Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
45c6c530
Unverified
Commit
45c6c530
authored
Nov 10, 2023
by
arai713
Committed by
GitHub
Nov 10, 2023
Browse files
Merge branch 'develop' into hip_tensor_permute
parents
4026fced
49e52bb3
Changes
49
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1149 additions
and
20 deletions
+1149
-20
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu.inc
...scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu.inc
+1
-1
client_example/24_grouped_convnd_fwd_scaleadd_ab/CMakeLists.txt
..._example/24_grouped_convnd_fwd_scaleadd_ab/CMakeLists.txt
+11
-0
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab.inc
...d_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab.inc
+221
-0
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_bf16.cpp
...vnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_bf16.cpp
+13
-0
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp16.cpp
...vnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp16.cpp
+13
-0
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp32.cpp
...vnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp32.cpp
+13
-0
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_int8.cpp
...vnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_int8.cpp
+13
-0
example/53_layernorm_bwd/CMakeLists.txt
example/53_layernorm_bwd/CMakeLists.txt
+1
-0
example/53_layernorm_bwd/layernorm2d_bwd_fp16.cpp
example/53_layernorm_bwd/layernorm2d_bwd_fp16.cpp
+165
-0
example/54_groupnorm_bwd/CMakeLists.txt
example/54_groupnorm_bwd/CMakeLists.txt
+1
-0
example/54_groupnorm_bwd/groupnorm_bwd_fp16.cpp
example/54_groupnorm_bwd/groupnorm_bwd_fp16.cpp
+167
-0
example/62_conv_fwd_activ/CMakeLists.txt
example/62_conv_fwd_activ/CMakeLists.txt
+9
-0
example/62_conv_fwd_activ/convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16.cpp
..._fwd_activ/convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16.cpp
+13
-8
example/62_conv_fwd_activ/multi_AB/conv_fwd_xdl_scaleadd_ab_bf16.cpp
...conv_fwd_activ/multi_AB/conv_fwd_xdl_scaleadd_ab_bf16.cpp
+26
-0
example/62_conv_fwd_activ/multi_AB/conv_fwd_xdl_scaleadd_ab_fp16.cpp
...conv_fwd_activ/multi_AB/conv_fwd_xdl_scaleadd_ab_fp16.cpp
+26
-0
example/62_conv_fwd_activ/multi_AB/conv_fwd_xdl_scaleadd_ab_fp32.cpp
...conv_fwd_activ/multi_AB/conv_fwd_xdl_scaleadd_ab_fp32.cpp
+26
-0
example/62_conv_fwd_activ/multi_AB/conv_fwd_xdl_scaleadd_ab_int8.cpp
...conv_fwd_activ/multi_AB/conv_fwd_xdl_scaleadd_ab_int8.cpp
+26
-0
example/62_conv_fwd_activ/multi_AB/convnd_fwd_activ_multi_ab_common.hpp
...v_fwd_activ/multi_AB/convnd_fwd_activ_multi_ab_common.hpp
+266
-0
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp
...eration/gpu/device/device_grouped_conv_fwd_multiple_d.hpp
+77
-11
include/ck/tensor_operation/gpu/device/device_normalization_bwd_gamma_beta.hpp
...ration/gpu/device/device_normalization_bwd_gamma_beta.hpp
+61
-0
No files found.
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu.inc
View file @
45c6c530
...
...
@@ -63,7 +63,7 @@ int execute_conv_fwd_scaleadd_scaleadd_relu()
K
*
Z
*
Y
*
X
*
C
,
Z
*
Y
*
X
*
C
,
1
,
Y
*
X
*
C
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
6
>
out_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
6
>
out_strides
{
C
,
Do
*
Ho
*
Wo
*
G
*
C
,
1
,
Ho
*
Wo
*
G
*
C
,
Wo
*
G
*
C
,
G
*
C
};
K
,
Do
*
Ho
*
Wo
*
G
*
K
,
1
,
Ho
*
Wo
*
G
*
K
,
Wo
*
G
*
K
,
G
*
K
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
,
1
};
...
...
client_example/24_grouped_convnd_fwd_scaleadd_ab/CMakeLists.txt
0 → 100644
View file @
45c6c530
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_fp32 grouped_conv_fwd_scaleadd_ab_fp32.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_fp32 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_fp16 grouped_conv_fwd_scaleadd_ab_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_fp16 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_bf16 grouped_conv_fwd_scaleadd_ab_bf16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_bf16 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_ab_int8 grouped_conv_fwd_scaleadd_ab_int8.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_ab_int8 PRIVATE composable_kernel::device_operations
)
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab.inc
0 → 100644
View file @
45c6c530
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_scaleadd_ab.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ScaleAdd
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
32
;
static
constexpr
ck
::
index_t
N
=
64
;
// batch size
static
constexpr
ck
::
index_t
K
=
64
;
// output channel
static
constexpr
ck
::
index_t
C
=
32
;
// input channel (per group)
static
constexpr
ck
::
index_t
Z
=
3
;
// filter D
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
static
constexpr
ck
::
index_t
X
=
3
;
// filter W
static
constexpr
ck
::
index_t
Di
=
14
;
// input D
static
constexpr
ck
::
index_t
Hi
=
14
;
// input H
static
constexpr
ck
::
index_t
Wi
=
14
;
// input W
static
constexpr
ck
::
index_t
Do
=
14
;
// output D
static
constexpr
ck
::
index_t
Ho
=
14
;
// output H
static
constexpr
ck
::
index_t
Wo
=
14
;
// output W
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
execute_conv_fwd_scaleadd_ab
()
{
constexpr
ck
::
index_t
NumAs
=
2
;
constexpr
ck
::
index_t
NumBs
=
2
;
constexpr
float
scale
=
1.5
f
;
// We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space.
// However, CK's API only accepts lengths and strides with order of GNCDHW/GKCZYX/GNKDHW.
// Hence, we need to adjust the order of strides.
std
::
array
<
ck
::
index_t
,
6
>
in_lengths
{
G
,
N
,
C
,
Di
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
6
>
in_strides
{
C
,
Di
*
Hi
*
Wi
*
G
*
C
,
1
,
Hi
*
Wi
*
G
*
C
,
Wi
*
G
*
C
,
G
*
C
};
std
::
array
<
ck
::
index_t
,
6
>
wei_lengths
{
G
,
K
,
C
,
Z
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
6
>
wei_strides
{
K
*
Z
*
Y
*
X
*
C
,
Z
*
Y
*
X
*
C
,
1
,
Y
*
X
*
C
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
6
>
out_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
6
>
out_strides
{
K
,
Do
*
Ho
*
Wo
*
G
*
K
,
1
,
Ho
*
Wo
*
G
*
K
,
Wo
*
G
*
K
,
G
*
K
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
,
1
};
using
InputDtype
=
ck
::
tuple_element_t
<
0
,
InDataType
>
;
using
InputBiasDtype
=
ck
::
tuple_element_t
<
1
,
InDataType
>
;
using
WeightDtype
=
ck
::
tuple_element_t
<
0
,
WeiDataType
>
;
using
WeightBiasDtype
=
ck
::
tuple_element_t
<
1
,
WeiDataType
>
;
SimpleDeviceMem
in
(
sizeof
(
InputDtype
)
*
N
*
Di
*
Hi
*
Wi
*
G
*
C
);
SimpleDeviceMem
in_bias
(
sizeof
(
InputBiasDtype
)
*
N
*
Di
*
Hi
*
Wi
*
G
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeightDtype
)
*
G
*
K
*
Z
*
Y
*
X
*
C
);
SimpleDeviceMem
wei_bias
(
sizeof
(
WeightBiasDtype
)
*
G
*
K
*
Z
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
ScaleAdd
,
ScaleAdd
,
PassThrough
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
std
::
array
<
const
void
*
,
NumAs
>
as
=
{
in
.
GetDeviceBuffer
(),
in_bias
.
GetDeviceBuffer
()};
std
::
array
<
const
void
*
,
NumBs
>
bs
=
{
wei
.
GetDeviceBuffer
(),
wei_bias
.
GetDeviceBuffer
()};
std
::
array
<
const
void
*
,
0
>
ds
{};
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
as
,
bs
,
ds
,
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{},
{},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
ScaleAdd
{
scale
},
ScaleAdd
{
scale
},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Do
*
Ho
*
Wo
*
Z
*
Y
*
X
+
N
*
Di
*
Hi
*
Wi
*
G
*
C
+
G
*
K
*
Z
*
Y
*
X
*
C
;
std
::
size_t
num_bytes
=
2
*
sizeof
(
InDataType
)
*
N
*
Di
*
Hi
*
Wi
*
G
*
C
+
2
*
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
+
sizeof
(
OutDataType
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
as
,
bs
,
ds
,
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{},
{},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
ScaleAdd
{
scale
},
ScaleAdd
{
scale
},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_bf16.cpp
0 → 100644
View file @
45c6c530
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
ck
::
Tuple
<
ck
::
bhalf_t
,
ck
::
bhalf_t
>
;
using
WeiDataType
=
ck
::
Tuple
<
ck
::
bhalf_t
,
ck
::
bhalf_t
>
;
using
OutDataType
=
ck
::
bhalf_t
;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_ab
();
}
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp16.cpp
0 → 100644
View file @
45c6c530
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
ck
::
Tuple
<
ck
::
half_t
,
ck
::
half_t
>
;
using
WeiDataType
=
ck
::
Tuple
<
ck
::
half_t
,
ck
::
half_t
>
;
using
OutDataType
=
ck
::
half_t
;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_ab
();
}
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_fp32.cpp
0 → 100644
View file @
45c6c530
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
ck
::
Tuple
<
float
,
float
>
;
using
WeiDataType
=
ck
::
Tuple
<
float
,
float
>
;
using
OutDataType
=
float
;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_ab
();
}
client_example/24_grouped_convnd_fwd_scaleadd_ab/grouped_conv_fwd_scaleadd_ab_int8.cpp
0 → 100644
View file @
45c6c530
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
ck
::
Tuple
<
int8_t
,
int8_t
>
;
using
WeiDataType
=
ck
::
Tuple
<
int8_t
,
int8_t
>
;
using
OutDataType
=
int8_t
;
#include "grouped_conv_fwd_scaleadd_ab.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_ab
();
}
example/53_layernorm_bwd/CMakeLists.txt
0 → 100644
View file @
45c6c530
add_example_executable
(
example_layernorm2d_bwd_fp16 layernorm2d_bwd_fp16.cpp
)
example/53_layernorm_bwd/layernorm2d_bwd_fp16.cpp
0 → 100644
View file @
45c6c530
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_gamma_beta_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm_bwd.hpp"
using
DYDataType
=
ck
::
half_t
;
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
MeanInvStdDataType
=
float
;
using
DGammaDataType
=
ck
::
half_t
;
using
DBetaDataType
=
ck
::
half_t
;
using
DXDataType
=
ck
::
half_t
;
using
ComputeDataType
=
float
;
constexpr
int
Rank
=
2
;
constexpr
int
NumReduceDim
=
1
;
// Layernorm:
// Input shape
// dy: [M, N]
// x: [M, N]
// mean: [M, 1]
// inv_std: [M, 1]
// Output shape
// dgamma: [1, N]
// dbeta: [1, N]
// dgamma = reduce_sum(dy * (x - mean) * inv_std, axis=0)
// dbeta = reduce_sum(dy, axis=0)
// [CAUSION]
// In DeviceNormalizationBwdGammaBetaImpl, M is invarient dimension, K is reduced dimension
// Hence, M in this example and DeviceNormalizationBwdGammaBetaImpl is different
using
GammaBetaDeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationBwdGammaBetaImpl
<
DYDataType
,
XDataType
,
MeanInvStdDataType
,
ComputeDataType
,
DGammaDataType
,
DBetaDataType
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// ClusterInvarient
32
,
// ClusterReduce
8
,
// SliceInvarient
1
,
// SliceReduce
false
,
// IsDYFastestDimReduced
8
,
// DYSrcVectorSize
false
,
// IsXFastestDimReduced
8
,
// XSrcVectorSize
true
,
// IsMeanInvStdFastestDimReduced
1
,
// MeanInvStdSrcVectorSize
1
,
// DGammaDstVectorSize
1
>
;
// DBetaDstVectorSize
int
main
()
{
bool
time_kernel
=
false
;
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
512
;
Tensor
<
DYDataType
>
dy
({
M
,
N
});
Tensor
<
XDataType
>
x
({
M
,
N
});
Tensor
<
GammaDataType
>
gamma
({
N
});
Tensor
<
MeanInvStdDataType
>
mean
({
M
});
Tensor
<
MeanInvStdDataType
>
inv_std
({
M
});
Tensor
<
DGammaDataType
>
dgamma
({
N
});
Tensor
<
DBetaDataType
>
dbeta
({
N
});
Tensor
<
DXDataType
>
dx
({
M
,
N
});
dy
.
GenerateTensorValue
(
GeneratorTensor_3
<
DYDataType
>
{
0.0
,
1.0
});
x
.
GenerateTensorValue
(
GeneratorTensor_3
<
XDataType
>
{
0.0
,
1.0
});
gamma
.
GenerateTensorValue
(
GeneratorTensor_3
<
GammaDataType
>
{
0.0
,
1.0
});
mean
.
GenerateTensorValue
(
GeneratorTensor_3
<
MeanInvStdDataType
>
{
0.0
,
1.0
});
inv_std
.
GenerateTensorValue
(
GeneratorTensor_3
<
MeanInvStdDataType
>
{
0.0
,
1.0
});
DeviceMem
dy_dev
(
sizeof
(
DYDataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
x_dev
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
mean_dev
(
sizeof
(
MeanInvStdDataType
)
*
mean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
inv_std_dev
(
sizeof
(
MeanInvStdDataType
)
*
inv_std
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dgamma_dev
(
sizeof
(
DGammaDataType
)
*
dgamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dbeta_dev
(
sizeof
(
DBetaDataType
)
*
dbeta
.
mDesc
.
GetElementSpaceSize
());
dy_dev
.
ToDevice
(
dy
.
mData
.
data
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
mean_dev
.
ToDevice
(
mean
.
mData
.
data
());
inv_std_dev
.
ToDevice
(
inv_std
.
mData
.
data
());
auto
gamma_beta_device_instance
=
GammaBetaDeviceInstance
{};
auto
gamma_beta_argument_ptr
=
gamma_beta_device_instance
.
MakeArgumentPointer
({
M
,
N
},
// inLengths
{
N
,
1
},
// dyStrides
{
N
,
1
},
// xStrides
{
1
,
0
},
// meanStrides
{
1
,
0
},
// invStdStrides
{
N
},
// outLengths
{
1
},
// dgammaStrides
{
1
},
// dbetaStrides
{
0
},
// reduceDims
dy_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
mean_dev
.
GetDeviceBuffer
(),
inv_std_dev
.
GetDeviceBuffer
(),
dgamma_dev
.
GetDeviceBuffer
(),
dbeta_dev
.
GetDeviceBuffer
());
if
(
!
gamma_beta_device_instance
.
IsSupportedArgument
(
gamma_beta_argument_ptr
.
get
()))
{
std
::
cout
<<
"The runtime parameters are not supported"
<<
std
::
endl
;
return
1
;
};
auto
gamma_beta_invoker_ptr
=
gamma_beta_device_instance
.
MakeInvokerPointer
();
gamma_beta_invoker_ptr
->
Run
(
gamma_beta_argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
bool
pass
=
true
;
{
Tensor
<
DGammaDataType
>
host_dgamma
({
N
});
Tensor
<
DBetaDataType
>
host_dbeta
({
N
});
Tensor
<
DXDataType
>
host_dx
({
M
,
N
});
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceLayernormBwd
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
DGammaDataType
,
DBetaDataType
,
DXDataType
,
ComputeDataType
>
;
ReferenceInstance
ref
;
auto
ref_argument
=
ref
.
MakeArgument
(
dy
,
x
,
gamma
,
mean
,
inv_std
,
host_dgamma
,
host_dbeta
,
host_dx
,
{
M
,
N
});
auto
ref_invoker
=
ref
.
MakeInvoker
();
ref_invoker
.
Run
(
ref_argument
);
dgamma_dev
.
FromDevice
(
dgamma
.
mData
.
data
());
dbeta_dev
.
FromDevice
(
dbeta
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
dgamma
,
host_dgamma
,
"Error: Incorrect dgamma"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dbeta
,
host_dbeta
,
"Error: Incorrect dbeta"
,
1e-3
,
1e-3
);
}
return
(
pass
?
0
:
1
);
}
example/54_groupnorm_bwd/CMakeLists.txt
0 → 100644
View file @
45c6c530
add_example_executable
(
example_groupnorm_bwd_fp16 groupnorm_bwd_fp16.cpp
)
example/54_groupnorm_bwd/groupnorm_bwd_fp16.cpp
0 → 100644
View file @
45c6c530
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_gamma_beta_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_groupnorm_bwd.hpp"
using
DYDataType
=
ck
::
half_t
;
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
MeanInvStdDataType
=
float
;
using
DGammaDataType
=
ck
::
half_t
;
using
DBetaDataType
=
ck
::
half_t
;
using
DXDataType
=
ck
::
half_t
;
using
ComputeDataType
=
float
;
constexpr
int
Rank
=
5
;
constexpr
int
NumReduceDim
=
3
;
// Grouprnorm
// kernel: M , K
// dy: N, H, W, G, C -> G * C, N * H * W
// x: N, H, W, G, C -> G * C, N * H * W
// mean: N, 1, 1, G, 1 -> G * 1, N * 1 * 1
// rstd: N, 1, 1, G, 1 -> G * 1, N * 1 * 1
// dgamma: 1, 1, 1, G, C -> G * C
// dbeta: 1, 1, 1, G, C -> G * C
// reduced axis: 0, 1, 2
using
GammaBetaDeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationBwdGammaBetaImpl
<
DYDataType
,
XDataType
,
MeanInvStdDataType
,
ComputeDataType
,
DGammaDataType
,
DBetaDataType
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// ClusterInvarient
32
,
// ClusterReduce
8
,
// SliceInvarient
1
,
// SliceReduce
false
,
// IsDYFastestDimReduced
8
,
// DYSrcVectorSize
false
,
// IsXFastestDimReduced
8
,
// XSrcVectorSize
false
,
// IsMeanInvStdFastestDimReduced
1
,
// MeanInvStdSrcVectorSize
1
,
// DGammaDstVectorSize
1
>
;
// DBetaDstVectorSize
int
main
()
{
bool
time_kernel
=
false
;
ck
::
index_t
N
=
16
;
ck
::
index_t
H
=
16
;
ck
::
index_t
W
=
16
;
ck
::
index_t
G
=
32
;
ck
::
index_t
C
=
64
;
Tensor
<
DYDataType
>
dy
({
N
,
H
,
W
,
G
,
C
});
Tensor
<
XDataType
>
x
({
N
,
H
,
W
,
G
,
C
});
Tensor
<
GammaDataType
>
gamma
({
G
,
C
});
Tensor
<
MeanInvStdDataType
>
mean
({
N
,
G
});
Tensor
<
MeanInvStdDataType
>
inv_std
({
N
,
G
});
Tensor
<
DGammaDataType
>
dgamma
({
G
,
C
});
Tensor
<
DBetaDataType
>
dbeta
({
G
,
C
});
Tensor
<
DXDataType
>
dx
({
N
,
H
,
W
,
G
,
C
});
dy
.
GenerateTensorValue
(
GeneratorTensor_3
<
DYDataType
>
{
0.0
,
1.0
});
x
.
GenerateTensorValue
(
GeneratorTensor_3
<
XDataType
>
{
0.0
,
1.0
});
gamma
.
GenerateTensorValue
(
GeneratorTensor_3
<
GammaDataType
>
{
0.0
,
1.0
});
mean
.
GenerateTensorValue
(
GeneratorTensor_3
<
MeanInvStdDataType
>
{
0.0
,
1.0
});
inv_std
.
GenerateTensorValue
(
GeneratorTensor_3
<
MeanInvStdDataType
>
{
0.0
,
1.0
});
DeviceMem
dy_dev
(
sizeof
(
DYDataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
x_dev
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
mean_dev
(
sizeof
(
MeanInvStdDataType
)
*
mean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
inv_std_dev
(
sizeof
(
MeanInvStdDataType
)
*
inv_std
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dgamma_dev
(
sizeof
(
DGammaDataType
)
*
dgamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dbeta_dev
(
sizeof
(
DBetaDataType
)
*
dbeta
.
mDesc
.
GetElementSpaceSize
());
dy_dev
.
ToDevice
(
dy
.
mData
.
data
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
mean_dev
.
ToDevice
(
mean
.
mData
.
data
());
inv_std_dev
.
ToDevice
(
inv_std
.
mData
.
data
());
std
::
vector
<
ck
::
index_t
>
dyStrides
{
dy
.
mDesc
.
GetStrides
().
begin
(),
dy
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
ck
::
index_t
>
xStrides
{
x
.
mDesc
.
GetStrides
().
begin
(),
x
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
ck
::
index_t
>
meanStrides
=
{
G
,
0
,
0
,
1
,
0
};
std
::
vector
<
ck
::
index_t
>
invStdStrides
=
{
G
,
0
,
0
,
1
,
0
};
auto
gamma_beta_device_instance
=
GammaBetaDeviceInstance
{};
auto
gamma_beta_argument_ptr
=
gamma_beta_device_instance
.
MakeArgumentPointer
({
N
,
H
,
W
,
G
,
C
},
// inLengths
dyStrides
,
// dyStrides
xStrides
,
// xStrides
meanStrides
,
// meanStrides
invStdStrides
,
// invStdStrides
{
G
,
C
},
// outLengths
{
C
,
1
},
// dgammaStrides
{
C
,
1
},
// dbetaStrides
{
0
,
1
,
2
},
// reduceDims
dy_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
mean_dev
.
GetDeviceBuffer
(),
inv_std_dev
.
GetDeviceBuffer
(),
dgamma_dev
.
GetDeviceBuffer
(),
dbeta_dev
.
GetDeviceBuffer
());
if
(
!
gamma_beta_device_instance
.
IsSupportedArgument
(
gamma_beta_argument_ptr
.
get
()))
{
std
::
cout
<<
"The runtime parameters are not supported"
<<
std
::
endl
;
return
1
;
};
auto
gamma_beta_invoker_ptr
=
gamma_beta_device_instance
.
MakeInvokerPointer
();
gamma_beta_invoker_ptr
->
Run
(
gamma_beta_argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
bool
pass
=
true
;
{
Tensor
<
DGammaDataType
>
host_dgamma
({
G
,
C
});
Tensor
<
DBetaDataType
>
host_dbeta
({
G
,
C
});
Tensor
<
DXDataType
>
host_dx
({
N
,
H
,
W
,
G
,
C
});
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGroupnormBwd
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
DGammaDataType
,
DBetaDataType
,
DXDataType
,
ComputeDataType
>
;
ReferenceInstance
ref
;
auto
ref_argument
=
ref
.
MakeArgument
(
dy
,
x
,
gamma
,
mean
,
inv_std
,
host_dgamma
,
host_dbeta
,
host_dx
,
{
N
,
H
,
W
,
G
,
C
});
auto
ref_invoker
=
ref
.
MakeInvoker
();
ref_invoker
.
Run
(
ref_argument
);
dgamma_dev
.
FromDevice
(
dgamma
.
mData
.
data
());
dbeta_dev
.
FromDevice
(
dbeta
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
dgamma
,
host_dgamma
,
"Error: Incorrect dgamma"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dbeta
,
host_dbeta
,
"Error: Incorrect dbeta"
,
1e-3
,
1e-3
);
}
return
(
pass
?
0
:
1
);
}
example/62_conv_fwd_activ/CMakeLists.txt
View file @
45c6c530
...
...
@@ -30,6 +30,15 @@ foreach(gpu IN LISTS GPU_TARGETS)
# Elu
add_example_executable
(
example_convnd_fwd_xdl_elu_fp16 convnd_fwd_xdl_elu_fp16.cpp
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_elu_fp16
)
# ScaleAdd on A and B
add_example_executable
(
example_conv_fwd_xdl_scaleadd_ab_fp16 multi_AB/conv_fwd_xdl_scaleadd_ab_fp16.cpp
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_conv_fwd_xdl_scaleadd_ab_fp16
)
add_example_executable
(
example_conv_fwd_xdl_scaleadd_ab_fp32 multi_AB/conv_fwd_xdl_scaleadd_ab_fp32.cpp
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_conv_fwd_xdl_scaleadd_ab_fp32
)
add_example_executable
(
example_conv_fwd_xdl_scaleadd_ab_bf16 multi_AB/conv_fwd_xdl_scaleadd_ab_bf16.cpp
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_conv_fwd_xdl_scaleadd_ab_bf16
)
add_example_executable
(
example_conv_fwd_xdl_scaleadd_ab_int8 multi_AB/conv_fwd_xdl_scaleadd_ab_int8.cpp
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_conv_fwd_xdl_scaleadd_ab_int8
)
# ScaleAdd ScaleAdd Relu
add_example_executable
(
example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16 convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16.cpp
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16
)
...
...
example/62_conv_fwd_activ/convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16.cpp
View file @
45c6c530
...
...
@@ -226,13 +226,16 @@ bool run_grouped_conv_fwd(bool do_verification,
if
(
do_verification
)
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
0
,
/*Num A Elementwise Tensors*/
0
,
/*Num B Elementwise Tensors*/
NumDs
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
...
...
@@ -246,6 +249,8 @@ bool run_grouped_conv_fwd(bool do_verification,
in_element_op
,
wei_element_op
,
out_element_op
,
{},
{},
d_tensors
);
ref_invoker
.
Run
(
ref_argument
);
...
...
example/62_conv_fwd_activ/multi_AB/conv_fwd_xdl_scaleadd_ab_bf16.cpp
0 → 100644
View file @
45c6c530
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_multi_ab_common.hpp"
using
DataType
=
ck
::
bhalf_t
;
using
AccDataType
=
float
;
using
InDataType
=
DataType
;
using
WeiDataType
=
DataType
;
using
OutDataType
=
DataType
;
using
ADataTypes
=
ck
::
Tuple
<
DataType
,
DataType
>
;
using
BDataTypes
=
ck
::
Tuple
<
DataType
,
DataType
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
using
DeviceGroupedConvNDFwdActivInstance
=
DeviceGroupedConvNDMultiABFwdInstance
<
DataType
,
AccDataType
,
ADataTypes
,
BDataTypes
,
InElementOp
,
WeiElementOp
>
;
#include "../run_convnd_fwd_activ_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_example
(
argc
,
argv
);
}
example/62_conv_fwd_activ/multi_AB/conv_fwd_xdl_scaleadd_ab_fp16.cpp
0 → 100644
View file @
45c6c530
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_multi_ab_common.hpp"
using
DataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
InDataType
=
DataType
;
using
WeiDataType
=
DataType
;
using
OutDataType
=
DataType
;
using
ADataTypes
=
ck
::
Tuple
<
DataType
,
DataType
>
;
using
BDataTypes
=
ck
::
Tuple
<
DataType
,
DataType
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
using
DeviceGroupedConvNDFwdActivInstance
=
DeviceGroupedConvNDMultiABFwdInstance
<
DataType
,
AccDataType
,
ADataTypes
,
BDataTypes
,
InElementOp
,
WeiElementOp
>
;
#include "../run_convnd_fwd_activ_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_example
(
argc
,
argv
);
}
example/62_conv_fwd_activ/multi_AB/conv_fwd_xdl_scaleadd_ab_fp32.cpp
0 → 100644
View file @
45c6c530
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_multi_ab_common.hpp"
using
DataType
=
float
;
using
AccDataType
=
float
;
using
InDataType
=
DataType
;
using
WeiDataType
=
DataType
;
using
OutDataType
=
DataType
;
using
ADataTypes
=
ck
::
Tuple
<
DataType
,
DataType
>
;
using
BDataTypes
=
ck
::
Tuple
<
DataType
,
DataType
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
using
DeviceGroupedConvNDFwdActivInstance
=
DeviceGroupedConvNDMultiABFwdInstance
<
DataType
,
AccDataType
,
ADataTypes
,
BDataTypes
,
InElementOp
,
WeiElementOp
>
;
#include "../run_convnd_fwd_activ_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_example
(
argc
,
argv
);
}
example/62_conv_fwd_activ/multi_AB/conv_fwd_xdl_scaleadd_ab_int8.cpp
0 → 100644
View file @
45c6c530
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_multi_ab_common.hpp"
using
DataType
=
int8_t
;
using
AccDataType
=
int32_t
;
using
InDataType
=
DataType
;
using
WeiDataType
=
DataType
;
using
OutDataType
=
DataType
;
using
ADataTypes
=
ck
::
Tuple
<
DataType
,
DataType
>
;
using
BDataTypes
=
ck
::
Tuple
<
DataType
,
DataType
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
using
DeviceGroupedConvNDFwdActivInstance
=
DeviceGroupedConvNDMultiABFwdInstance
<
DataType
,
AccDataType
,
ADataTypes
,
BDataTypes
,
InElementOp
,
WeiElementOp
>
;
#include "../run_convnd_fwd_activ_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_example
(
argc
,
argv
);
}
example/62_conv_fwd_activ/multi_AB/convnd_fwd_activ_multi_ab_common.hpp
0 → 100644
View file @
45c6c530
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
constexpr
ck
::
index_t
NDimSpatial
=
3
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNDHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNDHWK
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
typename
DataType
,
typename
AccDataType
,
typename
InDataTypes
,
typename
WeiDataTypes
,
typename
InElementOp
,
typename
WeiElementOp
>
using
DeviceGroupedConvNDMultiABFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataTypes
,
WeiDataTypes
,
AccDataType
,
DataType
,
ck
::
Tuple
<>
,
DataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
namespace
{
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
DeviceConvNDFwdInstance
>
bool
run_grouped_conv_fwd
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
{
constexpr
ck
::
index_t
NumAs
=
2
;
constexpr
ck
::
index_t
NumBs
=
2
;
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
InDataType
>
in_bias
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
WeiDataType
>
wei_bias
(
wei_g_k_c_xs_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_host
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
2
,
2
});
in_bias
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
2
,
2
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
2
,
2
});
wei_bias
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
2
,
2
});
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
1.0
,
1.0
});
in_bias
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
1.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.05
,
0.05
});
wei_bias
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
1.0
,
1.0
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
in_bias_device_buf
(
sizeof
(
InDataType
)
*
in_bias
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_bias_device_buf
(
sizeof
(
WeiDataType
)
*
wei_bias
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
in_bias_device_buf
.
ToDevice
(
in_bias
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
wei_bias_device_buf
.
ToDevice
(
wei_bias
.
mData
.
data
());
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
std
::
array
<
const
void
*
,
NumAs
>
as
{
in_device_buf
.
GetDeviceBuffer
(),
in_bias_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
const
void
*
,
NumBs
>
bs
{
wei_device_buf
.
GetDeviceBuffer
(),
wei_bias_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
const
void
*
,
0
>
ds
{};
// do Conv
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
as
,
bs
,
ds
,
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
{},
{},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
()
+
2
*
conv_param
.
GetOutputByte
<
InDataType
>
()
/
sizeof
(
InDataType
)
+
2
*
conv_param
.
GetOutputByte
<
WeiDataType
>
()
/
sizeof
(
WeiDataType
);
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
()
+
conv_param
.
GetInputByte
<
InDataType
>
()
+
conv_param
.
GetWeightByte
<
WeiDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
const
std
::
array
<
Tensor
<
InDataType
>
,
NumAs
-
1
>
elementwise_a_tensors
=
{
in_bias
};
const
std
::
array
<
Tensor
<
WeiDataType
>
,
NumBs
-
1
>
elementwise_b_tensors
=
{
wei_bias
};
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
NumAs
-
1
,
NumBs
-
1
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei
,
out_host
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
out_element_op
,
elementwise_a_tensors
,
elementwise_b_tensors
);
ref_invoker
.
Run
(
ref_argument
);
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
out_device
,
out_host
,
"Error: incorrect results!"
);
}
return
true
;
}
}
// namespace
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp
View file @
45c6c530
...
...
@@ -6,18 +6,42 @@
#include <array>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/utility/is_detected.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// Convolution Forward:
// input : input image A[G, N, C, Hi, Wi],
// input : weight B[G, K, C, Y, X],
// input : D0[G, N, K, Ho, Wo], D1[G, N, K, Ho, Wo], ...
// output : output image E[G, N, K, Ho, Wo]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
template
<
typename
T
>
using
is_tuple
=
decltype
(
std
::
declval
<
T
&>
().
IsTuple
());
/**
* \brief Grouped Convolution Forward
*
* \details
* input : input image A[G, N, C, Hi, Wi], A1[G, N, C, Hi, Wi]...
* input : weight B[G, K, C, Y, X], B1[G, K, C, Y, X]...
* input : D0[G, N, K, Ho, Wo], D1[G, N, K, Ho, Wo], ...
* output : output image E[G, N, K, Ho, Wo]
*
* C = a_op(A, A1...) * b_op(B, B1...)
* E = cde_op(C, D0, D1, ...)
*
* \tparam NDimSpatial Number of spatial dimensions.
* \tparam ALayout Input layout (also for a1, a2...).
* \tparam BLayout Weight layout (also for b1, b2...).
* \tparam DsLayout Ds layouts.
* \tparam ELayout Output layout.
* \tparam ADataType Input data type. Pass tuple if there is multiple A.
* \tparam BDataType Weight data type. Pass tuple if there is multiple B.
* \tparam DsDataType D data types.
* \tparam EDataType Output data type.
* \tparam AElementwiseOperation A elementwise operation.
* \tparam BElementwiseOperation B elementwise operation.
* \tparam CDEElementwiseOperation CDE elementwise operation.
* \tparam ComputeType Compute data type (default: ADataType, first if tuple passed).
*/
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
...
...
@@ -30,18 +54,60 @@ template <index_t NDimSpatial,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
ComputeType
=
ADataType
>
typename
ComputeType
=
decltype
(
UnpackDataType
<
is_detected
<
is_tuple
,
ADataType
>
::
value
,
Number
<
0
>
,
ADataType
>
())
>
// ComputeType is InputType by default (first
// in tuple for MultiAB), unpack if tuple was
// passed
struct
DeviceGroupedConvFwdMultipleD
:
public
BaseOperator
{
static
constexpr
bool
isMultiA
=
is_detected
<
is_tuple
,
ADataType
>::
value
;
static
constexpr
bool
isMultiB
=
is_detected
<
is_tuple
,
BDataType
>::
value
;
static
constexpr
index_t
NumATensor
=
GetNumABTensors
<
isMultiA
,
ADataType
>
();
static
constexpr
index_t
NumBTensor
=
GetNumABTensors
<
isMultiB
,
BDataType
>
();
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static_assert
(
NumDTensor
==
DsLayout
::
Size
(),
"wrong! Inconsistent NumDTensor"
);
// If DataType is tuple, user has to pass std::array with pointers.
using
APointers
=
std
::
conditional_t
<
isMultiA
,
std
::
array
<
const
void
*
,
NumATensor
>&
,
const
void
*>
;
using
BPointers
=
std
::
conditional_t
<
isMultiB
,
std
::
array
<
const
void
*
,
NumBTensor
>&
,
const
void
*>
;
/**
* \brief Make argument pointer for grouped conv fwd.
*
* \param p_a A pointer to the input (std::array<const void*, NumA> with
pointers for multiple A).
* \param p_b A pointer to the weight (std::array<const void*, NumA> with
pointers for multiple B).
* \param p_ds A pointers to the Ds.
* \param p_e A pointers to the output.
* \param a_g_n_c_wis_lengths Input lengths [G, N, C, Spatial...] (for 3d).
* \param a_g_n_c_wis_strides Input strides [G, N, C, Spatial...] (for 3d).
* \param b_g_k_c_xs_lengths Weight lengths [G, K, C, Spatial...] (for 3d).
* \param b_g_k_c_xs_strides Weight strides [G, K, C, Spatial...] (for 3d).
* \param ds_g_n_k_wos_lengths Ds lengths [G, N, K, Spatial...] (for 3d).
* \param ds_g_n_k_wos_strides Ds strides [G, N, K, Spatial...] (for 3d).
* \param e_g_n_k_wos_lengths Output lengths [G, N, K, Spatial...] (for 3d).
* \param e_g_n_k_wos_strides Output strides [G, N, K, Spatial...] (for 3d).
* \param conv_filter_strides Convolution filter strides.
* \param conv_filter_dilations Convolution filter dilations.
* \param input_left_pads Input left paddings.
* \param input_right_pads Input right paddings.
* \param a_element_op A elementwise operation object.
* \param b_element_op B elementwise operation object.
* \param cde_element_op CDE elementwise operation object.
* \return Pointer to the argument.
*/
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
// input image
const
void
*
p_b
,
// weight
APointers
p_a
,
BPointers
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
// output image
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
...
...
include/ck/tensor_operation/gpu/device/device_normalization_bwd_gamma_beta.hpp
0 → 100644
View file @
45c6c530
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
DYDataType
,
typename
XDataType
,
typename
MeanInvStdDataType
,
typename
DGammaDataType
,
typename
DBetaDataType
,
index_t
Rank
,
index_t
NumReduceDim
>
struct
DeviceNormalizationBwdGammaBeta
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
index_t
>
inLengths
,
const
std
::
vector
<
index_t
>
dyStrides
,
const
std
::
vector
<
index_t
>
xStrides
,
const
std
::
vector
<
index_t
>
meanStrides
,
const
std
::
vector
<
index_t
>
invStdStrides
,
const
std
::
vector
<
index_t
>
outLengths
,
const
std
::
vector
<
index_t
>
dgammaStrides
,
const
std
::
vector
<
index_t
>
dbetaStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
const
void
*
p_dy
,
const
void
*
p_x
,
const
void
*
p_mean
,
const
void
*
p_invStd
,
void
*
p_dgamma
,
void
*
p_dbeta
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
typename
DYDataType
,
typename
XDataType
,
typename
MeanInvStdDataType
,
typename
DGammaDataType
,
typename
DBetaDataType
,
index_t
Rank
,
index_t
NumReduceDim
>
using
DeviceNormalizationBwdGammaBetaPtr
=
std
::
unique_ptr
<
DeviceNormalizationBwdGammaBeta
<
DYDataType
,
XDataType
,
MeanInvStdDataType
,
DGammaDataType
,
DBetaDataType
,
Rank
,
NumReduceDim
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment