { return false; }
__host__ __device__ static constexpr bool IsDynamicBuffer() { return true; }
......
......@@ -3,6 +3,10 @@
namespace ck {
// Caution: DO NOT REMOVE
// intentionally have only declaration but no definition to cause compilation failure when trying to
// instantiate this template. The purpose is to make the implementation of atomic_add explicit for
// each datatype.
template <typename X>
__device__ X atomic_add(X* p_dst, const X& x);
......@@ -41,4 +45,53 @@ __device__ float2_t atomic_add<float2_t>(float2_t* p_dst, const float2_t& x)
return vy.template AsType<float2_t>()[I0];
}
// Caution: DO NOT REMOVE
// intentionally have only declaration but no definition to cause compilation failure when trying to
// instantiate this template. The purpose is to make the implementation of atomic_max explicit for
// each datatype.
template <typename X>
__device__ X atomic_max(X* p_dst, const X& x);
template <>
__device__ int32_t atomic_max<int32_t>(int32_t* p_dst, const int32_t& x)
{
return atomicMax(p_dst, x);
}
template <>
__device__ uint32_t atomic_max<uint32_t>(uint32_t* p_dst, const uint32_t& x)
{
return atomicMax(p_dst, x);
}
template <>
__device__ float atomic_max<float>(float* p_dst, const float& x)
{
return atomicMax(p_dst, x);
}
template <>
__device__ double atomic_max<double>(double* p_dst, const double& x)
{
return atomicMax(p_dst, x);
}
template <>
__device__ float2_t atomic_max<float2_t>(float2_t* p_dst, const float2_t& x)
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
const vector_type<float, 2> vx{x};
vector_type<float, 2> vy{0};
vy.template AsType<float>()(I0) =
atomicMax(c_style_pointer_cast<float*>(p_dst), vx.template AsType<float>()[I0]);
vy.template AsType<float>()(I1) =
atomicMax(c_style_pointer_cast<float*>(p_dst) + 1, vx.template AsType<float>()[I1]);
return vy.template AsType<float2_t>()[I0];
}
} // namespace ck
......@@ -11,10 +11,14 @@ __host__ __device__ constexpr index_t get_warp_size()
__device__ index_t get_thread_local_1d_id() { return threadIdx.x; }
__device__ index_t get_thread_global_1d_id() { return blockIdx.x * blockDim.x + threadIdx.x; }
__device__ index_t get_warp_local_1d_id() { return threadIdx.x / get_warp_size(); }
__device__ index_t get_block_1d_id() { return blockIdx.x; }
__device__ index_t get_grid_size() { return gridDim.x; }
__device__ index_t get_block_size() { return blockDim.x; }
} // namespace ck
......@@ -93,6 +93,13 @@ __host__ __device__ constexpr auto operator*(index_t a, const Tuple<Xs...>& x)
return r;
}
// MultiIndex = MultiIndex * index_t
template <typename... Xs>
__host__ __device__ constexpr auto operator*(const Tuple<Xs...>& x, index_t a)
{
return a * x;
}
template <typename... Xs>
__host__ __device__ void print_multi_index(const Tuple<Xs...>& x)
{
......
......@@ -29,6 +29,9 @@ using remove_cv_t = typename std::remove_cv<T>::type;
template <typename T>
using remove_cvref_t = remove_cv_t<std::remove_reference_t<T>>;
template <typename T>
using remove_pointer_t = typename std::remove_pointer<T>::type;
template <typename T>
inline constexpr bool is_pointer_v = std::is_pointer<T>::value;
......
......@@ -10,6 +10,15 @@
#include "stream_config.hpp"
#include "ck/options.hpp"
template <typename T>
__global__ void set_buffer_value(T* p, T x, uint64_t buffer_element_size)
{
for(uint64_t i = threadIdx.x; i < buffer_element_size; i += blockDim.x)
{
p[i] = x;
}
}
inline void hip_check_error(hipError_t x)
{
if(x != hipSuccess)
......@@ -30,6 +39,16 @@ struct DeviceMem
void ToDevice(const void* p);
void FromDevice(void* p);
void SetZero();
template <typename T>
void SetValue(T x)
{
if(mMemSize % sizeof(T) != 0)
{
throw std::runtime_error("wrong! not entire DeviceMem will be set");
}
set_buffer_value<T><<<1, 1024>>>(static_cast<T*>(mpDeviceBuf), x, mMemSize / sizeof(T));
}
~DeviceMem();
void* mpDeviceBuf;
......@@ -74,8 +93,7 @@ float launch_and_time_kernel(const StreamConfig& stream_config,
printf("Warm up 1 time\n");
// warm up
hipLaunchKernelGGL(
kernel, grid_dim, block_dim, lds_byte, stream_config.stream_id_, args...);
kernel<<<grid_dim, block_dim, lds_byte, stream_config.stream_id_>>>(args...);
printf("Start running %d times...\n", nrepeat);
......@@ -84,8 +102,7 @@ float launch_and_time_kernel(const StreamConfig& stream_config,
for(int i = 0; i < nrepeat; ++i)
{
hipLaunchKernelGGL(
kernel, grid_dim, block_dim, lds_byte, stream_config.stream_id_, args...);
kernel<<<grid_dim, block_dim, lds_byte, stream_config.stream_id_>>>(args...);
}
timer.End();
......@@ -94,13 +111,12 @@ float launch_and_time_kernel(const StreamConfig& stream_config,
}
else
{
hipLaunchKernelGGL(
kernel, grid_dim, block_dim, lds_byte, stream_config.stream_id_, args...);
kernel<<<grid_dim, block_dim, lds_byte, stream_config.stream_id_>>>(args...);
return 0;
}
#else
hipLaunchKernelGGL(kernel, grid_dim, block_dim, lds_byte, stream_config.stream_id_, args...);
kernel<<<grid_dim, block_dim, lds_byte, stream_config.stream_id_>>>(args...);
return 0;
#endif
......
#ifndef REFERENCE_CONV_WRW_HPP
#define REFERENCE_CONV_WRW_HPP
#pragma once
#include <iostream>
#include <sstream>
......@@ -16,7 +15,9 @@ template <typename InDataType,
typename OutDataType,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation>
typename OutElementwiseOperation,
ck::index_t NumDimSpatial = 2,
typename ck::enable_if<NumDimSpatial >= 1 && NumDimSpatial <= 3, bool>::type = false>
struct ReferenceConvBwdWeight : public device::BaseOperator
{
// Argument
......@@ -32,9 +33,9 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
: in_n_c_hi_wi_{in_n_c_hi_wi},
wei_k_c_y_x_{wei_k_c_y_x},
out_n_k_ho_wo_{out_n_k_ho_wo},
: input_{in_n_c_hi_wi},
weight_{wei_k_c_y_x},
output_{out_n_k_ho_wo},
conv_strides_{conv_filter_strides},
conv_dilations_{conv_filter_dilations},
in_left_pads_{input_left_pads},
......@@ -45,9 +46,9 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
{
}
const Tensor<InDataType>& in_n_c_hi_wi_;
Tensor<WeiDataType>& wei_k_c_y_x_;
const Tensor<OutDataType>& out_n_k_ho_wo_;
const Tensor<InDataType>& input_;
Tensor<WeiDataType>& weight_;
const Tensor<OutDataType>& output_;
std::vector<index_t> conv_strides_;
std::vector<index_t> conv_dilations_;
......@@ -66,59 +67,180 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
float Run(const Argument& arg)
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
auto f_kcyx = [&](auto k, auto c, auto y, auto x) {
float v_acc = 0;
for(std::size_t n = 0; n < arg.out_n_k_ho_wo_.mDesc.GetLengths()[0]; ++n)
{
for(std::size_t ho = 0; ho < arg.out_n_k_ho_wo_.mDesc.GetLengths()[2]; ++ho)
if constexpr(NumDimSpatial == 1)
{
constexpr auto I0 = Number<0>{};
auto f_kcx = [&](auto k, auto c, auto x) {
float v_acc = 0;
for(std::size_t n = 0; n < arg.output_.mDesc.GetLengths()[0]; ++n)
{
auto hi = ck::type_convert<ck::long_index_t>(ho * arg.conv_strides_[I0]) +
ck::type_convert<ck::long_index_t>(y * arg.conv_dilations_[I0]) -
ck::type_convert<ck::long_index_t>(arg.in_left_pads_[I0]);
for(std::size_t wo = 0; wo < arg.out_n_k_ho_wo_.mDesc.GetLengths()[3]; ++wo)
for(std::size_t wo = 0; wo < arg.output_.mDesc.GetLengths()[2]; ++wo)
{
auto wi =
ck::type_convert<ck::long_index_t>(wo * arg.conv_strides_[I1]) +
ck::type_convert<ck::long_index_t>(x * arg.conv_dilations_[I1]) -
ck::type_convert<ck::long_index_t>(arg.in_left_pads_[I1]);
if(hi >= 0 &&
ck::type_convert<std::size_t>(hi) <
arg.in_n_c_hi_wi_.mDesc.GetLengths()[2] &&
wi >= 0 &&
ck::type_convert<std::size_t>(wi) <
arg.in_n_c_hi_wi_.mDesc.GetLengths()[3])
ck::type_convert<ck::long_index_t>(wo * arg.conv_strides_[I0]) +
ck::type_convert<ck::long_index_t>(x * arg.conv_dilations_[I0]) -
ck::type_convert<ck::long_index_t>(arg.in_left_pads_[I0]);
if(wi >= 0 &&
ck::type_convert<std::size_t>(wi) < arg.input_.mDesc.GetLengths()[2])
{
float v_out;
float v_in;
arg.out_element_op_(
v_out,
ck::type_convert<float>(arg.out_n_k_ho_wo_(n, k, ho, wo)));
arg.in_element_op_(
v_in, ck::type_convert<float>(arg.in_n_c_hi_wi_(n, c, hi, wi)));
arg.out_element_op_(v_out,
ck::type_convert<float>(arg.output_(n, k, wo)));
arg.in_element_op_(v_in,
ck::type_convert<float>(arg.input_(n, c, wi)));
v_acc += v_out * v_in;
}
}
}
}
float v_wei;
float v_wei;
arg.wei_element_op_(v_wei, v_acc);
arg.wei_element_op_(v_wei, v_acc);
arg.wei_k_c_y_x_(k, c, y, x) = ck::type_convert<OutDataType>(v_wei);
};
arg.weight_(k, c, x) = ck::type_convert<WeiDataType>(v_wei);
};
make_ParallelTensorFunctor(f_kcyx,
arg.wei_k_c_y_x_.mDesc.GetLengths()[0],
arg.wei_k_c_y_x_.mDesc.GetLengths()[1],
arg.wei_k_c_y_x_.mDesc.GetLengths()[2],
arg.wei_k_c_y_x_.mDesc.GetLengths()[3])(
std::thread::hardware_concurrency());
make_ParallelTensorFunctor(f_kcx,
arg.weight_.mDesc.GetLengths()[0],
arg.weight_.mDesc.GetLengths()[1],
arg.weight_.mDesc.GetLengths()[2])(
std::thread::hardware_concurrency());
return 0;
return 0;
}
else if constexpr(NumDimSpatial == 2)
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
auto f_kcyx = [&](auto k, auto c, auto y, auto x) {
float v_acc = 0;
for(std::size_t n = 0; n < arg.output_.mDesc.GetLengths()[0]; ++n)
{
for(std::size_t ho = 0; ho < arg.output_.mDesc.GetLengths()[2]; ++ho)
{
auto hi =
ck::type_convert<ck::long_index_t>(ho * arg.conv_strides_[I0]) +
ck::type_convert<ck::long_index_t>(y * arg.conv_dilations_[I0]) -
ck::type_convert<ck::long_index_t>(arg.in_left_pads_[I0]);
for(std::size_t wo = 0; wo < arg.output_.mDesc.GetLengths()[3]; ++wo)
{
auto wi =
ck::type_convert<ck::long_index_t>(wo * arg.conv_strides_[I1]) +
ck::type_convert<ck::long_index_t>(x *
arg.conv_dilations_[I1]) -
ck::type_convert<ck::long_index_t>(arg.in_left_pads_[I1]);
if(hi >= 0 &&
ck::type_convert<std::size_t>(hi) <
arg.input_.mDesc.GetLengths()[2] &&
wi >= 0 &&
ck::type_convert<std::size_t>(wi) <
arg.input_.mDesc.GetLengths()[3])
{
float v_out;
float v_in;
arg.out_element_op_(
v_out, ck::type_convert<float>(arg.output_(n, k, ho, wo)));
arg.in_element_op_(
v_in, ck::type_convert<float>(arg.input_(n, c, hi, wi)));
v_acc += v_out * v_in;
}
}
}
}
float v_wei;
arg.wei_element_op_(v_wei, v_acc);
arg.weight_(k, c, y, x) = ck::type_convert<WeiDataType>(v_wei);
};
make_ParallelTensorFunctor(f_kcyx,
arg.weight_.mDesc.GetLengths()[0],
arg.weight_.mDesc.GetLengths()[1],
arg.weight_.mDesc.GetLengths()[2],
arg.weight_.mDesc.GetLengths()[3])(
std::thread::hardware_concurrency());
return 0;
}
else if constexpr(NumDimSpatial == 3)
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
auto f_kczyx = [&](auto k, auto c, auto z, auto y, auto x) {
float v_acc = 0;
for(std::size_t n = 0; n < arg.output_.mDesc.GetLengths()[0]; ++n)
{
for(std::size_t do_ = 0; do_ < arg.output_.mDesc.GetLengths()[2]; ++do_)
{
auto di =
ck::type_convert<ck::long_index_t>(do_ * arg.conv_strides_[I0]) +
ck::type_convert<ck::long_index_t>(z * arg.conv_dilations_[I0]) -
ck::type_convert<ck::long_index_t>(arg.in_left_pads_[I0]);
for(std::size_t ho = 0; ho < arg.output_.mDesc.GetLengths()[3]; ++ho)
{
auto hi =
ck::type_convert<ck::long_index_t>(ho * arg.conv_strides_[I1]) +
ck::type_convert<ck::long_index_t>(y *
arg.conv_dilations_[I1]) -
ck::type_convert<ck::long_index_t>(arg.in_left_pads_[I1]);
for(std::size_t wo = 0; wo < arg.output_.mDesc.GetLengths()[4];
++wo)
{
auto wi =
ck::type_convert<ck::long_index_t>(wo *
arg.conv_strides_[I2]) +
ck::type_convert<ck::long_index_t>(
x * arg.conv_dilations_[I2]) -
ck::type_convert<ck::long_index_t>(arg.in_left_pads_[I2]);
if(di >= 0 &&
ck::type_convert<std::size_t>(di) <
arg.input_.mDesc.GetLengths()[2] &&
hi >= 0 &&
ck::type_convert<std::size_t>(hi) <
arg.input_.mDesc.GetLengths()[3] &&
wi >= 0 &&
ck::type_convert<std::size_t>(wi) <
arg.input_.mDesc.GetLengths()[4])
{
float v_out;
float v_in;
arg.out_element_op_(v_out,
ck::type_convert<float>(
arg.output_(n, k, do_, ho, wo)));
arg.in_element_op_(
v_in,
ck::type_convert<float>(arg.input_(n, c, di, hi, wi)));
v_acc += v_out * v_in;
}
}
}
}
}
float v_wei;
arg.wei_element_op_(v_wei, v_acc);
arg.weight_(k, c, z, y, x) = ck::type_convert<WeiDataType>(v_wei);
};
make_ParallelTensorFunctor(f_kczyx,
arg.weight_.mDesc.GetLengths()[0],
arg.weight_.mDesc.GetLengths()[1],
arg.weight_.mDesc.GetLengths()[2],
arg.weight_.mDesc.GetLengths()[3],
arg.weight_.mDesc.GetLengths()[4])(
std::thread::hardware_concurrency());
return 0;
}
}
float Run(const device::BaseArgument* p_arg,
......@@ -182,4 +304,3 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
} // namespace host
} // namespace tensor_operation
} // namespace ck
#endif
set(DEVICE_BATCHED_GEMM_REDUCE_INSTANCE_SOURCE
set(DEVICE_BATCHED_GEMM_REDUCE_INSTANCE_SOURCE
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instance.cpp
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instance.cpp
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instance.cpp
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment