Commit 4769425e authored by Chao Liu's avatar Chao Liu
Browse files

Merge remote-tracking branch 'origin/develop' into gelu

parents b548c0be ba58a93f
...@@ -540,7 +540,8 @@ struct ...@@ -540,7 +540,8 @@ struct
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_{}, c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_{},
c0_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_{}, c0_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_{},
c1_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_{}, c1_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_{},
block_2_ctile_map_{}, block_2_ctile_map_{
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01)},
M01_{M01}, M01_{M01},
N01_{N01}, N01_{N01},
in_element_op_{in_element_op}, in_element_op_{in_element_op},
...@@ -575,8 +576,10 @@ struct ...@@ -575,8 +576,10 @@ struct
c0_grid_desc_m_n_ = descs[I3]; c0_grid_desc_m_n_ = descs[I3];
c1_grid_desc_m_n_ = descs[I4]; c1_grid_desc_m_n_ = descs[I4];
if(GridwiseGemm::CheckValidity( if(GridwiseGemm::CheckValidity(a_grid_desc_k0_m_k1_,
a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_)) b_grid_desc_k0_n_k1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{ {
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_ = c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_ =
GridwiseGemm:: GridwiseGemm::
...@@ -592,9 +595,6 @@ struct ...@@ -592,9 +595,6 @@ struct
GridwiseGemm:: GridwiseGemm::
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl( MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c1_grid_desc_m_n_); c1_grid_desc_m_n_);
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
} }
} }
...@@ -689,14 +689,14 @@ struct ...@@ -689,14 +689,14 @@ struct
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_))
arg.N01_))
{ {
throw std::runtime_error( throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v3r3 has invalid setting"); "wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v3r3 has invalid setting");
} }
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_); const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K = const auto K =
arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2); arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2);
...@@ -852,8 +852,7 @@ struct ...@@ -852,8 +852,7 @@ struct
return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_);
arg.N01_);
} }
bool IsSupportedArgument(const BaseArgument* p_arg) override bool IsSupportedArgument(const BaseArgument* p_arg) override
......
...@@ -548,9 +548,13 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X ...@@ -548,9 +548,13 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X
b_grid_desc_k0_n_k1_ = descs[I1]; b_grid_desc_k0_n_k1_ = descs[I1];
c_grid_desc_m_n_ = descs[I2]; c_grid_desc_m_n_ = descs[I2];
c0_grid_desc_m_n_ = descs[I3]; c0_grid_desc_m_n_ = descs[I3];
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
if(GridwiseGemm::CheckValidity( if(GridwiseGemm::CheckValidity(a_grid_desc_k0_m_k1_,
a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_)) b_grid_desc_k0_n_k1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{ {
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_ = c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_ =
GridwiseGemm:: GridwiseGemm::
...@@ -561,9 +565,6 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X ...@@ -561,9 +565,6 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X
GridwiseGemm:: GridwiseGemm::
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl( MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c0_grid_desc_m_n_); c0_grid_desc_m_n_);
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
} }
} }
...@@ -649,14 +650,14 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X ...@@ -649,14 +650,14 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_))
arg.N01_))
{ {
throw std::runtime_error( throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v3r2 has invalid setting"); "wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v3r2 has invalid setting");
} }
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_); const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K = const auto K =
arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2); arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2);
...@@ -802,8 +803,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X ...@@ -802,8 +803,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X
return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_);
arg.N01_);
} }
bool IsSupportedArgument(const BaseArgument* p_arg) override bool IsSupportedArgument(const BaseArgument* p_arg) override
......
...@@ -520,18 +520,20 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W ...@@ -520,18 +520,20 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
a_grid_desc_k0_m_k1_ = descs[I0]; a_grid_desc_k0_m_k1_ = descs[I0];
b_grid_desc_k0_n_k1_ = descs[I1]; b_grid_desc_k0_n_k1_ = descs[I1];
c_grid_desc_m_n_ = descs[I2]; block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
if(GridwiseGemm::CheckValidity( c_grid_desc_m_n_ = descs[I2];
a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_))
if(GridwiseGemm::CheckValidity(a_grid_desc_k0_m_k1_,
b_grid_desc_k0_n_k1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{ {
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_ = c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_ =
GridwiseGemm:: GridwiseGemm::
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl( MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c_grid_desc_m_n_); c_grid_desc_m_n_);
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
} }
} }
...@@ -631,14 +633,14 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W ...@@ -631,14 +633,14 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_))
arg.N01_))
{ {
throw std::runtime_error( throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v3r1 has invalid setting"); "wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v3r1 has invalid setting");
} }
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_); const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K = const auto K =
arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2); arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2);
...@@ -774,8 +776,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W ...@@ -774,8 +776,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_);
arg.N01_);
} }
bool IsSupportedArgument(const BaseArgument* p_arg) override bool IsSupportedArgument(const BaseArgument* p_arg) override
......
...@@ -408,15 +408,16 @@ struct DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -408,15 +408,16 @@ struct DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
a_grid_desc_k0_m_k1_ = descs[I0]; a_grid_desc_k0_m_k1_ = descs[I0];
b_grid_desc_k0_n_k1_ = descs[I1]; b_grid_desc_k0_n_k1_ = descs[I1];
c_grid_desc_m_n_ = descs[I2]; c_grid_desc_m_n_ = descs[I2];
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
if(GridwiseGemm::CheckValidity( if(GridwiseGemm::CheckValidity(a_grid_desc_k0_m_k1_,
a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_)) b_grid_desc_k0_n_k1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{ {
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ = c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_); GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_);
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
} }
} }
...@@ -469,14 +470,14 @@ struct DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -469,14 +470,14 @@ struct DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_))
arg.N01_))
{ {
throw std::runtime_error( throw std::runtime_error(
"wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 has invalid setting"); "wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 has invalid setting");
} }
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_); const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K = const auto K =
arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2); arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2);
...@@ -606,8 +607,7 @@ struct DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -606,8 +607,7 @@ struct DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_);
arg.N01_);
} }
bool IsSupportedArgument(const BaseArgument* p_arg) override bool IsSupportedArgument(const BaseArgument* p_arg) override
......
...@@ -259,50 +259,6 @@ struct DeviceConv3dFwdXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho_Wo_ ...@@ -259,50 +259,6 @@ struct DeviceConv3dFwdXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho_Wo_
using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I1])>; using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I1])>;
using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>; using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>;
struct Block2CTileMapMaker
{
Block2CTileMapMaker(index_t num_batches) : num_batches_(num_batches) {}
__host__ __device__ constexpr auto
MakeBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n, index_t M01, index_t N01)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
const auto M00 = M0 / M01;
const auto N00 = N0 / N01;
const auto g_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_insert_transform(num_batches_),
make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<>{}, Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1, 3>{}, Sequence<2, 4>{}));
const auto globalblockid_to_g_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(num_batches_, M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto globalblockid_to_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(g_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
globalblockid_to_g_m00_m01_n00_n01_block_cluster_adaptor);
return globalblockid_to_m0_n0_block_cluster_adaptor;
}
private:
index_t num_batches_;
};
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3< using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3<
BlockSize, BlockSize,
InDataType, InDataType,
...@@ -345,8 +301,7 @@ struct DeviceConv3dFwdXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho_Wo_ ...@@ -345,8 +301,7 @@ struct DeviceConv3dFwdXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho_Wo_
using CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 = using CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 =
decltype(GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(CGridDesc_M_N{})); decltype(GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(CGridDesc_M_N{}));
using Block2CTileMap = using Block2CTileMap = typename GridwiseGemm::DefaultBlock2CTileMap;
decltype(Block2CTileMapMaker{1}.MakeBlock2CTileMap(CGridDesc_M_N{}, 1, 1));
// Argument // Argument
struct Argument : public BaseArgument struct Argument : public BaseArgument
...@@ -398,18 +353,20 @@ struct DeviceConv3dFwdXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho_Wo_ ...@@ -398,18 +353,20 @@ struct DeviceConv3dFwdXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho_Wo_
b_grid_desc_k0_n_k1_ = descs[I1]; b_grid_desc_k0_n_k1_ = descs[I1];
c_grid_desc_m_n_ = descs[I2]; c_grid_desc_m_n_ = descs[I2];
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
a_batch_stride_ = a_grid_desc_k0_m_k1_.GetElementSpaceSize(); a_batch_stride_ = a_grid_desc_k0_m_k1_.GetElementSpaceSize();
b_batch_stride_ = 0; b_batch_stride_ = 0;
c_batch_stride_ = c_grid_desc_m_n_.GetElementSpaceSize(); c_batch_stride_ = c_grid_desc_m_n_.GetElementSpaceSize();
if(GridwiseGemm::CheckValidity( if(GridwiseGemm::CheckValidity(a_grid_desc_k0_m_k1_,
a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_)) b_grid_desc_k0_n_k1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{ {
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ = c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_); GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_);
block_2_ctile_map_ = Block2CTileMapMaker{num_subbatches_}.MakeBlock2CTileMap(
c_grid_desc_m_n_, M01, N01);
} }
} }
...@@ -457,16 +414,15 @@ struct DeviceConv3dFwdXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho_Wo_ ...@@ -457,16 +414,15 @@ struct DeviceConv3dFwdXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho_Wo_
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_))
arg.N01_))
{ {
throw std::runtime_error( throw std::runtime_error(
"wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 has invalid setting"); "wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 has invalid setting");
} }
// todo: grid_size times arg.num_subbatches_
const index_t grid_size = const index_t grid_size =
GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_) * arg.num_subbatches_; arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_) *
arg.num_subbatches_;
const auto K0 = arg.a_grid_desc_k0_m_k1_.GetLength(I0); const auto K0 = arg.a_grid_desc_k0_m_k1_.GetLength(I0);
...@@ -565,8 +521,7 @@ struct DeviceConv3dFwdXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho_Wo_ ...@@ -565,8 +521,7 @@ struct DeviceConv3dFwdXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho_Wo_
return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_);
arg.N01_);
} }
// polymorphic // polymorphic
......
#pragma once
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_conv_backward_weight.hpp"
#include "convolution_backward_weight_specialization.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_bwd_weight.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// out[N, Ho, Wo, K] = in[N, Hi, Wi, C] * wei[K, Y, X, C]
template <typename InDataType,
typename WeiDataType,
typename OutDataType,
typename AccDataType,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation,
ConvolutionBackwardWeightSpecialization ConvBackwardWeightSpecialization,
ck::index_t NumDimSpatial,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
ck::index_t MPerXdl,
ck::index_t NPerXdl,
ck::index_t MXdlPerWave,
ck::index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
bool ABlockLdsAddExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
bool BBlockLdsAddExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CBlockTransferScalarPerVector_NWaveNPerXdl>
struct DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
: public DeviceConvBwdWeight<InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation>
{
using DeviceOp =
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K;
using ADataType = OutDataType;
using BDataType = InDataType;
using CDataType = WeiDataType;
using AElementwiseOperation = OutElementwiseOperation;
using BElementwiseOperation = InElementwiseOperation;
using CElementwiseOperation = WeiElementwiseOperation;
// TODO make A/B datatype different
using ABDataType = InDataType;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto K1Number = Number<K1>{};
static constexpr auto GemmK1Number = K1Number;
// Bytes per 32 lds bank: 32 * 4 bytes
static constexpr auto BankLength = 128;
static constexpr auto ElePerBank = BankLength / sizeof(ADataType);
// M1 & M0
static constexpr auto ABlockLdsM1PerBlock = ElePerBank / K1;
static constexpr auto ABlockLdsM0PerBlock = MPerBlock / ABlockLdsM1PerBlock;
static constexpr auto ABlockLdsM1Padding = 4;
// N1 & N0
static constexpr auto BBlockLdsN1PerBlock = ElePerBank / K1;
static constexpr auto BBlockLdsN0PerBlock = NPerBlock / BBlockLdsN1PerBlock;
static constexpr auto BBlockLdsN1Padding = 4;
template <ck::index_t NDim, typename ck::enable_if<NDim == 1, bool>::type = false>
static auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
ck::index_t batch_k)
{
using namespace ck;
const index_t Wi = input_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[0];
const index_t X = filter_spatial_lengths[0];
const index_t ConvStrideW = conv_filter_strides[0];
const index_t ConvDilationW = conv_filter_dilations[0];
const index_t InLeftPadW = input_left_pads[0];
const index_t InRightPadW = input_right_pads[0];
const index_t GemmKTotal = N * Wo;
const index_t GemmM = K;
const index_t GemmN = C * X;
const index_t GemmKBatch = batch_k;
const index_t GemmK0 =
math::integer_divide_ceil(GemmKTotal, GemmK1Number * K0PerBlock * GemmKBatch) *
K0PerBlock;
const index_t GemmKPad = GemmKBatch * GemmK0 * GemmK1Number;
if constexpr(ConvBackwardWeightSpecialization ==
ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
// A: output tensor
const auto out_gemmktotal_gemmm_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Wo, K));
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// B: input tensor
const auto in_gemmktotal_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Wi, C));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// C: weight tensor
const auto wei_gemmm_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, X * C));
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc);
}
else
{
const auto out_gemmktotal_gemmm_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Wo, K));
const auto in_n_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Wi, C));
// A: output tensor
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// B: input tensor
const auto in_n_wip_c_grid_desc = transform_tensor_descriptor(
in_n_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_n_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
const auto in_gemmktotal_gemmn_grid_desc =
transform_tensor_descriptor(in_n_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(X, C)),
make_merge_transform(make_tuple(N, Wo))),
make_tuple(Sequence<1, 3>{}, Sequence<0, 2>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// C: weight tensor
const auto wei_gemmm_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, X * C));
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc);
}
}
template <ck::index_t NDim, typename ck::enable_if<NDim == 2, bool>::type = false>
static auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
ck::index_t batch_k)
{
using namespace ck;
const index_t Hi = input_spatial_lengths[0];
const index_t Wi = input_spatial_lengths[1];
const index_t Ho = output_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[1];
const index_t Y = filter_spatial_lengths[0];
const index_t X = filter_spatial_lengths[1];
const index_t ConvStrideH = conv_filter_strides[0];
const index_t ConvStrideW = conv_filter_strides[1];
const index_t ConvDilationH = conv_filter_dilations[0];
const index_t ConvDilationW = conv_filter_dilations[1];
const index_t InLeftPadH = input_left_pads[0];
const index_t InLeftPadW = input_left_pads[1];
const index_t InRightPadH = input_right_pads[0];
const index_t InRightPadW = input_right_pads[1];
const index_t GemmKTotal = N * Ho * Wo;
const index_t GemmM = K;
const index_t GemmN = C * X * Y;
const index_t GemmKBatch = batch_k;
const index_t GemmK0 =
math::integer_divide_ceil(GemmKTotal, GemmK1Number * K0PerBlock * GemmKBatch) *
K0PerBlock;
const index_t GemmKPad = GemmKBatch * GemmK0 * GemmK1Number;
if constexpr(ConvBackwardWeightSpecialization ==
ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
// A: output tensor
const auto out_gemmktotal_gemmm_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Ho * Wo, K));
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// B: input tensor
const auto in_gemmktotal_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Hi * Wi, C));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// C: weight tensor
const auto wei_gemmm_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, Y * X * C));
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc);
}
else
{
const auto out_gemmktotal_gemmm_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Ho * Wo, K));
const auto in_n_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Hi, Wi, C));
// A: output tensor
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// B: input tensor
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_gemmktotal_gemmn_grid_desc =
transform_tensor_descriptor(in_n_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(Y, X, C)),
make_merge_transform(make_tuple(N, Ho, Wo))),
make_tuple(Sequence<1, 3, 5>{}, Sequence<0, 2, 4>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// C: weight tensor
const auto wei_gemmm_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, Y * X * C));
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc);
}
}
template <ck::index_t NDim, typename ck::enable_if<NDim == 3, bool>::type = false>
static auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
ck::index_t batch_k)
{
using namespace ck;
const index_t Di = input_spatial_lengths[0];
const index_t Hi = input_spatial_lengths[2];
const index_t Wi = input_spatial_lengths[2];
const index_t Do = output_spatial_lengths[0];
const index_t Ho = output_spatial_lengths[1];
const index_t Wo = output_spatial_lengths[2];
const index_t Z = filter_spatial_lengths[0];
const index_t Y = filter_spatial_lengths[1];
const index_t X = filter_spatial_lengths[2];
const index_t ConvStrideD = conv_filter_strides[0];
const index_t ConvStrideH = conv_filter_strides[1];
const index_t ConvStrideW = conv_filter_strides[2];
const index_t ConvDilationD = conv_filter_dilations[0];
const index_t ConvDilationH = conv_filter_dilations[1];
const index_t ConvDilationW = conv_filter_dilations[2];
const index_t InLeftPadD = input_left_pads[0];
const index_t InLeftPadH = input_left_pads[1];
const index_t InLeftPadW = input_left_pads[2];
const index_t InRightPadD = input_right_pads[0];
const index_t InRightPadH = input_right_pads[1];
const index_t InRightPadW = input_right_pads[2];
const index_t GemmKTotal = N * Do * Ho * Wo;
const index_t GemmM = K;
const index_t GemmN = C * Z * X * Y;
const index_t GemmKBatch = batch_k;
const index_t GemmK0 =
math::integer_divide_ceil(GemmKTotal, GemmK1Number * K0PerBlock * GemmKBatch) *
K0PerBlock;
const index_t GemmKPad = GemmKBatch * GemmK0 * GemmK1Number;
if constexpr(ConvBackwardWeightSpecialization ==
ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
// A: output tensor
const auto out_gemmktotal_gemmm_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Do * Ho * Wo, K));
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// B: input tensor
const auto in_gemmktotal_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Di * Hi * Wi, C));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// C: weight tensor
const auto wei_gemmm_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, Z * Y * X * C));
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc);
}
else
{
const auto out_gemmktotal_gemmm_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Do * Ho * Wo, K));
const auto in_n_di_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Di, Hi, Wi, C));
// A: output tensor
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// B: input tensor
const auto in_n_dip_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_di_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Di, InLeftPadD, InRightPadD),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_n_z_do_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_dip_hip_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Z, Do), make_tuple(ConvDilationD, ConvStrideD)),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{},
Sequence<1, 2>{},
Sequence<3, 4>{},
Sequence<5, 6>{},
Sequence<7>{}));
const auto in_gemmktotal_gemmn_grid_desc = transform_tensor_descriptor(
in_n_z_do_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(Z, Y, X, C)),
make_merge_transform(make_tuple(N, Do, Ho, Wo))),
make_tuple(Sequence<1, 3, 5, 7>{}, Sequence<0, 2, 4, 6>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// C: weight tensor
const auto wei_gemmm_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, Z * Y * X * C));
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc);
}
} // function end
template <ck::index_t NDim, typename ck::enable_if<NDim == 1, bool>::type = false>
static auto GetABCGridDesc()
{
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<1>(
1, 1, 1, {1}, {1}, {1}, {1}, {1}, {1}, {1}, 1);
}
template <ck::index_t NDim, typename ck::enable_if<NDim == 2, bool>::type = false>
static auto GetABCGridDesc()
{
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<2>(
1, 1, 1, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, 1);
}
template <ck::index_t NDim, typename ck::enable_if<NDim == 3, bool>::type = false>
static auto GetABCGridDesc()
{
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<3>(1,
1,
1,
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
1);
}
using ABCGridDescs = decltype(GetABCGridDesc<NumDimSpatial>());
using AGridDesc_K0_M_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I0])>;
using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I1])>;
using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>;
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight<
BlockSize,
ADataType, // TODO: distinguish A/B datatype
AccDataType,
CDataType,
InMemoryDataOperationEnum::Set,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
MPerXdl,
NPerXdl,
K1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM,
ABlockLdsM1PerBlock,
ABlockLdsM0PerBlock,
ABlockLdsM1Padding,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN,
BBlockLdsN1PerBlock,
BBlockLdsN0PerBlock,
BBlockLdsN1Padding,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CBlockTransferScalarPerVector_NWaveNPerXdl,
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
true,
true>;
using GridwiseGemmAtomicAdd = GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight<
BlockSize,
ADataType, // TODO: distinguish A/B datatype
AccDataType,
CDataType,
InMemoryDataOperationEnum::AtomicAdd,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
MPerXdl,
NPerXdl,
K1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM,
ABlockLdsM1PerBlock,
ABlockLdsM0PerBlock,
ABlockLdsM1Padding,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN,
BBlockLdsN1PerBlock,
BBlockLdsN0PerBlock,
BBlockLdsN1Padding,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CBlockTransferScalarPerVector_NWaveNPerXdl,
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
true,
true>;
// Argument
using CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
decltype(GridwiseGemm::MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(CGridDesc_M_N{}));
using Block2CTileMap =
decltype(GridwiseGemm::MakeCBlockClusterAdaptor(CGridDesc_M_N{}, 1, 1, 1));
struct Argument : public BaseArgument
{
Argument(const InDataType* p_in_grid,
WeiDataType* p_wei_grid,
const OutDataType* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
ck::index_t M01,
ck::index_t N01,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op,
ck::index_t split_k)
: p_a_grid_{p_out_grid},
p_b_grid_{p_in_grid},
p_c_grid_{p_wei_grid},
a_grid_desc_kbatch_k0_m_k1_{},
b_grid_desc_kbatch_k0_n_k1_{},
c_grid_desc_m_n_{},
c_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_ctile_map_{},
M01_{M01},
N01_{N01},
a_element_op_{out_element_op},
b_element_op_{in_element_op},
c_element_op_{wei_element_op},
Conv_N_{N},
Conv_K_{K},
Conv_C_{C},
output_spatial_lengths_{output_spatial_lengths},
filter_spatial_lengths_{filter_spatial_lengths},
conv_filter_strides_{conv_filter_strides},
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads},
k_batch_{split_k}
{
const auto descs =
DeviceOp::MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<NumDimSpatial>(
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
k_batch_);
a_grid_desc_kbatch_k0_m_k1_ = descs[I0];
b_grid_desc_kbatch_k0_n_k1_ = descs[I1];
c_grid_desc_m_n_ = descs[I2];
block_2_ctile_map_ =
GridwiseGemm::MakeCBlockClusterAdaptor(c_grid_desc_m_n_, M01, N01, k_batch_);
if(GridwiseGemm::CheckValidity(a_grid_desc_kbatch_k0_m_k1_,
b_grid_desc_kbatch_k0_n_k1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{
c_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(c_grid_desc_m_n_);
}
}
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
AGridDesc_K0_M_K1 a_grid_desc_kbatch_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_kbatch_k0_n_k1_;
CGridDesc_M_N c_grid_desc_m_n_;
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock c_grid_desc_mblock_mperblock_nblock_nperblock_;
Block2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
InElementwiseOperation a_element_op_;
OutElementwiseOperation b_element_op_;
WeiElementwiseOperation c_element_op_;
// for checking IsSupportedArgument()
index_t Conv_N_;
index_t Conv_K_;
index_t Conv_C_;
std::vector<index_t> output_spatial_lengths_;
std::vector<index_t> filter_spatial_lengths_;
std::vector<index_t> conv_filter_strides_;
std::vector<index_t> input_left_pads_;
std::vector<index_t> input_right_pads_;
index_t k_batch_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
void ShowInfo(const Argument& arg)
{
std::cout << "arg.a_grid_desc_kbatch_k0_m_k1_{"
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I0) << ", "
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I2) << ", "
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I3) << "}" << std::endl;
std::cout << "arg.b_grid_desc_kbatch_k0_n_k1_{"
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I0) << ", "
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I1) << ", "
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I2) << ", "
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I3) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
ShowInfo(arg);
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_))
{
throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v3r1 has invalid setting");
}
const auto kbatch = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I0);
const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K0 = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1);
const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);
float ave_time = 0;
const auto Run = [&](const auto& kernel) {
hipGetErrorString(hipMemset(
arg.p_c_grid_,
0,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_.GetElementSpaceSize() *
sizeof(CDataType)));
ave_time =
launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_);
};
if constexpr(std::is_same<InDataType, ck::bhalf_t>::value)
{
if(has_main_k0_block_loop)
{
const auto kernel = kernel_gemm_xdlops_bwd_weight<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
OutElementwiseOperation,
InElementwiseOperation,
WeiElementwiseOperation,
remove_reference_t<DeviceOp::Block2CTileMap>,
true>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdlops_bwd_weight<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
OutElementwiseOperation,
InElementwiseOperation,
WeiElementwiseOperation,
remove_reference_t<DeviceOp::Block2CTileMap>,
false>;
Run(kernel);
}
}
else
{
if(has_main_k0_block_loop)
{
if(kbatch == 1)
{
const auto kernel = kernel_gemm_xdlops_bwd_weight<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
OutElementwiseOperation,
InElementwiseOperation,
WeiElementwiseOperation,
remove_reference_t<DeviceOp::Block2CTileMap>,
true>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdlops_bwd_weight<
GridwiseGemmAtomicAdd,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
OutElementwiseOperation,
InElementwiseOperation,
WeiElementwiseOperation,
remove_reference_t<DeviceOp::Block2CTileMap>,
true>;
Run(kernel);
}
}
else
{
if(kbatch == 1)
{
const auto kernel = kernel_gemm_xdlops_bwd_weight<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
OutElementwiseOperation,
InElementwiseOperation,
WeiElementwiseOperation,
remove_reference_t<DeviceOp::Block2CTileMap>,
false>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdlops_bwd_weight<
GridwiseGemmAtomicAdd,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
OutElementwiseOperation,
InElementwiseOperation,
WeiElementwiseOperation,
remove_reference_t<DeviceOp::Block2CTileMap>,
false>;
Run(kernel);
}
}
}
return ave_time;
}
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
// vector load A/B matrix from global memory
if(!(ABlockTransferSrcVectorDim == 2 && BBlockTransferSrcVectorDim == 2 &&
arg.Conv_K_ % ABlockTransferSrcScalarPerVector == 0 &&
arg.Conv_C_ % BBlockTransferSrcScalarPerVector == 0))
{
return false;
}
// vector store C matrix into global memory
if(!(arg.Conv_C_ % CBlockTransferScalarPerVector_NWaveNPerXdl == 0))
{
return false;
}
// Gridwise GEMM size
return GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_);
}
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const InDataType* p_in_grid,
WeiDataType* p_wei_grid,
const OutDataType* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op,
ck::index_t split_k)
{
return Argument{p_in_grid,
p_wei_grid,
p_out_grid,
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
1,
1,
in_element_op,
wei_element_op,
out_element_op,
split_k};
}
static auto MakeInvoker() { return Invoker{}; }
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in_grid,
void* p_wei_grid,
const void* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op,
ck::index_t split_k) override
{
return std::make_unique<Argument>(static_cast<const InDataType*>(p_in_grid),
static_cast<WeiDataType*>(p_wei_grid),
static_cast<const OutDataType*>(p_out_grid),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
1,
1,
in_element_op,
wei_element_op,
out_element_op,
split_k);
}
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -1073,13 +1073,15 @@ struct DeviceConvndBwdDataXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho ...@@ -1073,13 +1073,15 @@ struct DeviceConvndBwdDataXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho
b_grid_desc_k0_n_k1_container_.push_back(descs[I1]); b_grid_desc_k0_n_k1_container_.push_back(descs[I1]);
c_grid_desc_m_n_container_.push_back(descs[I2]); c_grid_desc_m_n_container_.push_back(descs[I2]);
if(GridwiseGemm::CheckValidity(descs[I0], descs[I1], descs[I2], M01_, N01_)) auto block_2_ctile_map =
GridwiseGemm::MakeDefaultBlock2CTileMap(descs[I2], M01_, N01_);
if(GridwiseGemm::CheckValidity(descs[I0], descs[I1], descs[I2], block_2_ctile_map))
{ {
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_.push_back( c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_.push_back(
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(descs[I2])); GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(descs[I2]));
block_2_ctile_map_container_.push_back( block_2_ctile_map_container_.push_back(block_2_ctile_map);
GridwiseGemm::MakeDefaultBlock2CTileMap(descs[I2], M01_, N01_));
} }
} }
} }
...@@ -1129,13 +1131,16 @@ struct DeviceConvndBwdDataXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho ...@@ -1129,13 +1131,16 @@ struct DeviceConvndBwdDataXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho
b_grid_desc_k0_n_k1_container_.push_back(descs[I1]); b_grid_desc_k0_n_k1_container_.push_back(descs[I1]);
c_grid_desc_m_n_container_.push_back(descs[I2]); c_grid_desc_m_n_container_.push_back(descs[I2]);
if(GridwiseGemm::CheckValidity(descs[I0], descs[I1], descs[I2], M01_, N01_)) auto block_2_ctile_map =
GridwiseGemm::MakeDefaultBlock2CTileMap(descs[I2], M01_, N01_);
if(GridwiseGemm::CheckValidity(
descs[I0], descs[I1], descs[I2], block_2_ctile_map))
{ {
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_.push_back( c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_.push_back(
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(descs[I2])); GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(descs[I2]));
block_2_ctile_map_container_.push_back( block_2_ctile_map_container_.push_back(block_2_ctile_map);
GridwiseGemm::MakeDefaultBlock2CTileMap(descs[I2], M01_, N01_));
} }
} }
} }
...@@ -1194,14 +1199,17 @@ struct DeviceConvndBwdDataXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho ...@@ -1194,14 +1199,17 @@ struct DeviceConvndBwdDataXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho
b_grid_desc_k0_n_k1_container_.push_back(descs[I1]); b_grid_desc_k0_n_k1_container_.push_back(descs[I1]);
c_grid_desc_m_n_container_.push_back(descs[I2]); c_grid_desc_m_n_container_.push_back(descs[I2]);
if(GridwiseGemm::CheckValidity(descs[I0], descs[I1], descs[I2], M01_, N01_)) auto block_2_ctile_map =
GridwiseGemm::MakeDefaultBlock2CTileMap(descs[I2], M01_, N01_);
if(GridwiseGemm::CheckValidity(
descs[I0], descs[I1], descs[I2], block_2_ctile_map))
{ {
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_.push_back( c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_.push_back(
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2( GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(
descs[I2])); descs[I2]));
block_2_ctile_map_container_.push_back( block_2_ctile_map_container_.push_back(block_2_ctile_map);
GridwiseGemm::MakeDefaultBlock2CTileMap(descs[I2], M01_, N01_));
} }
} }
} }
...@@ -1286,15 +1294,14 @@ struct DeviceConvndBwdDataXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho ...@@ -1286,15 +1294,14 @@ struct DeviceConvndBwdDataXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_container_[i], if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_container_[i],
arg.b_grid_desc_k0_n_k1_container_[i], arg.b_grid_desc_k0_n_k1_container_[i],
arg.c_grid_desc_m_n_container_[i], arg.c_grid_desc_m_n_container_[i],
arg.M01_, arg.block_2_ctile_map_container_[i]))
arg.N01_))
{ {
throw std::runtime_error( throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v3r1 has invalid setting"); "wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v3r1 has invalid setting");
} }
const index_t grid_size = const index_t grid_size = arg.block_2_ctile_map_container_[i].CalculateGridSize(
GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_container_[i]); arg.c_grid_desc_m_n_container_[i]);
const auto K = arg.a_grid_desc_k0_m_k1_container_[i].GetLength(I0) * const auto K = arg.a_grid_desc_k0_m_k1_container_[i].GetLength(I0) *
arg.a_grid_desc_k0_m_k1_container_[i].GetLength(I2); arg.a_grid_desc_k0_m_k1_container_[i].GetLength(I2);
...@@ -1418,8 +1425,7 @@ struct DeviceConvndBwdDataXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho ...@@ -1418,8 +1425,7 @@ struct DeviceConvndBwdDataXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_container_[i], if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_container_[i],
arg.b_grid_desc_k0_n_k1_container_[i], arg.b_grid_desc_k0_n_k1_container_[i],
arg.c_grid_desc_m_n_container_[i], arg.c_grid_desc_m_n_container_[i],
arg.M01_, arg.block_2_ctile_map_container_[i]))
arg.N01_))
{ {
return false; return false;
} }
...@@ -1528,10 +1534,10 @@ struct DeviceConvndBwdDataXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho ...@@ -1528,10 +1534,10 @@ struct DeviceConvndBwdDataXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho
<< ">"; << ">";
if constexpr(ConvBackwardDataSpecialization == if constexpr(ConvBackwardDataSpecialization ==
ConvolutionBackwardDataSpecialization::Filter1x1Stride1Pad0){ ConvolutionBackwardDataSpecialization::Filter1x1Stride1Pad0){
str<< " Filter1x1Stride1Pad0"; str<< " Filter1x1Stride1Pad0";
} }
return str.str(); return str.str();
} }
......
...@@ -705,15 +705,16 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -705,15 +705,16 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
a_grid_desc_k0_m_k1_ = descs[I0]; a_grid_desc_k0_m_k1_ = descs[I0];
b_grid_desc_k0_n_k1_ = descs[I1]; b_grid_desc_k0_n_k1_ = descs[I1];
c_grid_desc_m_n_ = descs[I2]; c_grid_desc_m_n_ = descs[I2];
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
if(GridwiseGemm::CheckValidity( if(GridwiseGemm::CheckValidity(a_grid_desc_k0_m_k1_,
a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_)) b_grid_desc_k0_n_k1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{ {
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ = c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_); GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_);
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
} }
} }
...@@ -766,14 +767,14 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -766,14 +767,14 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_))
arg.N01_))
{ {
throw std::runtime_error( throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting"); "wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting");
} }
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_); const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K = const auto K =
arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2); arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2);
...@@ -916,8 +917,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -916,8 +917,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_);
arg.N01_);
} }
bool IsSupportedArgument(const BaseArgument* p_arg) override bool IsSupportedArgument(const BaseArgument* p_arg) override
...@@ -1012,7 +1012,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -1012,7 +1012,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
auto str = std::stringstream(); auto str = std::stringstream();
// clang-format off // clang-format off
str << "DeviceConv" << std::to_string(NumDimSpatial) str << "DeviceConv" << std::to_string(NumDimSpatial)
<< "DFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K" << "DFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K"
<< "<" << "<"
<< BlockSize << ", " << BlockSize << ", "
......
...@@ -6,40 +6,47 @@ namespace ck { ...@@ -6,40 +6,47 @@ namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
template <typename AElementwiseOperation, template <typename DPtrsGlobal,
typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
typename CElementwiseOperation, typename CElementwiseOperation,
typename D1ElementwiseOperation> typename DxsInElementwiseOperation,
typename DxsOutElementwiseOperation>
struct DeviceGemmReduce : public BaseOperator struct DeviceGemmReduce : public BaseOperator
{ {
virtual std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a, virtual std::unique_ptr<BaseArgument>
const void* p_b, MakeArgumentPointer(const void* p_a,
void* p_c, const void* p_b,
void* p_d0, void* p_c,
void* p_d1, DPtrsGlobal p_dxs,
ck::index_t M, ck::index_t M,
ck::index_t N, ck::index_t N,
ck::index_t K, ck::index_t K,
ck::index_t StrideA, ck::index_t StrideA,
ck::index_t StrideB, ck::index_t StrideB,
ck::index_t StrideC, ck::index_t StrideC,
AElementwiseOperation a_element_op, AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op, BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op, CElementwiseOperation c_element_op,
D1ElementwiseOperation d1_element_op, DxsInElementwiseOperation dxs_in_element_op,
ck::index_t BatchCount = 1) = 0; DxsOutElementwiseOperation dxs_out_element_op,
ck::index_t BatchCount = 1) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0; virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
}; };
template <typename AElementwiseOperation, template <typename DPtrsGlobal,
typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
typename CElementwiseOperation, typename CElementwiseOperation,
typename D1ElementwiseOperation> typename DxsInElementwiseOperation,
using DeviceGemmReducePtr = std::unique_ptr<DeviceGemmReduce<AElementwiseOperation, typename DxsOutElementwiseOperation>
using DeviceGemmReducePtr = std::unique_ptr<DeviceGemmReduce<DPtrsGlobal,
AElementwiseOperation,
BElementwiseOperation, BElementwiseOperation,
CElementwiseOperation, CElementwiseOperation,
D1ElementwiseOperation>>; DxsInElementwiseOperation,
DxsOutElementwiseOperation>>;
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
......
...@@ -26,13 +26,14 @@ template <typename ALayout, ...@@ -26,13 +26,14 @@ template <typename ALayout,
typename GemmAccDataType, typename GemmAccDataType,
typename CShuffleDataType, typename CShuffleDataType,
typename ReduceAccDataType, typename ReduceAccDataType,
typename DDataType, typename DPtrsGlobal,
typename AElementwiseOperation, typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
typename CElementwiseOperation, typename CElementwiseOperation,
typename D0ReduceOperation, typename DxsReduceOperation,
typename D1ReduceOperation, typename DxsInElementwiseOperation,
typename D1ElementwiseOperation, typename DxsOutElementwiseOperation,
typename DGlobalMemoryDataOperation,
GemmSpecialization GemmSpec, GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage, index_t NumGemmKPrefetchStage,
index_t BlockSize, index_t BlockSize,
...@@ -67,10 +68,12 @@ template <typename ALayout, ...@@ -67,10 +68,12 @@ template <typename ALayout,
index_t CReduceThreadLds2VGprCopySrcDstScalarPerVector_NPerBlock, index_t CReduceThreadLds2VGprCopySrcDstScalarPerVector_NPerBlock,
index_t CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock, index_t CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock,
LoopScheduler LoopSched = make_default_loop_scheduler()> LoopScheduler LoopSched = make_default_loop_scheduler()>
struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOperation, struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
AElementwiseOperation,
BElementwiseOperation, BElementwiseOperation,
CElementwiseOperation, CElementwiseOperation,
D1ElementwiseOperation> DxsInElementwiseOperation,
DxsOutElementwiseOperation>
{ {
using DeviceOp = DeviceGemmReduce_Xdl_CShuffle; using DeviceOp = DeviceGemmReduce_Xdl_CShuffle;
...@@ -380,15 +383,15 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera ...@@ -380,15 +383,15 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
CShuffleDataType, CShuffleDataType,
CDataType, CDataType,
ReduceAccDataType, ReduceAccDataType,
DDataType, DPtrsGlobal,
AElementwiseOperation, AElementwiseOperation,
BElementwiseOperation, BElementwiseOperation,
CElementwiseOperation, CElementwiseOperation,
D0ReduceOperation, DxsReduceOperation,
D1ReduceOperation, DxsInElementwiseOperation,
D1ElementwiseOperation, DxsOutElementwiseOperation,
InMemoryDataOperationEnum::Set, InMemoryDataOperationEnum::Set,
InMemoryDataOperationEnum::AtomicAdd, DGlobalMemoryDataOperation,
AGridDesc_AK0_M_AK1, AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1, BGridDesc_BK0_N_BK1,
CGridDesc_M_N, CGridDesc_M_N,
...@@ -435,8 +438,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera ...@@ -435,8 +438,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
Argument(const ADataType* p_a_grid, Argument(const ADataType* p_a_grid,
const BDataType* p_b_grid, const BDataType* p_b_grid,
CDataType* p_c_grid, CDataType* p_c_grid,
DDataType* p_d0_grid, DPtrsGlobal p_ds_grid,
DDataType* p_d1_grid,
index_t MRaw, index_t MRaw,
index_t NRaw, index_t NRaw,
index_t KRaw, index_t KRaw,
...@@ -446,26 +448,29 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera ...@@ -446,26 +448,29 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
AElementwiseOperation a_element_op, AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op, BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op, CElementwiseOperation c_element_op,
D1ElementwiseOperation d1_element_op) DxsInElementwiseOperation dxs_in_element_op,
DxsOutElementwiseOperation dxs_out_element_op)
: p_a_grid_{p_a_grid}, : p_a_grid_{p_a_grid},
p_b_grid_{p_b_grid}, p_b_grid_{p_b_grid},
p_c_grid_{p_c_grid}, p_c_grid_{p_c_grid},
p_d0_grid_{p_d0_grid}, p_ds_grid_{p_ds_grid},
p_d1_grid_{p_d1_grid},
a_grid_desc_ak0_m_ak1_{DeviceOp::MakeAGridDescriptor_AK0_M_AK1(MRaw, KRaw, StrideA)}, a_grid_desc_ak0_m_ak1_{DeviceOp::MakeAGridDescriptor_AK0_M_AK1(MRaw, KRaw, StrideA)},
b_grid_desc_bk0_n_bk1_{DeviceOp::MakeBGridDescriptor_BK0_N_BK1(KRaw, NRaw, StrideB)}, b_grid_desc_bk0_n_bk1_{DeviceOp::MakeBGridDescriptor_BK0_N_BK1(KRaw, NRaw, StrideB)},
c_grid_desc_m_n_{DeviceOp::MakeCGridDescriptor_M_N(MRaw, NRaw, StrideC)}, c_grid_desc_m_n_{DeviceOp::MakeCGridDescriptor_M_N(MRaw, NRaw, StrideC)},
d_grid_desc_m_{DeviceOp::MakeDGridDescriptor_M(MRaw)}, d_grid_desc_m_{DeviceOp::MakeDGridDescriptor_M(MRaw)},
c_grid_desc_mblock_mperblock_nblock_nperblock_{}, c_grid_desc_mblock_mperblock_nblock_nperblock_{},
d_grid_desc_mblock_mperblock_{}, d_grid_desc_mblock_mperblock_{},
block_2_ctile_map_{}, block_2_ctile_map_{GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_)},
a_element_op_{a_element_op}, a_element_op_{a_element_op},
b_element_op_{b_element_op}, b_element_op_{b_element_op},
c_element_op_{c_element_op}, c_element_op_{c_element_op},
d1_element_op_{d1_element_op} dxs_in_element_op_{dxs_in_element_op},
dxs_out_element_op_{dxs_out_element_op}
{ {
if(GridwiseGemm::CheckValidity( if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_,
a_grid_desc_ak0_m_ak1_, b_grid_desc_bk0_n_bk1_, c_grid_desc_m_n_)) b_grid_desc_bk0_n_bk1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{ {
c_grid_desc_mblock_mperblock_nblock_nperblock_ = c_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock( GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
...@@ -473,8 +478,6 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera ...@@ -473,8 +478,6 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
d_grid_desc_mblock_mperblock_ = d_grid_desc_mblock_mperblock_ =
GridwiseGemm::MakeDGridDescriptor_MBlock_MPerBlock(d_grid_desc_m_); GridwiseGemm::MakeDGridDescriptor_MBlock_MPerBlock(d_grid_desc_m_);
block_2_ctile_map_ = GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_);
} }
} }
...@@ -482,8 +485,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera ...@@ -482,8 +485,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
const ADataType* p_a_grid_; const ADataType* p_a_grid_;
const BDataType* p_b_grid_; const BDataType* p_b_grid_;
CDataType* p_c_grid_; CDataType* p_c_grid_;
DDataType* p_d0_grid_; DPtrsGlobal p_ds_grid_;
DDataType* p_d1_grid_;
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_; AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_; BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
CGridDesc_M_N c_grid_desc_m_n_; CGridDesc_M_N c_grid_desc_m_n_;
...@@ -495,7 +497,8 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera ...@@ -495,7 +497,8 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
AElementwiseOperation a_element_op_; AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_; BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_; CElementwiseOperation c_element_op_;
D1ElementwiseOperation d1_element_op_; DxsInElementwiseOperation dxs_in_element_op_;
DxsOutElementwiseOperation dxs_out_element_op_;
}; };
// Invoker // Invoker
...@@ -525,13 +528,16 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera ...@@ -525,13 +528,16 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
} }
#endif #endif
if(!GridwiseGemm::CheckValidity( if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.a_grid_desc_ak0_m_ak1_, arg.b_grid_desc_bk0_n_bk1_, arg.c_grid_desc_m_n_)) arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_))
{ {
throw std::runtime_error("wrong! GridwiseGemm has invalid setting"); throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
} }
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_); const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K = const auto K =
arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2); arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
...@@ -543,11 +549,12 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera ...@@ -543,11 +549,12 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
GridwiseGemm, GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype ADataType, // TODO: distiguish A/B datatype
CDataType, CDataType,
DDataType, DPtrsGlobal,
AElementwiseOperation, AElementwiseOperation,
BElementwiseOperation, BElementwiseOperation,
CElementwiseOperation, CElementwiseOperation,
D1ElementwiseOperation, DxsInElementwiseOperation,
DxsOutElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1, DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1, DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock, typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
...@@ -564,12 +571,12 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera ...@@ -564,12 +571,12 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
arg.p_a_grid_, arg.p_a_grid_,
arg.p_b_grid_, arg.p_b_grid_,
arg.p_c_grid_, arg.p_c_grid_,
arg.p_d0_grid_, arg.p_ds_grid_,
arg.p_d1_grid_,
arg.a_element_op_, arg.a_element_op_,
arg.b_element_op_, arg.b_element_op_,
arg.c_element_op_, arg.c_element_op_,
arg.d1_element_op_, arg.dxs_in_element_op_,
arg.dxs_out_element_op_,
arg.a_grid_desc_ak0_m_ak1_, arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_, arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_, arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
...@@ -582,11 +589,12 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera ...@@ -582,11 +589,12 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
GridwiseGemm, GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype ADataType, // TODO: distiguish A/B datatype
CDataType, CDataType,
DDataType, DPtrsGlobal,
AElementwiseOperation, AElementwiseOperation,
BElementwiseOperation, BElementwiseOperation,
CElementwiseOperation, CElementwiseOperation,
D1ElementwiseOperation, DxsInElementwiseOperation,
DxsOutElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1, DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1, DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock, typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
...@@ -603,12 +611,12 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera ...@@ -603,12 +611,12 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
arg.p_a_grid_, arg.p_a_grid_,
arg.p_b_grid_, arg.p_b_grid_,
arg.p_c_grid_, arg.p_c_grid_,
arg.p_d0_grid_, arg.p_ds_grid_,
arg.p_d1_grid_,
arg.a_element_op_, arg.a_element_op_,
arg.b_element_op_, arg.b_element_op_,
arg.c_element_op_, arg.c_element_op_,
arg.d1_element_op_, arg.dxs_in_element_op_,
arg.dxs_out_element_op_,
arg.a_grid_desc_ak0_m_ak1_, arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_, arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_, arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
...@@ -635,8 +643,10 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera ...@@ -635,8 +643,10 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
static bool IsSupportedArgument(const Argument& arg) static bool IsSupportedArgument(const Argument& arg)
{ {
return GridwiseGemm::CheckValidity( return GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.a_grid_desc_ak0_m_ak1_, arg.b_grid_desc_bk0_n_bk1_, arg.c_grid_desc_m_n_); arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_);
} }
// polymorphic // polymorphic
...@@ -648,8 +658,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera ...@@ -648,8 +658,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
static auto MakeArgument(const ADataType* p_a, static auto MakeArgument(const ADataType* p_a,
const BDataType* p_b, const BDataType* p_b,
CDataType* p_c, CDataType* p_c,
DDataType* p_d0, DPtrsGlobal p_dxs,
DDataType* p_d1,
index_t MRaw, index_t MRaw,
index_t NRaw, index_t NRaw,
index_t KRaw, index_t KRaw,
...@@ -659,13 +668,13 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera ...@@ -659,13 +668,13 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
AElementwiseOperation a_element_op, AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op, BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op, CElementwiseOperation c_element_op,
D1ElementwiseOperation d1_element_op) DxsInElementwiseOperation dxs_in_element_op,
DxsOutElementwiseOperation dxs_out_element_op)
{ {
return Argument{p_a, return Argument{p_a,
p_b, p_b,
p_c, p_c,
p_d0, p_dxs,
p_d1,
MRaw, MRaw,
NRaw, NRaw,
KRaw, KRaw,
...@@ -675,7 +684,8 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera ...@@ -675,7 +684,8 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
a_element_op, a_element_op,
b_element_op, b_element_op,
c_element_op, c_element_op,
d1_element_op}; dxs_in_element_op,
dxs_out_element_op};
} }
static auto MakeInvoker() { return Invoker{}; } static auto MakeInvoker() { return Invoker{}; }
...@@ -684,8 +694,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera ...@@ -684,8 +694,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a, std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b, const void* p_b,
void* p_c, void* p_c,
void* p_d0, DPtrsGlobal p_dxs,
void* p_d1,
index_t MRaw, index_t MRaw,
index_t NRaw, index_t NRaw,
index_t KRaw, index_t KRaw,
...@@ -695,14 +704,14 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera ...@@ -695,14 +704,14 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
AElementwiseOperation a_element_op, AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op, BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op, CElementwiseOperation c_element_op,
D1ElementwiseOperation d1_element_op, DxsInElementwiseOperation dxs_in_element_op,
DxsOutElementwiseOperation dxs_out_element_op,
index_t /* KBatch */ = 1) override index_t /* KBatch */ = 1) override
{ {
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a), return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b), static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c), static_cast<CDataType*>(p_c),
static_cast<DDataType*>(p_d0), p_dxs,
static_cast<DDataType*>(p_d1),
MRaw, MRaw,
NRaw, NRaw,
KRaw, KRaw,
...@@ -712,7 +721,8 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera ...@@ -712,7 +721,8 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
a_element_op, a_element_op,
b_element_op, b_element_op,
c_element_op, c_element_op,
d1_element_op); dxs_in_element_op,
dxs_out_element_op);
} }
// polymorphic // polymorphic
......
...@@ -257,14 +257,16 @@ struct DeviceGemmXdl ...@@ -257,14 +257,16 @@ struct DeviceGemmXdl
b_grid_desc_k0_n_k1_ = DeviceGemmXdl::MakeBGridDescriptor_K0_N_K1(K, N, StrideB); b_grid_desc_k0_n_k1_ = DeviceGemmXdl::MakeBGridDescriptor_K0_N_K1(K, N, StrideB);
c_grid_desc_m_n_ = DeviceGemmXdl::MakeCGridDescriptor_M_N(M, N, StrideC); c_grid_desc_m_n_ = DeviceGemmXdl::MakeCGridDescriptor_M_N(M, N, StrideC);
if(GridwiseGemm::CheckValidity( block_2_ctile_map_ =
a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_)) GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
if(GridwiseGemm::CheckValidity(a_grid_desc_k0_m_k1_,
b_grid_desc_k0_n_k1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{ {
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ = c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_); GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_);
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
} }
} }
...@@ -310,14 +312,14 @@ struct DeviceGemmXdl ...@@ -310,14 +312,14 @@ struct DeviceGemmXdl
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_))
arg.N01_))
{ {
throw std::runtime_error( throw std::runtime_error(
"wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 has invalid setting"); "wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 has invalid setting");
} }
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_); const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K = const auto K =
arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2); arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2);
...@@ -409,8 +411,7 @@ struct DeviceGemmXdl ...@@ -409,8 +411,7 @@ struct DeviceGemmXdl
return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_);
arg.N01_);
} }
// polymorphic // polymorphic
......
...@@ -218,8 +218,13 @@ struct DeviceGemmXdl_C_Shuffle_Bias_2d ...@@ -218,8 +218,13 @@ struct DeviceGemmXdl_C_Shuffle_Bias_2d
c_grid_desc_m_n_ = c_grid_desc_m_n_ =
DeviceGemmXdl_C_Shuffle_Bias_2d::MakeCGridDescriptor_M_N(M, N, StrideC); DeviceGemmXdl_C_Shuffle_Bias_2d::MakeCGridDescriptor_M_N(M, N, StrideC);
if(GridwiseGemm::CheckValidity( block_2_ctile_map_ =
a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_)) GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
if(GridwiseGemm::CheckValidity(a_grid_desc_k0_m_k1_,
b_grid_desc_k0_n_k1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{ {
c0_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_ = c0_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_ =
GridwiseGemm:: GridwiseGemm::
...@@ -230,9 +235,6 @@ struct DeviceGemmXdl_C_Shuffle_Bias_2d ...@@ -230,9 +235,6 @@ struct DeviceGemmXdl_C_Shuffle_Bias_2d
GridwiseGemm:: GridwiseGemm::
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl( MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c_grid_desc_m_n_); c_grid_desc_m_n_);
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
} }
} }
...@@ -285,14 +287,14 @@ struct DeviceGemmXdl_C_Shuffle_Bias_2d ...@@ -285,14 +287,14 @@ struct DeviceGemmXdl_C_Shuffle_Bias_2d
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_))
arg.N01_))
{ {
throw std::runtime_error( throw std::runtime_error(
"wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r2 has invalid setting"); "wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r2 has invalid setting");
} }
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_); const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K = const auto K =
arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2); arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2);
...@@ -400,8 +402,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_2d ...@@ -400,8 +402,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_2d
return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_);
arg.N01_);
} }
// polymorphic // polymorphic
......
...@@ -227,8 +227,13 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation ...@@ -227,8 +227,13 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation
c_grid_desc_m_n_ = descs[I2]; c_grid_desc_m_n_ = descs[I2];
c0_grid_desc_m_n_ = descs[I3]; c0_grid_desc_m_n_ = descs[I3];
if(GridwiseGemm::CheckValidity( block_2_ctile_map_ =
a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_)) GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
if(GridwiseGemm::CheckValidity(a_grid_desc_k0_m_k1_,
b_grid_desc_k0_n_k1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{ {
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_ = c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_ =
GridwiseGemm:: GridwiseGemm::
...@@ -239,9 +244,6 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation ...@@ -239,9 +244,6 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation
GridwiseGemm:: GridwiseGemm::
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl( MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c0_grid_desc_m_n_); c0_grid_desc_m_n_);
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
} }
} }
...@@ -294,14 +296,14 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation ...@@ -294,14 +296,14 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_))
arg.N01_))
{ {
throw std::runtime_error( throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r5 has invalid setting"); "wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r5 has invalid setting");
} }
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_); const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K = const auto K =
arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2); arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2);
...@@ -409,8 +411,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation ...@@ -409,8 +411,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation
return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_);
arg.N01_);
} }
// polymorphic // polymorphic
......
...@@ -256,8 +256,13 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation_Add ...@@ -256,8 +256,13 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation_Add
c0_grid_desc_m_n_ = descs[I3]; c0_grid_desc_m_n_ = descs[I3];
c1_grid_desc_m_n_ = descs[I4]; c1_grid_desc_m_n_ = descs[I4];
if(GridwiseGemm::CheckValidity( block_2_ctile_map_ =
a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_)) GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
if(GridwiseGemm::CheckValidity(a_grid_desc_k0_m_k1_,
b_grid_desc_k0_n_k1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{ {
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_ = c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_ =
GridwiseGemm:: GridwiseGemm::
...@@ -273,9 +278,6 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation_Add ...@@ -273,9 +278,6 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation_Add
GridwiseGemm:: GridwiseGemm::
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl( MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c1_grid_desc_m_n_); c1_grid_desc_m_n_);
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
} }
} }
...@@ -336,14 +338,14 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation_Add ...@@ -336,14 +338,14 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation_Add
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_))
arg.N01_))
{ {
throw std::runtime_error( throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r5 has invalid setting"); "wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r5 has invalid setting");
} }
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_); const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K = const auto K =
arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2); arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2);
...@@ -461,8 +463,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation_Add ...@@ -461,8 +463,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation_Add
return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_);
arg.N01_);
} }
// polymorphic // polymorphic
......
...@@ -404,19 +404,19 @@ struct DeviceGemm_Xdl_CShuffle ...@@ -404,19 +404,19 @@ struct DeviceGemm_Xdl_CShuffle
b_grid_desc_bk0_n_bk1_{DeviceOp::MakeBGridDescriptor_BK0_N_BK1(KRaw, NRaw, StrideB)}, b_grid_desc_bk0_n_bk1_{DeviceOp::MakeBGridDescriptor_BK0_N_BK1(KRaw, NRaw, StrideB)},
c_grid_desc_m_n_{DeviceOp::MakeCGridDescriptor_M_N(MRaw, NRaw, StrideC)}, c_grid_desc_m_n_{DeviceOp::MakeCGridDescriptor_M_N(MRaw, NRaw, StrideC)},
c_grid_desc_mblock_mperblock_nblock_nperblock_{}, c_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_ctile_map_{}, block_2_ctile_map_{GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_)},
a_element_op_{a_element_op}, a_element_op_{a_element_op},
b_element_op_{b_element_op}, b_element_op_{b_element_op},
c_element_op_{c_element_op} c_element_op_{c_element_op}
{ {
if(GridwiseGemm::CheckValidity( if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_,
a_grid_desc_ak0_m_ak1_, b_grid_desc_bk0_n_bk1_, c_grid_desc_m_n_)) b_grid_desc_bk0_n_bk1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{ {
c_grid_desc_mblock_mperblock_nblock_nperblock_ = c_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock( GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n_); c_grid_desc_m_n_);
block_2_ctile_map_ = GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_);
} }
} }
...@@ -459,13 +459,16 @@ struct DeviceGemm_Xdl_CShuffle ...@@ -459,13 +459,16 @@ struct DeviceGemm_Xdl_CShuffle
} }
#endif #endif
if(!GridwiseGemm::CheckValidity( if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.a_grid_desc_ak0_m_ak1_, arg.b_grid_desc_bk0_n_bk1_, arg.c_grid_desc_m_n_)) arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_))
{ {
throw std::runtime_error("wrong! GridwiseGemm has invalid setting"); throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
} }
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_); const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K = const auto K =
arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2); arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
...@@ -555,8 +558,10 @@ struct DeviceGemm_Xdl_CShuffle ...@@ -555,8 +558,10 @@ struct DeviceGemm_Xdl_CShuffle
static bool IsSupportedArgument(const Argument& arg) static bool IsSupportedArgument(const Argument& arg)
{ {
return GridwiseGemm::CheckValidity( return GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.a_grid_desc_ak0_m_ak1_, arg.b_grid_desc_bk0_n_bk1_, arg.c_grid_desc_m_n_); arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_);
} }
// polymorphic // polymorphic
......
...@@ -332,17 +332,16 @@ struct DeviceGemmXdlSplitK ...@@ -332,17 +332,16 @@ struct DeviceGemmXdlSplitK
K, N, StrideB, k_batch_, KPad); K, N, StrideB, k_batch_, KPad);
c_grid_desc_m_n_ = DeviceGemmXdlSplitK::MakeCGridDescriptor_M_N(M, N, StrideC); c_grid_desc_m_n_ = DeviceGemmXdlSplitK::MakeCGridDescriptor_M_N(M, N, StrideC);
block_2_ctile_map_ =
GridwiseGemm::MakeCBlockClusterAdaptor(c_grid_desc_m_n_, M01, N01, k_batch_);
if(GridwiseGemm::CheckValidity(a_grid_desc_kbatch_k0_m_k1_, if(GridwiseGemm::CheckValidity(a_grid_desc_kbatch_k0_m_k1_,
b_grid_desc_kbatch_k0_n_k1_, b_grid_desc_kbatch_k0_n_k1_,
c_grid_desc_m_n_, c_grid_desc_m_n_,
M01_, block_2_ctile_map_))
N01_))
{ {
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ = c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
GridwiseGemm::MakeCM0N0M1N1M2M3M4N2GridDescriptor(c_grid_desc_m_n_); GridwiseGemm::MakeCM0N0M1N1M2M3M4N2GridDescriptor(c_grid_desc_m_n_);
block_2_ctile_map_ =
GridwiseGemm::MakeCBlockClusterAdaptor(c_grid_desc_m_n_, M01, N01, k_batch_);
} }
} }
...@@ -395,14 +394,14 @@ struct DeviceGemmXdlSplitK ...@@ -395,14 +394,14 @@ struct DeviceGemmXdlSplitK
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_, if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_, arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_))
arg.N01_))
{ {
throw std::runtime_error( throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting"); "wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting");
} }
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_, kbatch); const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K0 = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1); const auto K0 = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1);
...@@ -532,8 +531,7 @@ struct DeviceGemmXdlSplitK ...@@ -532,8 +531,7 @@ struct DeviceGemmXdlSplitK
return GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_, return GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_, arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_);
arg.N01_);
} }
// polymorphic // polymorphic
......
...@@ -292,8 +292,7 @@ struct DeviceGemmXdlSplitKCShuffle ...@@ -292,8 +292,7 @@ struct DeviceGemmXdlSplitKCShuffle
using CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock = using CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
decltype(GridwiseGemm::MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(CGridDesc_M_N{})); decltype(GridwiseGemm::MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(CGridDesc_M_N{}));
using Block2CTileMap = using Block2CTileMap = typename GridwiseGemm::CBlockClusterAdaptor;
decltype(GridwiseGemm::MakeCBlockClusterAdaptor(CGridDesc_M_N{}, 1, 1, 1));
// Argument // Argument
struct Argument : public BaseArgument struct Argument : public BaseArgument
...@@ -338,17 +337,16 @@ struct DeviceGemmXdlSplitKCShuffle ...@@ -338,17 +337,16 @@ struct DeviceGemmXdlSplitKCShuffle
K, N, StrideB, k_batch_, KPad); K, N, StrideB, k_batch_, KPad);
c_grid_desc_m_n_ = DeviceGemmXdlSplitKCShuffle::MakeCGridDescriptor_M_N(M, N, StrideC); c_grid_desc_m_n_ = DeviceGemmXdlSplitKCShuffle::MakeCGridDescriptor_M_N(M, N, StrideC);
block_2_ctile_map_ =
GridwiseGemm::MakeCBlockClusterAdaptor(c_grid_desc_m_n_, M01, N01, k_batch_);
if(GridwiseGemm::CheckValidity(a_grid_desc_kbatch_k0_m_k1_, if(GridwiseGemm::CheckValidity(a_grid_desc_kbatch_k0_m_k1_,
b_grid_desc_kbatch_k0_n_k1_, b_grid_desc_kbatch_k0_n_k1_,
c_grid_desc_m_n_, c_grid_desc_m_n_,
M01_, block_2_ctile_map_))
N01_))
{ {
c_grid_desc_mblock_mperblock_nblock_nperblock_ = c_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(c_grid_desc_m_n_); GridwiseGemm::MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(c_grid_desc_m_n_);
block_2_ctile_map_ =
GridwiseGemm::MakeCBlockClusterAdaptor(c_grid_desc_m_n_, M01, N01, k_batch_);
} }
} }
...@@ -401,14 +399,14 @@ struct DeviceGemmXdlSplitKCShuffle ...@@ -401,14 +399,14 @@ struct DeviceGemmXdlSplitKCShuffle
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_, if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_, arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_))
arg.N01_))
{ {
throw std::runtime_error( throw std::runtime_error(
"wrong! GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2 has invalid setting"); "wrong! GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2 has invalid setting");
} }
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_, kbatch); const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K0 = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1); const auto K0 = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1);
...@@ -541,8 +539,7 @@ struct DeviceGemmXdlSplitKCShuffle ...@@ -541,8 +539,7 @@ struct DeviceGemmXdlSplitKCShuffle
return GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_, return GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_, arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.M01_, arg.block_2_ctile_map_);
arg.N01_);
} }
// polymorphic // polymorphic
......
...@@ -307,6 +307,11 @@ struct DeviceGroupedGemmXdl ...@@ -307,6 +307,11 @@ struct DeviceGroupedGemmXdl
struct GroupedGemmBlock2CTileMap struct GroupedGemmBlock2CTileMap
{ {
using UnderlyingBlock2CTileMap = typename GridwiseGemm::DefaultBlock2CTileMap;
static_assert(
std::is_same<decltype(GridwiseGemm::MakeDefaultBlock2CTileMap(CGridDesc_M_N{}, 1, 1)),
typename GridwiseGemm::DefaultBlock2CTileMap>::value,
"Wrong! Should be the same type name");
GroupedGemmBlock2CTileMap() GroupedGemmBlock2CTileMap()
{ {
block_2_ctile_map_ = GridwiseGemm::MakeDefaultBlock2CTileMap(CGridDesc_M_N{}, 1, 1); block_2_ctile_map_ = GridwiseGemm::MakeDefaultBlock2CTileMap(CGridDesc_M_N{}, 1, 1);
...@@ -329,6 +334,18 @@ struct DeviceGroupedGemmXdl ...@@ -329,6 +334,18 @@ struct DeviceGroupedGemmXdl
make_multi_index(idx_top[I0] - BlockStart_)); make_multi_index(idx_top[I0] - BlockStart_));
} }
template <typename CTileIdx, typename CTileDim>
__host__ __device__ bool ValidCTileIndex(const CTileIdx& c_tile_idx,
const CTileDim& c_tile_dim) const
{
return block_2_ctile_map_.ValidCTileIndex(c_tile_idx, c_tile_dim);
}
__host__ bool CheckValidity(const CGridDesc_M_N& c_grid_desc_m_n) const
{
return block_2_ctile_map_.CheckValidity(c_grid_desc_m_n);
}
private: private:
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_; typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
ck::index_t BlockStart_; ck::index_t BlockStart_;
...@@ -400,22 +417,27 @@ struct DeviceGroupedGemmXdl ...@@ -400,22 +417,27 @@ struct DeviceGroupedGemmXdl
const auto c_grid_desc_m_n_ = const auto c_grid_desc_m_n_ =
DeviceGroupedGemmXdl::MakeCGridDescriptor_M_N(M, N, StrideC); DeviceGroupedGemmXdl::MakeCGridDescriptor_M_N(M, N, StrideC);
const index_t grid_size_grp = GridwiseGemm::CalculateGridSize(c_grid_desc_m_n_); const index_t grid_size_grp =
typename GroupedGemmBlock2CTileMap::UnderlyingBlock2CTileMap(
c_grid_desc_m_n_, M01, N01)
.CalculateGridSize(c_grid_desc_m_n_);
const index_t BlockStart = grid_size_; const index_t BlockStart = grid_size_;
const index_t BlockEnd = grid_size_ + grid_size_grp; const index_t BlockEnd = grid_size_ + grid_size_grp;
grid_size_ += grid_size_grp; grid_size_ += grid_size_grp;
if(GridwiseGemm::CheckValidity( const auto grouped_gemm_block_2_ctile_map_ =
a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_)) GroupedGemmBlock2CTileMap(c_grid_desc_m_n_, M01, N01, BlockStart);
if(GridwiseGemm::CheckValidity(a_grid_desc_k0_m_k1_,
b_grid_desc_k0_n_k1_,
c_grid_desc_m_n_,
grouped_gemm_block_2_ctile_map_))
{ {
const auto c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ = const auto c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_); GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_);
const auto grouped_gemm_block_2_ctile_map_ =
GroupedGemmBlock2CTileMap(c_grid_desc_m_n_, M01, N01, BlockStart);
gemm_desc_kernel_arg_.push_back( gemm_desc_kernel_arg_.push_back(
GemmDescKernelArg{a_grid_desc_k0_m_k1_, GemmDescKernelArg{a_grid_desc_k0_m_k1_,
b_grid_desc_k0_n_k1_, b_grid_desc_k0_n_k1_,
...@@ -475,11 +497,11 @@ struct DeviceGroupedGemmXdl ...@@ -475,11 +497,11 @@ struct DeviceGroupedGemmXdl
<< gemm_desc_kernel_args[i].c_grid_desc_m_n_.GetLength(I1) << "}" << gemm_desc_kernel_args[i].c_grid_desc_m_n_.GetLength(I1) << "}"
<< std::endl; << std::endl;
if(!GridwiseGemm::CheckValidity(gemm_desc_kernel_args[i].a_grid_desc_k0_m_k1_, if(!GridwiseGemm::CheckValidity(
gemm_desc_kernel_args[i].b_grid_desc_k0_n_k1_, gemm_desc_kernel_args[i].a_grid_desc_k0_m_k1_,
gemm_desc_kernel_args[i].c_grid_desc_m_n_, gemm_desc_kernel_args[i].b_grid_desc_k0_n_k1_,
arg.M01_, gemm_desc_kernel_args[i].c_grid_desc_m_n_,
arg.N01_)) gemm_desc_kernel_args[i].grouped_gemm_block_2_ctile_map_))
{ {
throw std::runtime_error( throw std::runtime_error(
"wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 has invalid setting"); "wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 has invalid setting");
......
#pragma once
#include "data_type.hpp"
namespace ck {
namespace tensor_operation {
namespace binary_element_wise {
struct Add
{
__host__ __device__ constexpr void
operator()(double& dst, const double& src1, const double& src2) const
{
dst = src1 + src2;
}
__host__ __device__ constexpr void
operator()(float& dst, const float& src1, const float& src2) const
{
dst = src1 + src2;
}
};
} // namespace binary_element_wise
} // namespace tensor_operation
} // namespace ck
#ifndef UTILITY_BLOCK_TO_CTILE_MAP
#define UTILITY_BLOCK_TO_CTILE_MAP
#include "utility/math.hpp"
#include "utility/number.hpp"
#include "tensor_description/tensor_adaptor.hpp"
#include "tensor_description/multi_index_transform_helper.hpp"
namespace ck {
// Blocks of row-vectors
template <index_t MPerBlock,
index_t NPerBlock,
typename CGridDesc_M_N,
bool DeviceCTileIndexCheck = false>
struct BlockToCTileMap_M00_N00_M01_N01
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
__host__ __device__ BlockToCTileMap_M00_N00_M01_N01() = default;
__host__ __device__ BlockToCTileMap_M00_N00_M01_N01(const CGridDesc_M_N& c_grid_desc_m_n,
index_t M01 = 1,
index_t N01 = 1)
: M01_(M01), N01_(N01), underlying_map_(GetBlockToCTileMap(c_grid_desc_m_n, M01, N01))
{
}
__host__ constexpr index_t CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n) const
{
const auto M0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I0), MPerBlock);
const auto N0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I1), NPerBlock);
const auto M00 = math::integer_divide_ceil(M0, M01_);
const auto N00 = math::integer_divide_ceil(N0, N01_);
const index_t grid_size = M00 * M01_ * N00 * N01_;
return grid_size;
}
template <typename TopIdx>
__host__ __device__ constexpr auto CalculateBottomIndex(const TopIdx& idx_top) const
{
return underlying_map_.CalculateBottomIndex(idx_top);
}
template <typename CTileIdx, typename CTileDim>
__host__ __device__ bool ValidCTileIndex(const CTileIdx& c_tile_idx,
const CTileDim& c_tile_dim) const
{
if constexpr(DeviceCTileIndexCheck)
return DefaultValidCTileIndex(c_tile_idx, c_tile_dim);
else
return true;
}
__host__ bool CheckValidity(const CGridDesc_M_N& c_grid_desc_m_n) const
{
if constexpr(DeviceCTileIndexCheck)
return true; // validity check moved to kernel
const index_t M0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I0), MPerBlock);
const index_t N0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I1), NPerBlock);
if(M0 % M01_ == 0 && N0 % N01_ == 0)
{
return true;
}
else
{
return false;
}
}
private:
__host__ __device__ static constexpr auto
GetBlockToCTileMap(const CGridDesc_M_N& c_grid_desc_m_n, index_t M01, index_t N01)
{
const auto M0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I0), MPerBlock);
const auto N0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I1), NPerBlock);
const auto M00 = math::integer_divide_ceil(M0, M01);
const auto N00 = math::integer_divide_ceil(N0, N01);
const auto m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_insert_transform(1), // swallow the carry from lower dimensions
make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<>{}, Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1, 3>{}, Sequence<2, 4>{}));
const auto cblockid_to_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(1, M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto cblockid_to_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
cblockid_to_m00_m01_n00_n01_block_cluster_adaptor);
return cblockid_to_m0_n0_block_cluster_adaptor;
}
index_t M01_, N01_;
using UnderlyingMap = decltype(GetBlockToCTileMap(CGridDesc_M_N{}, 1, 1));
UnderlyingMap underlying_map_;
};
// 2D slices of row-vectors in 3D space
template <index_t MPerBlock,
index_t NPerBlock,
typename CGridDesc_M_N,
bool DeviceCTileIndexCheck = false>
struct BlockToCTileMap_KSplit_M00_N00_M01_N01
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
__host__ BlockToCTileMap_KSplit_M00_N00_M01_N01() = default;
__host__ BlockToCTileMap_KSplit_M00_N00_M01_N01(const CGridDesc_M_N& c_grid_desc_m_n,
index_t M01 = 1,
index_t N01 = 1,
index_t KSplit = 1)
: M01_(M01),
N01_(N01),
KSplit_(KSplit),
underlying_map_(GetBlockToCTileMap(c_grid_desc_m_n, M01, N01, KSplit))
{
}
__host__ constexpr index_t CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n) const
{
const auto M0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I0), MPerBlock);
const auto N0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I1), NPerBlock);
const auto M00 = math::integer_divide_ceil(M0, M01_);
const auto N00 = math::integer_divide_ceil(N0, N01_);
const index_t grid_size = M00 * M01_ * N00 * N01_ * KSplit_;
return grid_size;
}
template <typename TopIdx>
__host__ __device__ constexpr auto CalculateBottomIndex(const TopIdx& idx_top) const
{
return underlying_map_.CalculateBottomIndex(idx_top);
}
template <typename CTileIdx, typename CTileDim>
__host__ __device__ bool ValidCTileIndex(const CTileIdx& c_tile_idx,
const CTileDim& c_tile_dim) const
{
if constexpr(DeviceCTileIndexCheck)
return DefaultValidCTileIndex(c_tile_idx, c_tile_dim);
else
return true;
}
__host__ bool CheckValidity(const CGridDesc_M_N& c_grid_desc_m_n) const
{
if constexpr(DeviceCTileIndexCheck)
return true; // validity check moved to kernel
const index_t M0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I0), MPerBlock);
const index_t N0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I1), NPerBlock);
if(M0 % M01_ == 0 && N0 % N01_ == 0)
{
return true;
}
else
{
return false;
}
}
private:
__host__ static constexpr auto GetBlockToCTileMap(const CGridDesc_M_N& c_grid_desc_m_n,
index_t M01,
index_t N01,
index_t KSplit)
{
const auto M0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I0), MPerBlock);
const auto N0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I1), NPerBlock);
const auto M00 = math::integer_divide_ceil(M0, M01);
const auto N00 = math::integer_divide_ceil(N0, N01);
const auto ksplit_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_pass_through_transform(KSplit),
make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 3>{}, Sequence<2, 4>{}));
const auto c_blockid_to_ksplit_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(KSplit, M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto c_blockid_to_ksplit_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(ksplit_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
c_blockid_to_ksplit_m00_m01_n00_n01_block_cluster_adaptor);
return c_blockid_to_ksplit_m0_n0_block_cluster_adaptor;
}
index_t M01_, N01_, KSplit_;
using UnderlyingMap = decltype(GetBlockToCTileMap(CGridDesc_M_N{}, 1, 1, 1));
UnderlyingMap underlying_map_;
};
template <typename CTileIdx, typename CTileDim>
__host__ __device__ bool DefaultValidCTileIndex(const CTileIdx& c_tile_idx,
const CTileDim& c_tile_dim)
{
bool is_valid = false;
const index_t m_block = c_tile_dim[Number<0>{}];
const index_t n_block = c_tile_dim[Number<1>{}];
if constexpr(CTileIdx::Size() == 2)
{
const index_t m_block_idx = c_tile_idx[Number<0>{}];
const index_t n_block_idx = c_tile_idx[Number<1>{}];
if(0 <= m_block_idx && m_block_idx < m_block && 0 <= n_block_idx && n_block_idx < n_block)
{
is_valid = true;
}
}
else if constexpr(CTileIdx::Size() == 3)
{
const index_t ksplit_idx = c_tile_idx[Number<0>{}];
const index_t m_block_idx = c_tile_idx[Number<1>{}];
const index_t n_block_idx = c_tile_idx[Number<2>{}];
if(0 <= m_block_idx && m_block_idx < m_block && 0 <= n_block_idx && n_block_idx < n_block)
{
is_valid = true;
}
ignore = ksplit_idx;
}
return is_valid;
}
} // namespace ck
#endif // UTILITY_BLOCK_TO_CTILE_MAP
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment