Commit 4769425e authored by Chao Liu's avatar Chao Liu
Browse files

Merge remote-tracking branch 'origin/develop' into gelu

parents b548c0be ba58a93f
...@@ -27,8 +27,6 @@ set(CMAKE_CXX_STANDARD_REQUIRED ON) ...@@ -27,8 +27,6 @@ set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF) set(CMAKE_CXX_EXTENSIONS OFF)
message("CMAKE_CXX_COMPILER_ID: ${CMAKE_CXX_COMPILER_ID}") message("CMAKE_CXX_COMPILER_ID: ${CMAKE_CXX_COMPILER_ID}")
option(CK_TIME_KERNEL "Turning off will disable kernel timing globally" ON)
## OpenMP ## OpenMP
if(CMAKE_CXX_COMPILER_ID MATCHES "Clang") if(CMAKE_CXX_COMPILER_ID MATCHES "Clang")
# workaround issue hipcc in rocm3.5 cannot find openmp # workaround issue hipcc in rocm3.5 cannot find openmp
...@@ -229,8 +227,6 @@ set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/lib) ...@@ -229,8 +227,6 @@ set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/lib)
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/lib) set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/lib)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/bin) set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/bin)
configure_file("${PROJECT_SOURCE_DIR}/include/ck/options.hpp.in" "${PROJECT_BINARY_DIR}/include/ck/options.hpp")
include_directories(BEFORE include_directories(BEFORE
${PROJECT_SOURCE_DIR}/include ${PROJECT_SOURCE_DIR}/include
${PROJECT_BINARY_DIR}/include ${PROJECT_BINARY_DIR}/include
......
add_example_executable(example_gemm_reduce_xdl_fp16 gemm_reduce_xdl_fp16.cpp) add_example_executable(example_gemm_reduce_xdl_max_fp16 gemm_reduce_xdl_max_fp16.cpp)
add_example_executable(example_gemm_reduce_xdl_sum_squaresum_fp16 gemm_reduce_xdl_sum_squaresum_fp16.cpp)
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_reduce_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "element_wise_reduce_operation.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using F64 = double;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using ADataType = F16;
using BDataType = F16;
using CDataType = F16;
using ReduceAccDataType = F32;
using DDataType = F64;
using DPtrsGlobal = ck::Tuple<DDataType*>;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
using DsReduceOp = ck::Tuple<ck::reduce::Max<ReduceAccDataType>>;
using DsElementOp = ck::Tuple<
ck::tensor_operation::element_wise::UnaryIdentic<ReduceAccDataType, ReduceAccDataType, false>>;
using DGlobalMemOp =
ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicMax>;
static constexpr auto GemmSpecialization =
ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmReduceInstance = ck::tensor_operation::device::DeviceGemmReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsOutEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< Row, Col, Row, F16, F16, F16, F32, F32, ReduceAccDataType, DPtrsGlobal, AElementOp, BElementOp, CElementOp, DsReduceOp, DsElementOp, DsElementOp, DGlobalMemOp, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AElementOp, BElementOp, CElementOp>;
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideC = 4096;
if(argc == 1)
{
// do nothing
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 10)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideC = std::stoi(argv[9]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: run kernel # of times (>1)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<DDataType> d_m_host_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<DDataType> d_m_device_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
std::cout << "d_m: " << d_m_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
}
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
DeviceMem d_device_buf(sizeof(DDataType) * d_m_device_result.mDesc.GetElementSpace());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{};
auto ds_element_op = DsElementOp{};
auto p_ds_global = ck::make_tuple(static_cast<DDataType*>(d_device_buf.GetDeviceBuffer()));
// do GEMM
auto gemm = DeviceGemmReduceInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
p_ds_global,
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op,
ds_element_op,
ds_element_op);
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
// init D
d_device_buf.SetValue(ck::NumericLimits<DDataType>::Lowest());
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
bool pass = true;
if(do_verification)
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
d_device_buf.FromDevice(d_m_device_result.mData.data());
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
auto d_reduce_op = DsReduceOp{}[ck::Number<0>{}];
for(int m = 0; m < M; ++m)
{
ReduceAccDataType d_acc = d_reduce_op.GetReductionZeroVal();
for(int n = 0; n < N; ++n)
d_reduce_op(d_acc, c_m_n_host_result(m, n));
d_m_host_result(m) = d_acc;
}
pass = ck::utils::check_err(c_m_n_device_result.mData,
c_m_n_host_result.mData,
"Error: Incorrect results c") &&
ck::utils::check_err(d_m_device_result.mData,
d_m_host_result.mData,
"Error: Incorrect results d",
1e-3,
1e-3);
}
return pass ? 0 : 1;
}
...@@ -3,7 +3,7 @@ ...@@ -3,7 +3,7 @@
#include <initializer_list> #include <initializer_list>
#include <cstdlib> #include <cstdlib>
#include <stdlib.h> #include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp" #include "check_err.hpp"
#include "config.hpp" #include "config.hpp"
#include "device.hpp" #include "device.hpp"
...@@ -26,10 +26,12 @@ using F32 = float; ...@@ -26,10 +26,12 @@ using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor; using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor; using Col = ck::tensor_layout::gemm::ColumnMajor;
using ADataType = F16; using ADataType = F16;
using BDataType = F16; using BDataType = F16;
using CDataType = F16; using CDataType = F16;
using DDataType = F32; using ReduceAccDataType = F32;
using DDataType = F32;
using DPtrsGlobal = ck::Tuple<DDataType*, DDataType*>;
using ALayout = ck::tensor_layout::gemm::RowMajor; using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor; using BLayout = ck::tensor_layout::gemm::ColumnMajor;
...@@ -38,20 +40,31 @@ using CLayout = ck::tensor_layout::gemm::RowMajor; ...@@ -38,20 +40,31 @@ using CLayout = ck::tensor_layout::gemm::RowMajor;
using AElementOp = ck::tensor_operation::element_wise::PassThrough; using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough; using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough; using CElementOp = ck::tensor_operation::element_wise::PassThrough;
using D0ReduceOp = ck::reduce::Add<float>; using D0ReduceOp = ck::reduce::Add<ReduceAccDataType>;
using D1ReduceOp = ck::reduce::Add<float>; using D1ReduceOp = ck::reduce::Add<ReduceAccDataType>;
using D1ElementOp = ck::tensor_operation::element_wise::UnarySquare<float, float, false>; using DxsReduceOp = ck::Tuple<D0ReduceOp, D1ReduceOp>;
using UnaryIdenticElementOp =
ck::tensor_operation::element_wise::UnaryIdentic<ReduceAccDataType, ReduceAccDataType, false>;
using UnarySquareElementOp =
ck::tensor_operation::element_wise::UnarySquare<ReduceAccDataType, ReduceAccDataType, false>;
using DxsInElementOp = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>;
using DxsOutElementOp = ck::Tuple<UnaryIdenticElementOp, UnaryIdenticElementOp>;
using DGlobalMemOp =
ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicAdd,
ck::InMemoryDataOperationEnum::AtomicAdd>;
static constexpr auto GemmSpecialization = static constexpr auto GemmSpecialization =
ck::tensor_operation::device::GemmSpecialization::Default; ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off // clang-format off
using DeviceGemmReduceInstance = ck::tensor_operation::device::DeviceGemmReduce_Xdl_CShuffle using DeviceGemmReduceInstance = ck::tensor_operation::device::DeviceGemmReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| D0| D1| D1EleOp| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy| //######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsOutEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector| //######| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock| //######| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | //######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, AElementOp, BElementOp, CElementOp, D0ReduceOp, D1ReduceOp, D1ElementOp, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>; < Row, Col, Row, F16, F16, F16, F32, F32, F32, DPtrsGlobal, AElementOp, BElementOp, CElementOp, DxsReduceOp, DxsInElementOp, DxsOutElementOp, DGlobalMemOp, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>;
// clang-format on // clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host:: using ReferenceGemmInstance = ck::tensor_operation::host::
...@@ -162,10 +175,11 @@ int main(int argc, char* argv[]) ...@@ -162,10 +175,11 @@ int main(int argc, char* argv[])
a_device_buf.ToDevice(a_m_k.mData.data()); a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data()); b_device_buf.ToDevice(b_k_n.mData.data());
auto a_element_op = AElementOp{}; auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{}; auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{}; auto c_element_op = CElementOp{};
auto d1_element_op = D1ElementOp{}; auto dxs_global = ck::make_tuple(static_cast<DDataType*>(d0_device_buf.GetDeviceBuffer()),
static_cast<DDataType*>(d1_device_buf.GetDeviceBuffer()));
// do GEMM // do GEMM
auto gemm = DeviceGemmReduceInstance{}; auto gemm = DeviceGemmReduceInstance{};
...@@ -173,8 +187,7 @@ int main(int argc, char* argv[]) ...@@ -173,8 +187,7 @@ int main(int argc, char* argv[])
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()), auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()), static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()), static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<DDataType*>(d0_device_buf.GetDeviceBuffer()), dxs_global,
static_cast<DDataType*>(d1_device_buf.GetDeviceBuffer()),
M, M,
N, N,
K, K,
...@@ -184,7 +197,8 @@ int main(int argc, char* argv[]) ...@@ -184,7 +197,8 @@ int main(int argc, char* argv[])
a_element_op, a_element_op,
b_element_op, b_element_op,
c_element_op, c_element_op,
d1_element_op); DxsInElementOp{},
DxsOutElementOp{});
if(!gemm.IsSupportedArgument(argument)) if(!gemm.IsSupportedArgument(argument))
{ {
...@@ -213,6 +227,7 @@ int main(int argc, char* argv[]) ...@@ -213,6 +227,7 @@ int main(int argc, char* argv[])
<< gemm.GetTypeString() << std::endl; << gemm.GetTypeString() << std::endl;
bool pass = true; bool pass = true;
if(do_verification) if(do_verification)
{ {
c_device_buf.FromDevice(c_m_n_device_result.mData.data()); c_device_buf.FromDevice(c_m_n_device_result.mData.data());
...@@ -237,10 +252,12 @@ int main(int argc, char* argv[]) ...@@ -237,10 +252,12 @@ int main(int argc, char* argv[])
for(int n = 0; n < N; ++n) for(int n = 0; n < N; ++n)
{ {
float d0_val = ck::type_convert<float>(c_m_n_host_result(m, n)); float c_val = ck::type_convert<float>(c_m_n_host_result(m, n));
float d1_val; float d0_val = 0;
float d1_val = 0;
d1_element_op(d1_val, d0_val); UnaryIdenticElementOp{}(d0_val, c_val);
UnarySquareElementOp{}(d1_val, c_val);
d0_reduce_op(d0_acc, d0_val); d0_reduce_op(d0_acc, d0_val);
d1_reduce_op(d1_acc, d1_val); d1_reduce_op(d1_acc, d1_val);
} }
...@@ -249,18 +266,19 @@ int main(int argc, char* argv[]) ...@@ -249,18 +266,19 @@ int main(int argc, char* argv[])
d1_m_host_result(m) = ck::type_convert<DDataType>(d1_acc); d1_m_host_result(m) = ck::type_convert<DDataType>(d1_acc);
} }
pass &= ck::utils::check_err( pass = ck::utils::check_err(c_m_n_device_result.mData,
c_m_n_device_result.mData, c_m_n_host_result.mData, "Error: Incorrect results c"); c_m_n_host_result.mData,
pass &= ck::utils::check_err(d0_m_device_result.mData, "Error: Incorrect results c") &&
d0_m_host_result.mData, ck::utils::check_err(d0_m_device_result.mData,
"Error: Incorrect results d0", d0_m_host_result.mData,
1e-3, "Error: Incorrect results d0",
1e-3); 1e-4,
pass &= ck::utils::check_err(d1_m_device_result.mData, 1e-5) &&
d1_m_host_result.mData, ck::utils::check_err(d1_m_device_result.mData,
"Error: Incorrect results d1", d1_m_host_result.mData,
1e-3, "Error: Incorrect results d1",
1e-3); 1e-3,
1e-5);
} }
return pass ? 0 : 1; return pass ? 0 : 1;
......
...@@ -25,10 +25,12 @@ using F32 = float; ...@@ -25,10 +25,12 @@ using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor; using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor; using Col = ck::tensor_layout::gemm::ColumnMajor;
using ADataType = F16; using ADataType = F16;
using BDataType = F16; using BDataType = F16;
using CDataType = F16; using CDataType = F16;
using DDataType = F32; using ReduceAccDataType = F32;
using DDataType = F32;
using DPtrsGlobal = ck::Tuple<DDataType*, DDataType*>;
using ALayout = ck::tensor_layout::gemm::RowMajor; using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor; using BLayout = ck::tensor_layout::gemm::ColumnMajor;
...@@ -37,20 +39,31 @@ using CLayout = ck::tensor_layout::gemm::RowMajor; ...@@ -37,20 +39,31 @@ using CLayout = ck::tensor_layout::gemm::RowMajor;
using AElementOp = ck::tensor_operation::element_wise::PassThrough; using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough; using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough; using CElementOp = ck::tensor_operation::element_wise::PassThrough;
using D0ReduceOp = ck::reduce::Add<float>; using D0ReduceOp = ck::reduce::Add<ReduceAccDataType>;
using D1ReduceOp = ck::reduce::Add<float>; using D1ReduceOp = ck::reduce::Add<ReduceAccDataType>;
using D1ElementOp = ck::tensor_operation::element_wise::UnarySquare<float, float, false>; using DxsReduceOp = ck::Tuple<D0ReduceOp, D1ReduceOp>;
using UnaryIdenticElementOp =
ck::tensor_operation::element_wise::UnaryIdentic<ReduceAccDataType, ReduceAccDataType, false>;
using UnarySquareElementOp =
ck::tensor_operation::element_wise::UnarySquare<ReduceAccDataType, ReduceAccDataType, false>;
using DxsInElementOp = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>;
using DxsOutElementOp = ck::Tuple<UnaryIdenticElementOp, UnaryIdenticElementOp>;
using DGlobalMemOp =
ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicAdd,
ck::InMemoryDataOperationEnum::AtomicAdd>;
static constexpr auto GemmSpecialization = static constexpr auto GemmSpecialization =
ck::tensor_operation::device::GemmSpecialization::Default; ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off // clang-format off
using DeviceBatchedGemmReduceInstance = ck::tensor_operation::device::DeviceBatchedGemmReduce_Xdl_CShuffle using DeviceBatchedGemmReduceInstance = ck::tensor_operation::device::DeviceBatchedGemmReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| D0| D1| D1EleOp| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy| //######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsOutEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector| //######| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock| //######| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | //######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< Row, Col, Row, F16, F16, F16, F32, F32, F32, F32, AElementOp, BElementOp, CElementOp, D0ReduceOp, D1ReduceOp, D1ElementOp, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>; < Row, Col, Row, F16, F16, F16, F32, F32, F32, DPtrsGlobal, AElementOp, BElementOp, CElementOp, DxsReduceOp, DxsInElementOp, DxsOutElementOp, DGlobalMemOp, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>;
// clang-format on // clang-format on
using ReferenceBatchedGemmInstance = ck::tensor_operation::host:: using ReferenceBatchedGemmInstance = ck::tensor_operation::host::
...@@ -170,12 +183,11 @@ int main(int argc, char* argv[]) ...@@ -170,12 +183,11 @@ int main(int argc, char* argv[])
a_device_buf.ToDevice(a_g_m_k.mData.data()); a_device_buf.ToDevice(a_g_m_k.mData.data());
b_device_buf.ToDevice(b_g_k_n.mData.data()); b_device_buf.ToDevice(b_g_k_n.mData.data());
auto a_element_op = AElementOp{}; auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{}; auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{}; auto c_element_op = CElementOp{};
auto d0_reduce_op = D0ReduceOp{}; auto dxs_global = ck::make_tuple(static_cast<DDataType*>(d0_device_buf.GetDeviceBuffer()),
auto d1_reduce_op = D1ReduceOp{}; static_cast<DDataType*>(d1_device_buf.GetDeviceBuffer()));
auto d1_element_op = D1ElementOp{};
// do GEMM // do GEMM
auto batched_gemm = DeviceBatchedGemmReduceInstance{}; auto batched_gemm = DeviceBatchedGemmReduceInstance{};
...@@ -184,8 +196,7 @@ int main(int argc, char* argv[]) ...@@ -184,8 +196,7 @@ int main(int argc, char* argv[])
batched_gemm.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()), batched_gemm.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()), static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()), static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<DDataType*>(d0_device_buf.GetDeviceBuffer()), dxs_global,
static_cast<DDataType*>(d1_device_buf.GetDeviceBuffer()),
M, M,
N, N,
K, K,
...@@ -195,7 +206,8 @@ int main(int argc, char* argv[]) ...@@ -195,7 +206,8 @@ int main(int argc, char* argv[])
a_element_op, a_element_op,
b_element_op, b_element_op,
c_element_op, c_element_op,
d1_element_op, DxsInElementOp{},
DxsOutElementOp{},
BatchCount); BatchCount);
if(!batched_gemm.IsSupportedArgument(argument)) if(!batched_gemm.IsSupportedArgument(argument))
...@@ -240,6 +252,9 @@ int main(int argc, char* argv[]) ...@@ -240,6 +252,9 @@ int main(int argc, char* argv[])
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
auto d0_reduce_op = D0ReduceOp{};
auto d1_reduce_op = D1ReduceOp{};
for(int batch = 0; batch < BatchCount; ++batch) for(int batch = 0; batch < BatchCount; ++batch)
{ {
for(int m = 0; m < M; ++m) for(int m = 0; m < M; ++m)
...@@ -249,10 +264,12 @@ int main(int argc, char* argv[]) ...@@ -249,10 +264,12 @@ int main(int argc, char* argv[])
for(int n = 0; n < N; ++n) for(int n = 0; n < N; ++n)
{ {
float d0_val = ck::type_convert<float>(c_g_m_n_host_result(batch, m, n)); float c_val = ck::type_convert<float>(c_g_m_n_host_result(batch, m, n));
float d1_val; float d0_val = 0;
float d1_val = 0;
d1_element_op(d1_val, d0_val); UnaryIdenticElementOp{}(d0_val, c_val);
UnarySquareElementOp{}(d1_val, c_val);
d0_reduce_op(d0_acc, d0_val); d0_reduce_op(d0_acc, d0_val);
d1_reduce_op(d1_acc, d1_val); d1_reduce_op(d1_acc, d1_val);
} }
...@@ -262,17 +279,19 @@ int main(int argc, char* argv[]) ...@@ -262,17 +279,19 @@ int main(int argc, char* argv[])
} }
} }
pass &= ck::utils::check_err(c_g_m_n_host_result.mData, c_g_m_n_device_result.mData); pass = ck::utils::check_err(c_g_m_n_host_result.mData,
pass &= ck::utils::check_err(d0_g_m_device_result.mData, c_g_m_n_device_result.mData,
d0_g_m_host_result.mData, "Error: Incorrect results c") &&
"Error: Incorrect results! D0", ck::utils::check_err(d0_g_m_device_result.mData,
1e-3, d0_g_m_host_result.mData,
1e-3); "Error: Incorrect results! D0",
pass &= ck::utils::check_err(d1_g_m_device_result.mData, 1e-4,
d1_g_m_host_result.mData, 1e-5) &&
"Error: Incorrect results! D1", ck::utils::check_err(d1_g_m_device_result.mData,
1e-3, d1_g_m_host_result.mData,
1e-3); "Error: Incorrect results! D1",
1e-3,
1e-5);
} }
return pass ? 0 : 1; return pass ? 0 : 1;
......
add_example_executable(example_broadcast_add_2d broadcast_add_2d.cpp)
add_example_executable(example_elementwise_add_1d elementwise_add_1d.cpp)
add_example_executable(example_elementwise_add_4d elementwise_add_4d.cpp)
\ No newline at end of file
#include <iostream>
#include <cstdlib>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "binary_element_wise_operation.hpp"
#include "device_binary_elementwise.hpp"
using F16 = ck::half_t;
using F32 = float;
using ABDataType = F16;
using CDataType = F16;
using EltwiseComputeDataType = F32;
using Add = ck::tensor_operation::binary_element_wise::Add;
using DeviceElementwiseAddInstance = ck::tensor_operation::device::
DeviceBinaryElementwise<ABDataType, ABDataType, CDataType, EltwiseComputeDataType, Add, 2, 8>;
template <typename HostTensorA,
typename HostTensorB,
typename HostTensorC,
typename ComputeDataType,
typename Functor,
int broadcastDim>
void host_broadcast2D(
HostTensorC& C, const HostTensorA& A, const HostTensorB& B, int M, int N, Functor functor)
{
using ctype = ck::remove_reference_t<decltype(C(0, 0))>;
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
ComputeDataType Amn = static_cast<ComputeDataType>(A(m, n));
ComputeDataType Cmn = 0;
if constexpr(broadcastDim == 0)
{
ComputeDataType Bn = static_cast<ComputeDataType>(B(n));
functor(Cmn, Amn, Bn);
}
else
{
ComputeDataType Bm = static_cast<ComputeDataType>(B(m));
functor(Cmn, Amn, Bm);
}
C(m, n) = static_cast<ctype>(Cmn);
}
}
}
int main()
{
bool do_verification = true;
bool time_kernel = false;
ck::index_t M = 1024;
ck::index_t N = 1024;
ck::index_t Stride = 1024;
auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({len}),
std::vector<std::size_t>({stride}));
};
auto f_host_tensor_descriptor2d = [](std::size_t row, std::size_t col, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
};
Tensor<ABDataType> a_m_n(f_host_tensor_descriptor2d(M, N, Stride));
Tensor<ABDataType> b_n(f_host_tensor_descriptor1d(N, 1));
Tensor<CDataType> c_m_n(f_host_tensor_descriptor2d(M, N, Stride));
a_m_n.GenerateTensorValue(GeneratorTensor_3<ABDataType>{0.0, 1.0});
b_n.GenerateTensorValue(GeneratorTensor_3<ABDataType>{0.0, 1.0});
DeviceMem a_m_n_device_buf(sizeof(ABDataType) * a_m_n.mDesc.GetElementSpace());
DeviceMem b_n_device_buf(sizeof(ABDataType) * b_n.mDesc.GetElementSpace());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n.mDesc.GetElementSpace());
a_m_n_device_buf.ToDevice(a_m_n.mData.data());
b_n_device_buf.ToDevice(b_n.mData.data());
auto broadcastAdd = DeviceElementwiseAddInstance{};
auto argument = broadcastAdd.MakeArgumentPointer(a_m_n_device_buf.GetDeviceBuffer(),
b_n_device_buf.GetDeviceBuffer(),
c_m_n_device_buf.GetDeviceBuffer(),
{M, N},
{Stride, 1},
{0, 1}, // broadcast in first dimension
{Stride, 1},
Add{});
if(!broadcastAdd.IsSupportedArgument(argument.get()))
{
throw std::runtime_error("The runtime parameters seems not supported by the "
"DeviceBinaryElementwise_2D instance, exiting!");
};
auto broadcastAdd_invoker_ptr = broadcastAdd.MakeInvokerPointer();
float ave_time =
broadcastAdd_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::cout << "Perf: " << ave_time << " ms" << std::endl;
bool pass = true;
if(do_verification)
{
c_m_n_device_buf.FromDevice(c_m_n.mData.data());
Tensor<CDataType> host_c_m_n(f_host_tensor_descriptor2d(M, N, Stride));
host_broadcast2D<Tensor<ABDataType>,
Tensor<ABDataType>,
Tensor<CDataType>,
EltwiseComputeDataType,
Add,
0>(host_c_m_n, a_m_n, b_n, M, N, Add{});
pass &= ck::utils::check_err(
c_m_n.mData, host_c_m_n.mData, "Error: Incorrect results d1", 1e-3, 1e-3);
}
return pass ? 0 : 1;
}
#include <iostream>
#include <cstdlib>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "binary_element_wise_operation.hpp"
#include "device_binary_elementwise.hpp"
using F16 = ck::half_t;
using F32 = float;
using ABDataType = F16;
using CDataType = F16;
using EltwiseComputeDataType = F32;
using Add = ck::tensor_operation::binary_element_wise::Add;
using DeviceElementwiseAddInstance = ck::tensor_operation::device::
DeviceBinaryElementwise<ABDataType, ABDataType, CDataType, EltwiseComputeDataType, Add, 1, 8>;
template <typename HostTensorA,
typename HostTensorB,
typename HostTensorC,
typename ComputeDataType,
typename Functor>
void host_elementwise1D(
HostTensorC& C, const HostTensorA& A, const HostTensorB& B, int M, Functor functor)
{
using ctype = ck::remove_reference_t<decltype(C(0))>;
for(int m = 0; m < M; ++m)
{
ComputeDataType Am = static_cast<ComputeDataType>(A(m));
ComputeDataType Bm = static_cast<ComputeDataType>(B(m));
ComputeDataType Cm = 0;
functor(Cm, Am, Bm);
C(m) = static_cast<ctype>(Cm);
}
}
int main()
{
bool do_verification = true;
bool time_kernel = false;
ck::index_t M = 1024;
auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({len}),
std::vector<std::size_t>({stride}));
};
Tensor<ABDataType> a_m(f_host_tensor_descriptor1d(M, 1));
Tensor<ABDataType> b_m(f_host_tensor_descriptor1d(M, 1));
Tensor<CDataType> c_m(f_host_tensor_descriptor1d(M, 1));
a_m.GenerateTensorValue(GeneratorTensor_3<ABDataType>{0.0, 1.0});
b_m.GenerateTensorValue(GeneratorTensor_3<ABDataType>{0.0, 1.0});
DeviceMem a_m_device_buf(sizeof(ABDataType) * a_m.mDesc.GetElementSpace());
DeviceMem b_m_device_buf(sizeof(ABDataType) * b_m.mDesc.GetElementSpace());
DeviceMem c_m_device_buf(sizeof(CDataType) * c_m.mDesc.GetElementSpace());
a_m_device_buf.ToDevice(a_m.mData.data());
b_m_device_buf.ToDevice(b_m.mData.data());
auto broadcastAdd = DeviceElementwiseAddInstance{};
auto argument = broadcastAdd.MakeArgumentPointer(a_m_device_buf.GetDeviceBuffer(),
b_m_device_buf.GetDeviceBuffer(),
c_m_device_buf.GetDeviceBuffer(),
{M},
{1},
{1},
{1},
Add{});
if(!broadcastAdd.IsSupportedArgument(argument.get()))
{
throw std::runtime_error("The runtime parameters seems not supported by the "
"DeviceBinaryElementwise_2D instance, exiting!");
};
auto broadcastAdd_invoker_ptr = broadcastAdd.MakeInvokerPointer();
float ave_time =
broadcastAdd_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::cout << "Perf: " << ave_time << " ms" << std::endl;
bool pass = true;
if(do_verification)
{
c_m_device_buf.FromDevice(c_m.mData.data());
Tensor<CDataType> host_c_m(f_host_tensor_descriptor1d(M, 1));
host_elementwise1D<Tensor<ABDataType>,
Tensor<ABDataType>,
Tensor<CDataType>,
EltwiseComputeDataType,
Add>(host_c_m, a_m, b_m, M, Add{});
pass &= ck::utils::check_err(
c_m.mData, host_c_m.mData, "Error: Incorrect results d1", 1e-3, 1e-3);
}
return pass ? 0 : 1;
}
#include <iostream>
#include <cstdlib>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "binary_element_wise_operation.hpp"
#include "device_binary_elementwise.hpp"
using F16 = ck::half_t;
using F32 = float;
using ABDataType = F16;
using CDataType = F16;
using EltwiseComputeDataType = F32;
using Add = ck::tensor_operation::binary_element_wise::Add;
using DeviceElementwiseAddInstance = ck::tensor_operation::device::
DeviceBinaryElementwise<ABDataType, ABDataType, CDataType, EltwiseComputeDataType, Add, 4, 8>;
template <typename HostTensorA,
typename HostTensorB,
typename HostTensorC,
typename ComputeDataType,
typename Functor>
void host_elementwise4D(HostTensorC& C,
const HostTensorA& A,
const HostTensorB& B,
const std::vector<std::size_t>& shape,
Functor functor)
{
using ctype = ck::remove_reference_t<decltype(C(0, 0, 0, 0))>;
for(std::size_t n = 0; n < shape[0]; ++n)
for(std::size_t c = 0; c < shape[1]; ++c)
for(std::size_t h = 0; h < shape[2]; ++h)
for(std::size_t w = 0; w < shape[3]; ++w)
{
ComputeDataType a_val = static_cast<ComputeDataType>(A(n, c, h, w));
ComputeDataType b_val = static_cast<ComputeDataType>(B(n, c, h, w));
ComputeDataType c_val = 0;
functor(c_val, a_val, b_val);
C(n, c, h, w) = static_cast<ctype>(c_val);
}
}
int main()
{
bool do_verification = true;
bool time_kernel = false;
std::vector<std::size_t> nchw = {4, 16, 32, 32};
Tensor<ABDataType> a(nchw);
Tensor<ABDataType> b(nchw);
Tensor<CDataType> c(nchw);
a.GenerateTensorValue(GeneratorTensor_3<ABDataType>{0.0, 1.0});
b.GenerateTensorValue(GeneratorTensor_3<ABDataType>{0.0, 1.0});
DeviceMem a_device_buf(sizeof(ABDataType) * a.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(ABDataType) * b.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c.mDesc.GetElementSpace());
a_device_buf.ToDevice(a.mData.data());
b_device_buf.ToDevice(b.mData.data());
auto broadcastAdd = DeviceElementwiseAddInstance{};
auto argument = broadcastAdd.MakeArgumentPointer(
a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
c_device_buf.GetDeviceBuffer(),
std::vector<ck::index_t>{nchw.begin(), nchw.end()},
std::vector<ck::index_t>{a.mDesc.GetStrides().begin(), a.mDesc.GetStrides().end()},
std::vector<ck::index_t>{b.mDesc.GetStrides().begin(), b.mDesc.GetStrides().end()},
std::vector<ck::index_t>{c.mDesc.GetStrides().begin(), c.mDesc.GetStrides().end()},
Add{});
if(!broadcastAdd.IsSupportedArgument(argument.get()))
{
throw std::runtime_error("The runtime parameters seems not supported by the "
"DeviceBinaryElementwise_2D instance, exiting!");
};
auto broadcastAdd_invoker_ptr = broadcastAdd.MakeInvokerPointer();
float ave_time =
broadcastAdd_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::cout << "Perf: " << ave_time << " ms" << std::endl;
bool pass = true;
if(do_verification)
{
c_device_buf.FromDevice(c.mData.data());
Tensor<CDataType> host_c(nchw);
host_elementwise4D<Tensor<ABDataType>,
Tensor<ABDataType>,
Tensor<CDataType>,
EltwiseComputeDataType,
Add>(host_c, a, b, nchw, Add{});
pass &=
ck::utils::check_err(c.mData, host_c.mData, "Error: Incorrect results d1", 1e-3, 1e-3);
}
return pass ? 0 : 1;
}
add_example_executable(example_convnd_bwd_weight_xdl convnd_bwd_weight_xdl.cpp)
target_link_libraries(example_convnd_bwd_weight_xdl PRIVATE conv_util)
\ No newline at end of file
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "conv_util.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "element_wise_operation.hpp"
#include "device_convnd_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "reference_conv_backward_weight.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvBwdWeightDefault =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Default;
using DeviceConvBwdWeightBasePtr =
ck::tensor_operation::device::DeviceConvBwdWeightPtr<InElementOp, WeiElementOp, OutElementOp>;
// clang-format off
template <ck::index_t NumDimSpatial>
using DeviceConvndBwdWeightInstance = ck::tensor_operation::device::
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<
InDataType, // InDataType
WeiDataType, // WeiDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
InElementOp, // InElementwiseOperation
WeiElementOp, // WeiElementwiseOperation
OutElementOp, // OutElementwiseOperation
ConvBwdWeightDefault, // ConvolutionBackwardWeightSpecialization
NumDimSpatial, // NumDimSpatial
256, // BlockSize
128, // MPerBlock
128, // NPerBlock
4, // K0PerBlock
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
2, // NXdlPerWave
S<1, 4, 16, 4>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<0, 3, 1, 2>, // ABlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
2, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<1, 4, 16, 4>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<0, 3, 1, 2>, // BBlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
2, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 4>, // CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8>; // CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
template <ck::index_t NumDimSpatial>
using ReferenceConvBwdWeightInstance =
ck::tensor_operation::host::ReferenceConvBwdWeight<InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
NumDimSpatial>;
void print_use_msg()
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=random value, 2= init to 1 )\n"
<< "arg3: time kernel (0=n0, 1=yes)\n"
<< "arg4: is show log (0=no, 1=yes)\n"
<< "arg5: split-k \n"
<< "arg6: N spatial dimensions (default 2)\n"
<< "Following arguments (depending on number of spatial dims):\n"
<< " N, K, C, \n"
<< " <filter spatial dimensions>, (ie Y, X for 2D)\n"
<< " <input image spatial dimensions>, (ie Hi, Wi for 2D)\n"
<< " <strides>, (ie Sy, Sx for 2D)\n"
<< " <dilations>, (ie Dy, Dx for 2D)\n"
<< " <left padding>, (ie LeftPy, LeftPx for 2D)\n"
<< " <right padding>, (ie RightPy, RightPx for 2D)\n"
<< std::endl;
}
ck::utils::conv::ConvParams parse_conv_params(int num_dim_spatial, char* argv[])
{
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
ck::utils::conv::ConvParams params;
int arg_idx = 7;
params.num_dim_spatial_ = num_dim_spatial;
params.N_ = std::stoi(argv[arg_idx++]);
params.K_ = std::stoi(argv[arg_idx++]);
params.C_ = std::stoi(argv[arg_idx++]);
params.filter_spatial_lengths_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.filter_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
}
params.input_spatial_lengths_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_strides_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_strides_[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_dilations_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_dilations_[i] = std::stoi(argv[arg_idx++]);
}
params.input_left_pads_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_left_pads_[i] = std::stoi(argv[arg_idx++]);
}
params.input_right_pads_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_right_pads_[i] = std::stoi(argv[arg_idx++]);
}
return params;
}
DeviceConvBwdWeightBasePtr get_conv_instance(int num_dim_spatial)
{
switch(num_dim_spatial)
{
case 3: {
return std::make_unique<DeviceConvndBwdWeightInstance<3>>();
}
case 2: {
return std::make_unique<DeviceConvndBwdWeightInstance<2>>();
}
case 1: {
return std::make_unique<DeviceConvndBwdWeightInstance<1>>();
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
int num_dim_spatial = 2;
int do_log = 0;
int split_k = 1;
ck::utils::conv::ConvParams params;
params.C_ = 128;
if(argc == 6)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
do_log = std::stoi(argv[4]);
split_k = std::stoi(argv[5]);
}
else if(argc > 6)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
do_log = std::stoi(argv[4]);
split_k = std::stoi(argv[5]);
num_dim_spatial = std::stoi(argv[6]);
// check args number
int conv_args = 3 + num_dim_spatial * 6;
int cmdline_nargs = conv_args + 7;
if(cmdline_nargs != argc)
{
print_use_msg();
exit(1);
}
params = parse_conv_params(num_dim_spatial, argv);
}
else if(argc != 1)
{
print_use_msg();
exit(1);
}
std::vector<std::size_t> input_dims{static_cast<std::size_t>(params.N_),
static_cast<std::size_t>(params.C_)};
input_dims.insert(std::end(input_dims),
std::begin(params.input_spatial_lengths_),
std::end(params.input_spatial_lengths_));
std::vector<std::size_t> filter_dims{static_cast<std::size_t>(params.K_),
static_cast<std::size_t>(params.C_)};
filter_dims.insert(std::end(filter_dims),
std::begin(params.filter_spatial_lengths_),
std::end(params.filter_spatial_lengths_));
const std::vector<ck::index_t>& output_spatial_lengths = params.GetOutputSpatialLengths();
std::vector<std::size_t> output_dims{static_cast<std::size_t>(params.N_),
static_cast<std::size_t>(params.K_)};
output_dims.insert(std::end(output_dims),
std::begin(output_spatial_lengths),
std::end(output_spatial_lengths));
Tensor<InDataType> in_n_c_hi_wi(
ck::utils::conv::get_input_host_tensor_descriptor(input_dims, num_dim_spatial));
Tensor<WeiDataType> wei_k_c_y_x_host_result(
ck::utils::conv::get_filters_host_tensor_descriptor(filter_dims, num_dim_spatial));
Tensor<WeiDataType> wei_k_c_y_x_device_result(
ck::utils::conv::get_filters_host_tensor_descriptor(filter_dims, num_dim_spatial));
Tensor<OutDataType> out_n_k_ho_wo(
ck::utils::conv::get_output_host_tensor_descriptor(output_dims, num_dim_spatial));
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x_device_result.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo.mDesc << std::endl;
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x_host_result.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-2, 2});
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-2, 2});
break;
default:
out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
}
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) *
wei_k_c_y_x_device_result.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) * out_n_k_ho_wo.mDesc.GetElementSpace());
in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
out_device_buf.ToDevice(out_n_k_ho_wo.mData.data());
// reset input to zero
wei_device_buf.SetZero();
// do GEMM
auto conv = get_conv_instance(num_dim_spatial);
auto invoker = conv->MakeInvokerPointer();
auto argument =
conv->MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
output_spatial_lengths,
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
InElementOp{},
WeiElementOp{},
OutElementOp{},
split_k);
if(!conv->IsSupportedArgument(argument.get()))
{
std::cout << "wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<< std::endl;
return 1;
}
float ave_time = invoker->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = ck::utils::conv::get_flops(
params.N_, params.C_, params.K_, params.filter_spatial_lengths_, output_spatial_lengths);
std::size_t num_btype = ck::utils::conv::get_btype<InDataType, WeiDataType, OutDataType>(
params.N_,
params.C_,
params.K_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
output_spatial_lengths);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
if(do_verification)
{
auto verify_f = [&](const auto& ref_conv) {
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi,
wei_k_c_y_x_host_result,
out_n_k_ho_wo,
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
InElementOp{},
WeiElementOp{},
OutElementOp{});
ref_invoker.Run(ref_argument);
wei_device_buf.FromDevice(wei_k_c_y_x_device_result.mData.data());
if(do_log)
{
LogRangeAsType<float>(std::cout << "out: ", out_n_k_ho_wo.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "in : ", in_n_c_hi_wi.mData, ",") << std::endl;
LogRangeAsType<float>(
std::cout << "wei_device(after): ", wei_k_c_y_x_device_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "wei_host : ", wei_k_c_y_x_host_result.mData, ",")
<< std::endl;
}
return ck::utils::check_err(wei_k_c_y_x_device_result.mData,
wei_k_c_y_x_host_result.mData)
? 0
: 1;
};
switch(num_dim_spatial)
{
case 3: {
auto ref_conv = ReferenceConvBwdWeightInstance<3>();
verify_f(ref_conv);
break;
}
case 2: {
auto ref_conv = ReferenceConvBwdWeightInstance<2>();
verify_f(ref_conv);
break;
}
case 1: {
auto ref_conv = ReferenceConvBwdWeightInstance<1>();
verify_f(ref_conv);
break;
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
return 0;
}
...@@ -51,3 +51,5 @@ add_subdirectory(17_convnd_bwd_data_xdl) ...@@ -51,3 +51,5 @@ add_subdirectory(17_convnd_bwd_data_xdl)
add_subdirectory(15_grouped_gemm) add_subdirectory(15_grouped_gemm)
add_subdirectory(16_gemm_reduce) add_subdirectory(16_gemm_reduce)
add_subdirectory(18_batched_gemm_reduce) add_subdirectory(18_batched_gemm_reduce)
add_subdirectory(19_binary_elementwise)
add_subdirectory(20_convnd_bwd_weight_xdl)
...@@ -76,6 +76,12 @@ ...@@ -76,6 +76,12 @@
#define CK_USE_AMD_BUFFER_ATOMIC_ADD_FLOAT 0 #define CK_USE_AMD_BUFFER_ATOMIC_ADD_FLOAT 0
#endif #endif
#if defined(__gfx90a__) // for GPU code
#define CK_USE_AMD_BUFFER_ATOMIC_MAX_FLOAT64 1
#else
#define CK_USE_AMD_BUFFER_ATOMIC_MAX_FLOAT64 0
#endif
// inline asm // inline asm
#define CK_USE_AMD_INLINE_ASM 1 #define CK_USE_AMD_INLINE_ASM 1
...@@ -91,10 +97,11 @@ ...@@ -91,10 +97,11 @@
// experimental feature: static tensor descriptor // experimental feature: static tensor descriptor
#define CK_EXPERIMENTAL_STATIC_TENSOR_DESCRIPTOR 0 #define CK_EXPERIMENTAL_STATIC_TENSOR_DESCRIPTOR 0
// experimental feature: buffer load/store/atomic-add OOB trick // experimental feature: buffer load/store/atomic-add/ OOB trick
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 0 #define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 0
#define CK_EXPERIMENTAL_USE_BUFFER_STORE_OOB_CHECK_OFFSET_TRICK 1 #define CK_EXPERIMENTAL_USE_BUFFER_STORE_OOB_CHECK_OFFSET_TRICK 1
#define CK_EXPERIMENTAL_USE_BUFFER_ATOMIC_ADD_OOB_CHECK_OFFSET_TRICK 1 #define CK_EXPERIMENTAL_USE_BUFFER_ATOMIC_ADD_OOB_CHECK_OFFSET_TRICK 1
#define CK_EXPERIMENTAL_USE_BUFFER_ATOMIC_MAX_OOB_CHECK_OFFSET_TRICK 1
// experimental feature: in-regsiter sub-dword transpose // experimental feature: in-regsiter sub-dword transpose
#define CK_EXPERIMENTAL_USE_IN_REGISTER_SUB_DWORD_TRANSPOSE 1 #define CK_EXPERIMENTAL_USE_IN_REGISTER_SUB_DWORD_TRANSPOSE 1
...@@ -142,9 +149,23 @@ enum struct InMemoryDataOperationEnum ...@@ -142,9 +149,23 @@ enum struct InMemoryDataOperationEnum
{ {
Set, Set,
AtomicAdd, AtomicAdd,
AtomicMax,
Add Add
}; };
template <InMemoryDataOperationEnum... Is>
struct InMemoryDataOperationEnumSequence
{
static constexpr int mSize = sizeof...(Is);
__host__ __device__ static constexpr InMemoryDataOperationEnum At(int I)
{
// the last dummy element is to prevent compiler complain about empty array, when mSize = 0
const InMemoryDataOperationEnum mData[mSize + 1] = {Is..., InMemoryDataOperationEnum::Set};
return mData[I];
}
};
// TODO: no longer needed, remove this // TODO: no longer needed, remove this
enum struct ActivTypeEnum enum struct ActivTypeEnum
{ {
......
#pragma once #pragma once
#cmakedefine01 CK_TIME_KERNEL #define CK_TIME_KERNEL 1
#pragma once
namespace ck {
namespace tensor_operation {
namespace device {
enum struct ConvolutionBackwardWeightSpecialization
{
Default,
Filter1x1Stride1Pad0,
Filter1x1Pad0,
OddC,
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -243,44 +243,6 @@ struct DeviceBatchedGemmXdl ...@@ -243,44 +243,6 @@ struct DeviceBatchedGemmXdl
using BGridDesc_K0_N_K1 = decltype(MakeBGridDescriptor_K0_N_K1(1, 1, 1)); using BGridDesc_K0_N_K1 = decltype(MakeBGridDescriptor_K0_N_K1(1, 1, 1));
using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1)); using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
static constexpr auto MakeBlock2CTileMap(index_t batch_count,
const CGridDesc_M_N& c_grid_desc_m_n,
index_t M01,
index_t N01)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
const auto M00 = M0 / M01;
const auto N00 = N0 / N01;
const auto g_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_insert_transform(batch_count),
make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<>{}, Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1, 3>{}, Sequence<2, 4>{}));
const auto globalblockid_to_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(batch_count, M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto globalblockid_to_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(g_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
globalblockid_to_m00_m01_n00_n01_block_cluster_adaptor);
return globalblockid_to_m0_n0_block_cluster_adaptor;
}
struct ComputePtrOffsetOfStridedBatch struct ComputePtrOffsetOfStridedBatch
{ {
ComputePtrOffsetOfStridedBatch(index_t BatchStrideA, ComputePtrOffsetOfStridedBatch(index_t BatchStrideA,
...@@ -354,7 +316,7 @@ struct DeviceBatchedGemmXdl ...@@ -354,7 +316,7 @@ struct DeviceBatchedGemmXdl
using CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 = using CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 =
decltype(GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(CGridDesc_M_N{})); decltype(GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(CGridDesc_M_N{}));
using Block2CTileMap = decltype(MakeBlock2CTileMap(1, CGridDesc_M_N{}, 1, 1)); using Block2CTileMap = typename GridwiseGemm::DefaultBlock2CTileMap;
// Argument // Argument
struct Argument : public BaseArgument struct Argument : public BaseArgument
...@@ -388,20 +350,21 @@ struct DeviceBatchedGemmXdl ...@@ -388,20 +350,21 @@ struct DeviceBatchedGemmXdl
type_convert<index_t>(a_grid_desc_k0_m_k1_.GetElementSpaceSize()), type_convert<index_t>(a_grid_desc_k0_m_k1_.GetElementSpaceSize()),
type_convert<index_t>(b_grid_desc_k0_n_k1_.GetElementSpaceSize()), type_convert<index_t>(b_grid_desc_k0_n_k1_.GetElementSpaceSize()),
type_convert<index_t>(c_grid_desc_m_n_.GetElementSpaceSize())}, type_convert<index_t>(c_grid_desc_m_n_.GetElementSpaceSize())},
block_2_ctile_map_{}, block_2_ctile_map_{
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01)},
M01_{M01}, M01_{M01},
N01_{N01}, N01_{N01},
a_element_op_{a_element_op}, a_element_op_{a_element_op},
b_element_op_{b_element_op}, b_element_op_{b_element_op},
c_element_op_{c_element_op} c_element_op_{c_element_op}
{ {
if(GridwiseGemm::CheckValidity( if(GridwiseGemm::CheckValidity(a_grid_desc_k0_m_k1_,
a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_)) b_grid_desc_k0_n_k1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{ {
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ = c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_); GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_);
block_2_ctile_map_ = MakeBlock2CTileMap(BatchCount, c_grid_desc_m_n_, M01, N01);
} }
} }
...@@ -446,15 +409,14 @@ struct DeviceBatchedGemmXdl ...@@ -446,15 +409,14 @@ struct DeviceBatchedGemmXdl
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_))
arg.N01_))
{ {
throw std::runtime_error( throw std::runtime_error(
"wrong! GridwiseBatchedGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting"); "wrong! GridwiseBatchedGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting");
} }
const index_t grid_size = const index_t grid_size =
GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_) * arg.BatchCount_; arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_) * arg.BatchCount_;
const auto K = const auto K =
arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2); arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2);
...@@ -552,8 +514,7 @@ struct DeviceBatchedGemmXdl ...@@ -552,8 +514,7 @@ struct DeviceBatchedGemmXdl
return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_);
arg.N01_);
} }
// polymorphic // polymorphic
......
#pragma once
#include <iostream>
#include <vector>
#include "device.hpp"
#include "device_base.hpp"
#include "gridwise_binary_elementwise_1d.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ADataType,
typename BDataType,
typename CDataType,
typename ComputeDataType,
typename ElementwiseFunctor,
index_t Dim,
index_t ScalarPerVector>
struct DeviceBinaryElementwise : public BaseOperator
{
static constexpr auto I0 = Number<0>{};
template <typename Desc_M0>
static auto PadDescriptor_M0_1d(Desc_M0 desc_m0, index_t gridSize, index_t blockSize)
{
const auto m0 = desc_m0.GetLength(I0);
const index_t loop_step = gridSize * blockSize * ScalarPerVector;
const auto pad = math::integer_least_multiple(m0, loop_step) - m0;
const auto desc_m0_pad =
transform_tensor_descriptor(desc_m0,
make_tuple(make_right_pad_transform(m0, pad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return desc_m0_pad;
}
static auto MakeDescriptor_M0(const std::vector<index_t>& shape,
const std::vector<index_t>& stride,
index_t gridSize,
index_t blockSize)
{
auto tupleOfShape = generate_tuple([&](auto I) { return shape[I]; }, Number<Dim>{});
auto tupleOfStride = generate_tuple([&](auto I) { return stride[I]; }, Number<Dim>{});
// nd desc - [s0, s1, s2, ...]
const auto desc = make_naive_tensor_descriptor(tupleOfShape, tupleOfStride);
// merge nd to 1d desc - [s0 * s1 * ...]
if constexpr(Dim > 1)
{
const auto desc_m0 = transform_tensor_descriptor(
desc,
make_tuple(make_merge_transform(tupleOfShape)),
make_tuple(generate_sequence_v2([&](auto I) { return I; }, Number<Dim>{})),
make_tuple(Sequence<0>{}));
return PadDescriptor_M0_1d(desc_m0, gridSize, blockSize);
}
else
return PadDescriptor_M0_1d(desc, gridSize, blockSize);
}
using GridDesc_M0 = decltype(MakeDescriptor_M0({1, 1}, {1, 1}, 1, 1));
using GridwiseBinEltwise = GridwiseBinaryElementwise_1D<ADataType,
BDataType,
CDataType,
ComputeDataType,
GridDesc_M0,
ElementwiseFunctor,
ScalarPerVector>;
struct Argument : public BaseArgument
{
Argument(const ADataType* p_a,
const BDataType* p_b,
CDataType* p_c,
const std::vector<index_t>& shape,
const std::vector<index_t>& stride_a,
const std::vector<index_t>& stride_b,
const std::vector<index_t>& stride_c,
ElementwiseFunctor functor)
: p_a_(p_a),
p_b_(p_b),
p_c_(p_c),
shape_(shape),
functor_(functor),
blockSize_(256),
gridSize_(120) // FIXME - Calculate the grid size by number of CU in the future
{
a_grid_desc_m0_ = MakeDescriptor_M0(shape, stride_a, gridSize_, blockSize_);
b_grid_desc_m0_ = MakeDescriptor_M0(shape, stride_b, gridSize_, blockSize_);
c_grid_desc_m0_ = MakeDescriptor_M0(shape, stride_c, gridSize_, blockSize_);
}
const ADataType* p_a_;
const BDataType* p_b_;
CDataType* p_c_;
std::vector<int> shape_;
GridDesc_M0 a_grid_desc_m0_;
GridDesc_M0 b_grid_desc_m0_;
GridDesc_M0 c_grid_desc_m0_;
ElementwiseFunctor functor_;
index_t blockSize_;
index_t gridSize_;
};
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
const auto kernel = kernel_binary_elementwise_1d<GridwiseBinEltwise,
ADataType,
BDataType,
CDataType,
GridDesc_M0,
ElementwiseFunctor>;
float elapsed_time = launch_and_time_kernel(stream_config,
kernel,
dim3(arg.gridSize_),
dim3(arg.blockSize_),
0,
arg.p_a_,
arg.p_b_,
arg.p_c_,
arg.a_grid_desc_m0_,
arg.b_grid_desc_m0_,
arg.c_grid_desc_m0_,
arg.functor_);
return elapsed_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
const Argument* pArg = dynamic_cast<const Argument*>(p_arg);
if(pArg == nullptr)
return false;
if(pArg->shape_.back() % ScalarPerVector != 0)
return false;
return true;
};
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
std::vector<index_t> shape,
std::vector<index_t> stride_a,
std::vector<index_t> stride_b,
std::vector<index_t> stride_c,
ElementwiseFunctor functor)
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c),
shape,
stride_a,
stride_b,
stride_c,
functor);
}
std::unique_ptr<BaseInvoker> MakeInvokerPointer() { return std::make_unique<Invoker>(); }
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceBinaryElementwise"
<< "<"
<< "ScalarPerVector = " << ScalarPerVector
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -11,7 +11,7 @@ ...@@ -11,7 +11,7 @@
#include "tensor_layout.hpp" #include "tensor_layout.hpp"
#include "tensor_descriptor.hpp" #include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp" #include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r4r2.hpp" #include "gridwise_gemm_xdlops_bwd_weight.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -81,6 +81,22 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -81,6 +81,22 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
static constexpr auto K1Number = Number<K1>{}; static constexpr auto K1Number = Number<K1>{};
static constexpr auto GemmK1Number = K1Number; static constexpr auto GemmK1Number = K1Number;
static constexpr auto N1Number = K1Number;
// Bytes per 32 lds bank: 32 * 4 bytes
static constexpr auto BankLength = 128;
static constexpr auto ElePerBank = BankLength / sizeof(ADataType);
// M1 & M0
static constexpr auto ABlockLdsM1PerBlock = ElePerBank / K1;
static constexpr auto ABlockLdsM0PerBlock = MPerBlock / ABlockLdsM1PerBlock;
static constexpr auto ABlockLdsM1Padding = 4;
// N1 & N0
static constexpr auto BBlockLdsN1PerBlock = ElePerBank / K1;
static constexpr auto BBlockLdsN0PerBlock = NPerBlock / BBlockLdsN1PerBlock;
static constexpr auto BBlockLdsN1Padding = 4;
static auto static auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(ck::index_t N, MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(ck::index_t N,
ck::index_t K, ck::index_t K,
...@@ -125,27 +141,51 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -125,27 +141,51 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
const index_t GemmK0 = const index_t GemmK0 =
math::integer_divide_ceil(GemmKTotal, GemmK1Number * K0PerBlock * GemmKBatch) * math::integer_divide_ceil(GemmKTotal, GemmK1Number * K0PerBlock * GemmKBatch) *
K0PerBlock; K0PerBlock;
const index_t GemmKPad = GemmKBatch * GemmK0 * GemmK1Number;
const auto out_gemmktotal_gemmm_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Ho * Wo, K));
const auto in_n_hi_wi_c_grid_desc = const auto in_n_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Hi, Wi, C)); make_naive_tensor_descriptor_packed(make_tuple(N, Hi, Wi, C));
// A: output tensor // A: output tensor
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor( const index_t N0 = N / N1Number;
out_gemmktotal_gemmm_grid_desc, const index_t GemmK0Total = N0 * Ho * Wo;
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)), const index_t GemmK0S =
make_tuple(Sequence<0>{}, Sequence<1>{}), math::integer_divide_ceil(GemmK0Total, K0PerBlock * GemmKBatch) * K0PerBlock;
make_tuple(Sequence<0>{}, Sequence<1>{})); const index_t GemmK0Pad = GemmKBatch * GemmK0S;
const auto out_n_ho_wo_k_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Ho * Wo, K));
const auto out_n0_ho_wo_k_n1_grid_desc =
transform_tensor_descriptor(out_n_ho_wo_k_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(N0, N1Number)),
make_pass_through_transform(Ho * Wo),
make_pass_through_transform(K)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0, 3>{}, Sequence<1>{}, Sequence<2>{}));
const auto out_gemmk0total_gemmm_gemmk1_grid_desc =
transform_tensor_descriptor(out_n0_ho_wo_k_n1_grid_desc,
make_tuple(make_merge_transform(make_tuple(N0, Ho * Wo)),
make_pass_through_transform(K),
make_pass_through_transform(N1Number)),
make_tuple(Sequence<0, 1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto out_gemmk0pad_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmk0total_gemmm_gemmk1_grid_desc,
make_tuple(make_right_pad_transform(GemmK0Total, GemmK0Pad - GemmK0Total),
make_pass_through_transform(GemmM),
make_pass_through_transform(N1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor( const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc, out_gemmk0pad_gemmm_gemmk1_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)), make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0)),
make_pass_through_transform(GemmM)), make_pass_through_transform(GemmM),
make_tuple(Sequence<0>{}, Sequence<1>{}), make_pass_through_transform(N1Number)),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{})); make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2>{}, Sequence<3>{}));
// B: input tensor // B: input tensor
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor( const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
...@@ -167,26 +207,50 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -167,26 +207,50 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}), make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{})); make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_gemmktotal_gemmn_grid_desc = const auto in_n0_y_ho_x_wo_c_n1_grid_desc =
transform_tensor_descriptor(in_n_y_ho_x_wo_c_grid_desc, transform_tensor_descriptor(in_n_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(Y, X, C)), make_tuple(make_unmerge_transform(make_tuple(N0, N1Number)),
make_merge_transform(make_tuple(N, Ho, Wo))), make_pass_through_transform(Y),
make_tuple(Sequence<1, 3, 5>{}, Sequence<0, 2, 4>{}), make_pass_through_transform(Ho),
make_tuple(Sequence<1>{}, Sequence<0>{})); make_pass_through_transform(X),
make_pass_through_transform(Wo),
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor( make_pass_through_transform(C)),
in_gemmktotal_gemmn_grid_desc, make_tuple(Sequence<0>{},
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal), Sequence<1>{},
make_pass_through_transform(GemmN)), Sequence<2>{},
make_tuple(Sequence<0>{}, Sequence<1>{}), Sequence<3>{},
make_tuple(Sequence<0>{}, Sequence<1>{})); Sequence<4>{},
Sequence<5>{}),
make_tuple(Sequence<0, 6>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{}));
const auto in_gemmk0total_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_n0_y_ho_x_wo_c_n1_grid_desc,
make_tuple(make_merge_transform(make_tuple(N0, Ho, Wo)),
make_merge_transform(make_tuple(Y, X, C)),
make_pass_through_transform(N1Number)),
make_tuple(Sequence<0, 2, 4>{}, Sequence<1, 3, 5>{}, Sequence<6>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_gemmk0pad_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmk0total_gemmn_gemmk1_grid_desc,
make_tuple(make_right_pad_transform(GemmK0Total, GemmK0Pad - GemmK0Total),
make_pass_through_transform(GemmN),
make_pass_through_transform(N1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor( const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc, in_gemmk0pad_gemmn_gemmk1_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)), make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0)),
make_pass_through_transform(GemmN)), make_pass_through_transform(GemmN),
make_tuple(Sequence<0>{}, Sequence<1>{}), make_pass_through_transform(N1Number)),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{})); make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2>{}, Sequence<3>{}));
// C: weight tensor // C: weight tensor
const auto wei_gemmm_gemmn_grid_desc = const auto wei_gemmm_gemmn_grid_desc =
...@@ -205,7 +269,7 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -205,7 +269,7 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>; using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>;
// GridwiseGemm // GridwiseGemm
using GridwiseGemm = GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2< using GridwiseGemm = GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight<
BlockSize, BlockSize,
ADataType, // TODO: distinguish A/B datatype ADataType, // TODO: distinguish A/B datatype
AccDataType, AccDataType,
...@@ -233,6 +297,9 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -233,6 +297,9 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
ABlockTransferDstScalarPerVector_K1, ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun, false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM, ABlockLdsAddExtraM,
ABlockLdsM1PerBlock,
ABlockLdsM0PerBlock,
ABlockLdsM1Padding,
BBlockTransferThreadClusterLengths_K0_N_K1, BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder, BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder, BBlockTransferSrcAccessOrder,
...@@ -241,12 +308,17 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -241,12 +308,17 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
BBlockTransferDstScalarPerVector_K1, BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun, false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN, BBlockLdsAddExtraN,
BBlockLdsN1PerBlock,
BBlockLdsN0PerBlock,
BBlockLdsN1Padding,
CShuffleMXdlPerWavePerShuffle, CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle, CShuffleNXdlPerWavePerShuffle,
CBlockTransferScalarPerVector_NWaveNPerXdl, CBlockTransferScalarPerVector_NWaveNPerXdl,
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock>; CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
true,
true>;
using GridwiseGemmAtomicAdd = GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2< using GridwiseGemmAtomicAdd = GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight<
BlockSize, BlockSize,
ADataType, // TODO: distinguish A/B datatype ADataType, // TODO: distinguish A/B datatype
AccDataType, AccDataType,
...@@ -274,6 +346,9 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -274,6 +346,9 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
ABlockTransferDstScalarPerVector_K1, ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun, false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM, ABlockLdsAddExtraM,
ABlockLdsM1PerBlock,
ABlockLdsM0PerBlock,
ABlockLdsM1Padding,
BBlockTransferThreadClusterLengths_K0_N_K1, BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder, BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder, BBlockTransferSrcAccessOrder,
...@@ -282,10 +357,15 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -282,10 +357,15 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
BBlockTransferDstScalarPerVector_K1, BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun, false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN, BBlockLdsAddExtraN,
BBlockLdsN1PerBlock,
BBlockLdsN0PerBlock,
BBlockLdsN1Padding,
CShuffleMXdlPerWavePerShuffle, CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle, CShuffleNXdlPerWavePerShuffle,
CBlockTransferScalarPerVector_NWaveNPerXdl, CBlockTransferScalarPerVector_NWaveNPerXdl,
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock>; CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
true,
true>;
// Argument // Argument
using CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock = using CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
decltype(GridwiseGemm::MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(CGridDesc_M_N{})); decltype(GridwiseGemm::MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(CGridDesc_M_N{}));
...@@ -353,17 +433,16 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -353,17 +433,16 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
b_grid_desc_kbatch_k0_n_k1_ = descs[I1]; b_grid_desc_kbatch_k0_n_k1_ = descs[I1];
c_grid_desc_m_n_ = descs[I2]; c_grid_desc_m_n_ = descs[I2];
block_2_ctile_map_ =
GridwiseGemm::MakeCBlockClusterAdaptor(c_grid_desc_m_n_, M01, N01, k_batch_);
if(GridwiseGemm::CheckValidity(a_grid_desc_kbatch_k0_m_k1_, if(GridwiseGemm::CheckValidity(a_grid_desc_kbatch_k0_m_k1_,
b_grid_desc_kbatch_k0_n_k1_, b_grid_desc_kbatch_k0_n_k1_,
c_grid_desc_m_n_, c_grid_desc_m_n_,
M01_, block_2_ctile_map_))
N01_))
{ {
c_grid_desc_mblock_mperblock_nblock_nperblock_ = c_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(c_grid_desc_m_n_); GridwiseGemm::MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(c_grid_desc_m_n_);
block_2_ctile_map_ =
GridwiseGemm::MakeCBlockClusterAdaptor(c_grid_desc_m_n_, M01, N01, k_batch_);
} }
} }
...@@ -422,14 +501,14 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -422,14 +501,14 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_, if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_, arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_))
arg.N01_))
{ {
throw std::runtime_error( throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v3r1 has invalid setting"); "wrong! GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight has invalid setting");
} }
const auto kbatch = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I0); const auto kbatch = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I0);
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_, kbatch); const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K0 = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1); const auto K0 = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1);
...@@ -444,28 +523,29 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -444,28 +523,29 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_.GetElementSpaceSize() * arg.c_grid_desc_mblock_mperblock_nblock_nperblock_.GetElementSpaceSize() *
sizeof(CDataType))); sizeof(CDataType)));
launch_and_time_kernel(stream_config, ave_time =
kernel, launch_and_time_kernel(stream_config,
dim3(grid_size), kernel,
dim3(BlockSize), dim3(grid_size),
0, dim3(BlockSize),
arg.p_a_grid_, 0,
arg.p_b_grid_, arg.p_a_grid_,
arg.p_c_grid_, arg.p_b_grid_,
arg.a_grid_desc_kbatch_k0_m_k1_, arg.p_c_grid_,
arg.b_grid_desc_kbatch_k0_n_k1_, arg.a_grid_desc_kbatch_k0_m_k1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_, arg.b_grid_desc_kbatch_k0_n_k1_,
arg.a_element_op_, arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.b_element_op_, arg.a_element_op_,
arg.c_element_op_, arg.b_element_op_,
arg.block_2_ctile_map_); arg.c_element_op_,
arg.block_2_ctile_map_);
}; };
if(has_main_k0_block_loop) if(has_main_k0_block_loop)
{ {
if(kbatch == 1) if(kbatch == 1)
{ {
const auto kernel = kernel_gemm_xdlops_v2r4r2< const auto kernel = kernel_gemm_xdlops_bwd_weight<
GridwiseGemm, GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype ADataType, // TODO: distiguish A/B datatype
CDataType, CDataType,
...@@ -482,7 +562,7 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -482,7 +562,7 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
} }
else else
{ {
const auto kernel = kernel_gemm_xdlops_v2r4r2< const auto kernel = kernel_gemm_xdlops_bwd_weight<
GridwiseGemmAtomicAdd, GridwiseGemmAtomicAdd,
ADataType, // TODO: distiguish A/B datatype ADataType, // TODO: distiguish A/B datatype
CDataType, CDataType,
...@@ -502,7 +582,7 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -502,7 +582,7 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
{ {
if(kbatch == 1) if(kbatch == 1)
{ {
const auto kernel = kernel_gemm_xdlops_v2r4r2< const auto kernel = kernel_gemm_xdlops_bwd_weight<
GridwiseGemm, GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype ADataType, // TODO: distiguish A/B datatype
CDataType, CDataType,
...@@ -519,7 +599,7 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -519,7 +599,7 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
} }
else else
{ {
const auto kernel = kernel_gemm_xdlops_v2r4r2< const auto kernel = kernel_gemm_xdlops_bwd_weight<
GridwiseGemmAtomicAdd, GridwiseGemmAtomicAdd,
ADataType, // TODO: distiguish A/B datatype ADataType, // TODO: distiguish A/B datatype
CDataType, CDataType,
...@@ -562,6 +642,12 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -562,6 +642,12 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
return false; return false;
} }
// unmerge N to N0 and N1, where N1 equals to K1
if(!(arg.Conv_N_ % K1 == 0))
{
return false;
}
// vector store C matrix into global memory // vector store C matrix into global memory
if(!(arg.Conv_C_ % CBlockTransferScalarPerVector_NWaveNPerXdl == 0)) if(!(arg.Conv_C_ % CBlockTransferScalarPerVector_NWaveNPerXdl == 0))
{ {
...@@ -572,8 +658,7 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -572,8 +658,7 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
return GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_, return GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_, arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_);
arg.N01_);
} }
bool IsSupportedArgument(const BaseArgument* p_arg) override bool IsSupportedArgument(const BaseArgument* p_arg) override
......
...@@ -486,13 +486,16 @@ struct DeviceConv2dBwdDataXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -486,13 +486,16 @@ struct DeviceConv2dBwdDataXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
b_grid_desc_k0_n_k1_container_.push_back(descs[I1]); b_grid_desc_k0_n_k1_container_.push_back(descs[I1]);
c_grid_desc_m_n_container_.push_back(descs[I2]); c_grid_desc_m_n_container_.push_back(descs[I2]);
if(GridwiseGemm::CheckValidity(descs[I0], descs[I1], descs[I2], M01_, N01_)) auto block_2_ctile_map =
GridwiseGemm::MakeDefaultBlock2CTileMap(descs[I2], M01, N01);
if(GridwiseGemm::CheckValidity(
descs[I0], descs[I1], descs[I2], block_2_ctile_map))
{ {
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_.push_back( c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_.push_back(
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(descs[I2])); GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(descs[I2]));
block_2_ctile_map_container_.push_back( block_2_ctile_map_container_.push_back(block_2_ctile_map);
GridwiseGemm::MakeDefaultBlock2CTileMap(descs[I2], M01, N01));
} }
} }
} }
...@@ -572,15 +575,14 @@ struct DeviceConv2dBwdDataXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -572,15 +575,14 @@ struct DeviceConv2dBwdDataXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_container_[i], if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_container_[i],
arg.b_grid_desc_k0_n_k1_container_[i], arg.b_grid_desc_k0_n_k1_container_[i],
arg.c_grid_desc_m_n_container_[i], arg.c_grid_desc_m_n_container_[i],
arg.M01_, arg.block_2_ctile_map_container_[i]))
arg.N01_))
{ {
throw std::runtime_error( throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v3r1 has invalid setting"); "wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v3r1 has invalid setting");
} }
const index_t grid_size = const index_t grid_size = arg.block_2_ctile_map_container_[i].CalculateGridSize(
GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_container_[i]); arg.c_grid_desc_m_n_container_[i]);
const auto K = arg.a_grid_desc_k0_m_k1_container_[i].GetLength(I0) * const auto K = arg.a_grid_desc_k0_m_k1_container_[i].GetLength(I0) *
arg.a_grid_desc_k0_m_k1_container_[i].GetLength(I2); arg.a_grid_desc_k0_m_k1_container_[i].GetLength(I2);
...@@ -703,8 +705,7 @@ struct DeviceConv2dBwdDataXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -703,8 +705,7 @@ struct DeviceConv2dBwdDataXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_container_[i], if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_container_[i],
arg.b_grid_desc_k0_n_k1_container_[i], arg.b_grid_desc_k0_n_k1_container_[i],
arg.c_grid_desc_m_n_container_[i], arg.c_grid_desc_m_n_container_[i],
arg.M01_, arg.block_2_ctile_map_container_[i]))
arg.N01_))
{ {
return false; return false;
} }
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment