Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
44318b09
"include/vscode:/vscode.git/clone" did not exist on "1fd27d520f6aaa54c20cd6cc4439fb9c9f60c508"
Commit
44318b09
authored
May 18, 2023
by
rocking
Browse files
Add avg pool2d fwd in profiler
parent
df43a051
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
514 additions
and
0 deletions
+514
-0
library/include/ck/library/tensor_operation_instance/gpu/pool2d_fwd.hpp
...e/ck/library/tensor_operation_instance/gpu/pool2d_fwd.hpp
+111
-0
profiler/include/profiler/profile_pool2d_fwd_impl.hpp
profiler/include/profiler/profile_pool2d_fwd_impl.hpp
+264
-0
profiler/src/CMakeLists.txt
profiler/src/CMakeLists.txt
+1
-0
profiler/src/profile_avg_pool2d_fwd.cpp
profiler/src/profile_avg_pool2d_fwd.cpp
+138
-0
No files found.
library/include/ck/library/tensor_operation_instance/gpu/pool2d_fwd.hpp
0 → 100644
View file @
44318b09
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_pool_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
static
constexpr
auto
InOutRank
=
4
;
static
constexpr
auto
WindowRank
=
2
;
static
constexpr
auto
MaxOp
=
ck
::
ReduceTensorOp
::
MAX
;
static
constexpr
auto
AvgOp
=
ck
::
ReduceTensorOp
::
AVG
;
// FP16
void
add_device_pool2d_fwd_nhwc_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F16
,
F16
,
I32
,
MaxOp
,
false
>>>&
);
void
add_device_pool2d_fwd_nhwc_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F16
,
F16
,
I32
,
AvgOp
,
false
>>>&
);
// FP16 - return index
void
add_device_pool2d_fwd_nhwc_index_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F16
,
F16
,
I32
,
MaxOp
,
true
>>>&
);
// FP32
void
add_device_pool2d_fwd_nhwc_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F32
,
F32
,
I32
,
MaxOp
,
false
>>>&
);
void
add_device_pool2d_fwd_nhwc_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F32
,
F32
,
I32
,
AvgOp
,
false
>>>&
);
// FP32 - return index
void
add_device_pool2d_fwd_nhwc_index_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DevicePoolFwd
<
InOutRank
,
WindowRank
,
F32
,
F32
,
I32
,
MaxOp
,
true
>>>&
);
template
<
typename
InDataType
,
typename
OutDataType
,
typename
IndexDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
bool
OutputIndex
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DevicePoolFwd
<
InOutRank
,
WindowRank
,
InDataType
,
OutDataType
,
IndexDataType
,
ReduceOpId
,
OutputIndex
>>
{
using
DeviceOp
=
DevicePoolFwd
<
InOutRank
,
WindowRank
,
InDataType
,
OutDataType
,
IndexDataType
,
ReduceOpId
,
OutputIndex
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
if
constexpr
(
is_same_v
<
InDataType
,
F16
>
&&
is_same_v
<
OutDataType
,
F16
>
&&
is_same_v
<
IndexDataType
,
I32
>
)
{
if
constexpr
(
OutputIndex
&&
ReduceOpId
==
MaxOp
)
{
add_device_pool2d_fwd_nhwc_index_f16_instances
(
op_ptrs
);
}
else
{
add_device_pool2d_fwd_nhwc_f16_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
InDataType
,
F32
>
&&
is_same_v
<
OutDataType
,
F32
>
&&
is_same_v
<
IndexDataType
,
I32
>
)
{
if
constexpr
(
OutputIndex
&&
ReduceOpId
==
MaxOp
)
{
add_device_pool2d_fwd_nhwc_index_f32_instances
(
op_ptrs
);
}
else
{
add_device_pool2d_fwd_nhwc_f32_instances
(
op_ptrs
);
}
}
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
profiler/include/profiler/profile_pool2d_fwd_impl.hpp
0 → 100644
View file @
44318b09
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/pool2d_fwd.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
InDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
IndexDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
bool
PropagateNan
,
bool
OutputIndex
>
bool
profile_pool2d_fwd_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
std
::
vector
<
index_t
>
in_length
,
// NCHW
std
::
vector
<
index_t
>
window_spatial_lengths
,
std
::
vector
<
index_t
>
window_strides
,
std
::
vector
<
index_t
>
input_left_pads
,
std
::
vector
<
index_t
>
input_right_pads
)
{
constexpr
index_t
InOutRank
=
4
;
constexpr
index_t
WindowRank
=
2
;
if
(
in_length
.
size
()
!=
InOutRank
||
window_spatial_lengths
.
size
()
!=
WindowRank
||
window_strides
.
size
()
!=
WindowRank
||
input_left_pads
.
size
()
!=
WindowRank
||
input_right_pads
.
size
()
!=
WindowRank
)
return
false
;
std
::
vector
<
index_t
>
out_length
(
InOutRank
);
int
N
=
in_length
[
0
];
int
C
=
in_length
[
1
];
out_length
[
0
]
=
N
;
out_length
[
1
]
=
C
;
// Calculate Ho, Wo
for
(
int
i
=
2
;
i
<
InOutRank
;
++
i
)
{
auto
pad1
=
input_left_pads
[
i
-
2
];
auto
pad2
=
input_right_pads
[
i
-
2
];
auto
windows_size
=
window_spatial_lengths
[
i
-
2
];
auto
windows_stride
=
window_strides
[
i
-
2
];
out_length
[
i
]
=
(
in_length
[
i
]
+
pad1
+
pad2
-
windows_size
)
/
windows_stride
+
1
;
}
int
Hi
=
in_length
[
2
];
int
Wi
=
in_length
[
3
];
int
Ho
=
out_length
[
2
];
int
Wo
=
out_length
[
3
];
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
)
{
using
namespace
ck
::
literals
;
return
HostTensorDescriptor
({
N_
,
C_
,
H
,
W
},
{
C_
*
H
*
W
,
1
_uz
,
W
*
C_
,
C_
});
};
Tensor
<
InDataType
>
in_n_c_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
));
Tensor
<
OutDataType
>
out_n_c_ho_wo_host
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
));
Tensor
<
IndexDataType
>
out_indices_n_c_ho_wo_host
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
));
Tensor
<
OutDataType
>
out_n_c_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
));
Tensor
<
IndexDataType
>
out_indices_n_c_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
));
switch
(
init_method
)
{
case
0
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{});
break
;
case
1
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
break
;
default:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_c_ho_wo_device
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_indices_device_buf
(
sizeof
(
IndexDataType
)
*
out_indices_n_c_ho_wo_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
// add device normalization instances
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DevicePoolFwd
<
InOutRank
,
WindowRank
,
InDataType
,
OutDataType
,
IndexDataType
,
ReduceOpId
,
OutputIndex
>
;
// get device op instances
const
auto
instance_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
instance_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_instance_name
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
if
(
do_verification
)
{
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferencePoolingFwd
<
InOutRank
,
WindowRank
,
InDataType
,
OutDataType
,
AccDataType
,
IndexDataType
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
;
ReferenceInstance
ref
;
auto
ref_argument
=
ref
.
MakeArgument
(
in_n_c_hi_wi
,
out_n_c_ho_wo_host
,
out_indices_n_c_ho_wo_host
,
window_spatial_lengths
,
window_strides
,
input_left_pads
,
input_right_pads
);
auto
ref_invoker
=
ref
.
MakeInvoker
();
ref_invoker
.
Run
(
ref_argument
);
}
int
num_kernel
=
0
;
for
(
auto
&
inst_ptr
:
instance_ptrs
)
{
auto
argument_ptr
=
inst_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
out_indices_device_buf
.
GetDeviceBuffer
()),
{
C
*
Hi
*
Wi
,
1
,
Wi
*
C
,
C
},
{
C
*
Ho
*
Wo
,
1
,
Wo
*
C
,
C
},
{
C
*
Ho
*
Wo
,
1
,
Wo
*
C
,
C
},
{
N
,
C
,
Hi
,
Wi
},
window_spatial_lengths
,
{
N
,
C
,
Ho
,
Wo
},
window_strides
,
input_left_pads
,
input_right_pads
,
{
2
,
3
});
if
(
inst_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
++
num_kernel
;
}
else
{
if
(
time_kernel
)
{
std
::
cout
<<
inst_ptr
->
GetTypeString
()
<<
" skipped due to unsupported argument: "
;
LogRange
(
std
::
cout
<<
"input lengths = "
,
in_length
,
", "
)
<<
std
::
endl
;
}
continue
;
}
auto
invoker_ptr
=
inst_ptr
->
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
num_bytes
=
in_n_c_hi_wi
.
mDesc
.
GetElementSize
()
*
sizeof
(
InDataType
)
+
out_n_c_ho_wo_host
.
mDesc
.
GetElementSize
()
*
sizeof
(
OutDataType
);
if
constexpr
(
OutputIndex
)
num_bytes
+=
out_indices_n_c_ho_wo_host
.
mDesc
.
GetElementSize
()
*
sizeof
(
IndexDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
if
(
time_kernel
)
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
inst_ptr
->
GetTypeString
()
<<
std
::
endl
;
if
(
avg_time
<
best_avg_time
)
{
best_instance_name
=
inst_ptr
->
GetTypeString
();
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
out_device_buf
.
FromDevice
(
out_n_c_ho_wo_device
.
mData
.
data
());
bool
pass
=
ck
::
utils
::
check_err
(
out_n_c_ho_wo_device
.
mData
,
out_n_c_ho_wo_host
.
mData
,
"Error: Incorrect results"
,
1e-3
,
1e-3
);
if
constexpr
(
OutputIndex
)
{
out_indices_device_buf
.
FromDevice
(
out_indices_n_c_ho_wo_device
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out_indices_n_c_ho_wo_device
,
out_indices_n_c_ho_wo_host
);
}
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in_n_c_hi_wi : "
,
in_n_c_hi_wi
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_n_c_ho_wo_host : "
,
out_n_c_ho_wo_host
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_n_c_ho_wo_device : "
,
out_n_c_ho_wo_device
.
mData
,
","
)
<<
std
::
endl
;
if
constexpr
(
OutputIndex
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_indices_n_c_ho_wo_device : "
,
out_indices_n_c_ho_wo_device
.
mData
,
","
)
<<
std
::
endl
;
}
if
(
!
pass
)
{
std
::
cout
<<
inst_ptr
->
GetTypeString
()
<<
" failed verification: "
;
LogRange
(
std
::
cout
<<
"lengths = ["
,
in_length
,
", "
)
<<
"]."
<<
std
::
endl
;
return
false
;
}
else
{
if
(
time_kernel
)
std
::
cout
<<
"pass"
<<
std
::
endl
;
}
}
}
if
(
time_kernel
)
{
LogRange
(
std
::
cout
<<
"length = "
,
in_length
,
","
)
<<
std
::
endl
;
std
::
cout
<<
"best perf = "
<<
best_avg_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_instance_name
<<
std
::
endl
;
}
if
(
num_kernel
==
0
)
{
std
::
cout
<<
"Error: No kernel is applicable"
<<
std
::
endl
;
return
false
;
}
return
true
;
}
}
// namespace profiler
}
// namespace ck
profiler/src/CMakeLists.txt
View file @
44318b09
...
...
@@ -25,6 +25,7 @@ set(PROFILER_SOURCES
profile_reduce.cpp
profile_groupnorm.cpp
profile_layernorm.cpp
profile_avg_pool2d_fwd.cpp
profile_max_pool3d_fwd.cpp
profile_softmax.cpp
profile_batchnorm_fwd.cpp
...
...
profiler/src/profile_avg_pool2d_fwd.cpp
0 → 100644
View file @
44318b09
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_pool2d_fwd_impl.hpp"
#include "profiler_operation_registry.hpp"
using
ck
::
index_t
;
struct
maxPoolFwdArgParser
{
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int
>>
long_opts
=
{
{
"length"
,
{}},
{
"wsize"
,
{}},
{
"wstride"
,
{}},
{
"padding1"
,
{}},
{
"padding2"
,
{}}};
bool
parse_opt
(
int
argc
,
char
*
argv
[],
const
std
::
string
&
key
,
int
i
)
{
if
(
std
::
string
(
"--"
)
+
key
==
argv
[
i
])
{
int
pos
=
i
;
while
(
++
i
<
argc
&&
argv
[
i
][
0
]
!=
'-'
)
{}
int
end
=
i
;
for
(
int
j
=
pos
+
1
;
j
<
end
;
j
++
)
{
long_opts
[
key
].
push_back
(
std
::
stoi
(
argv
[
j
]));
}
return
true
;
}
return
false
;
}
void
operator
()(
int
argc
,
char
*
argv
[])
{
for
(
auto
&
kv
:
long_opts
)
{
for
(
int
i
=
1
;
i
<
argc
;
i
++
)
{
if
(
parse_opt
(
argc
,
argv
,
kv
.
first
,
i
))
break
;
}
}
}
};
void
print_help_avg_pool2d_fwd
()
{
std
::
cout
<<
"arg1: data type (0: fp16; 1: fp32)
\n
"
<<
"arg2: verification (0: no; 1: yes)
\n
"
<<
"arg3: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
<<
"arg4: print tensor value (0: no; 1: yes)
\n
"
<<
"arg5: time kernel (0=no, 1=yes)
\n
"
<<
"--length: input tensor length for NDHW(e.g, --length 2 32 30 30)
\n
"
<<
"--wsize: window size for YX (e.g, --wsize 2 2)
\n
"
<<
"--wstride: window stride for HW (e.g, --wstride 2 2)
\n
"
<<
"--padding1: left side of padding in HW (e.g, --padding1 1 1)
\n
"
<<
"--padding2: right side of padding in HW (e.g, --padding2 1 1)
\n
"
<<
std
::
endl
;
}
int
profile_avg_pool2d_fwd
(
int
argc
,
char
*
argv
[])
{
ck
::
DataTypeEnum
data_type
=
ck
::
DataTypeEnum
::
Half
;
bool
do_verification
=
true
;
int
init_method
=
0
;
bool
do_log
=
0
;
bool
time_kernel
=
true
;
std
::
vector
<
index_t
>
in_length
=
{
2
,
32
,
30
,
30
};
std
::
vector
<
index_t
>
wsize
=
{
2
,
2
};
std
::
vector
<
index_t
>
wstride
=
{
2
,
2
};
std
::
vector
<
index_t
>
padding1
=
{
1
,
1
};
std
::
vector
<
index_t
>
padding2
=
{
1
,
1
};
if
(
argc
!=
2
&&
argc
!=
24
)
{
print_help_avg_pool2d_fwd
();
return
0
;
}
else
if
(
argc
==
24
)
{
data_type
=
static_cast
<
ck
::
DataTypeEnum
>
(
std
::
stoi
(
argv
[
2
]));
do_verification
=
std
::
stoi
(
argv
[
3
]);
init_method
=
std
::
stoi
(
argv
[
4
]);
do_log
=
std
::
stoi
(
argv
[
5
]);
time_kernel
=
std
::
stoi
(
argv
[
6
]);
// parse the long options
maxPoolFwdArgParser
arg_parser
;
in_length
=
arg_parser
.
long_opts
[
"length"
];
wsize
=
arg_parser
.
long_opts
[
"wsize"
];
wstride
=
arg_parser
.
long_opts
[
"wstride"
];
padding1
=
arg_parser
.
long_opts
[
"padding1"
];
padding2
=
arg_parser
.
long_opts
[
"padding2"
];
}
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
I32
=
int32_t
;
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
AVG
;
if
(
data_type
==
ck
::
DataTypeEnum
::
Half
)
{
ck
::
profiler
::
profile_pool2d_fwd_impl
<
F16
,
F16
,
F32
,
I32
,
ReduceOpId
,
false
,
false
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
in_length
,
wsize
,
wstride
,
padding1
,
padding2
);
}
else
if
(
data_type
==
ck
::
DataTypeEnum
::
Float
)
{
ck
::
profiler
::
profile_pool2d_fwd_impl
<
F32
,
F32
,
F32
,
I32
,
ReduceOpId
,
false
,
false
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
in_length
,
wsize
,
wstride
,
padding1
,
padding2
);
}
else
{
throw
std
::
runtime_error
(
"not implemented yet"
);
}
return
0
;
}
REGISTER_PROFILER_OPERATION
(
"avg_pool2d_fwd"
,
"avg_pool2d fwd"
,
profile_avg_pool2d_fwd
);
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment