Unverified Commit 4274096b authored by Dan Yao's avatar Dan Yao Committed by GitHub
Browse files

Merge pull request #835 from ROCmSoftwarePlatform/mha-train-bias

Add bias for flashattention fwd(v2)
parents d20c472f dccaf0b2
...@@ -135,6 +135,7 @@ using DeviceGemmInstance = ...@@ -135,6 +135,7 @@ using DeviceGemmInstance =
8, 8,
8, 8,
true, true,
4,
S<16, 16, 1>, // B1BlockTransfer S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>, S<0, 2, 1>,
S<0, 2, 1>, S<0, 2, 1>,
...@@ -146,7 +147,8 @@ using DeviceGemmInstance = ...@@ -146,7 +147,8 @@ using DeviceGemmInstance =
1, // CShuffleNXdlPerWavePerShuffle 1, // CShuffleNXdlPerWavePerShuffle
S<1, 64, 1, 4>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock S<1, 64, 1, 4>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock 8, // CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec, // MaskingSpecialization 4,
MaskingSpec, // MaskingSpecialization
Deterministic>; Deterministic>;
#elif(DIM <= 64) #elif(DIM <= 64)
using DeviceGemmInstance = using DeviceGemmInstance =
...@@ -206,6 +208,7 @@ using DeviceGemmInstance = ...@@ -206,6 +208,7 @@ using DeviceGemmInstance =
8, 8,
8, 8,
true, true,
4,
S<16, 16, 1>, // B1BlockTransfer S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>, S<0, 2, 1>,
S<0, 2, 1>, S<0, 2, 1>,
...@@ -217,7 +220,8 @@ using DeviceGemmInstance = ...@@ -217,7 +220,8 @@ using DeviceGemmInstance =
2, // CShuffleNXdlPerWavePerShuffle 2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock 8, // CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec, // MaskingSpecialization 4,
MaskingSpec, // MaskingSpecialization
Deterministic>; Deterministic>;
#elif(DIM <= 128) #elif(DIM <= 128)
using DeviceGemmInstance = using DeviceGemmInstance =
...@@ -277,6 +281,7 @@ using DeviceGemmInstance = ...@@ -277,6 +281,7 @@ using DeviceGemmInstance =
8, 8,
8, 8,
true, true,
4,
S<8, 32, 1>, // B1BlockTransfer S<8, 32, 1>, // B1BlockTransfer
S<0, 2, 1>, S<0, 2, 1>,
S<0, 2, 1>, S<0, 2, 1>,
...@@ -288,7 +293,8 @@ using DeviceGemmInstance = ...@@ -288,7 +293,8 @@ using DeviceGemmInstance =
2, // CShuffleNXdlPerWavePerShuffle 2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock 8, // CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec, // MaskingSpecialization 4,
MaskingSpec, // MaskingSpecialization
Deterministic>; Deterministic>;
#endif #endif
......
...@@ -135,6 +135,7 @@ using DeviceGemmInstance = ...@@ -135,6 +135,7 @@ using DeviceGemmInstance =
8, 8,
8, 8,
true, true,
1,
S<16, 16, 1>, // B1BlockTransfer S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>, S<0, 2, 1>,
S<0, 2, 1>, S<0, 2, 1>,
...@@ -146,7 +147,8 @@ using DeviceGemmInstance = ...@@ -146,7 +147,8 @@ using DeviceGemmInstance =
1, // CShuffleNXdlPerWavePerShuffle 1, // CShuffleNXdlPerWavePerShuffle
S<1, 64, 1, 4>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock S<1, 64, 1, 4>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock 8, // CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec, // MaskingSpecialization 1,
MaskingSpec, // MaskingSpecialization
Deterministic>; Deterministic>;
#elif(DIM <= 64) #elif(DIM <= 64)
using DeviceGemmInstance = using DeviceGemmInstance =
...@@ -206,6 +208,7 @@ using DeviceGemmInstance = ...@@ -206,6 +208,7 @@ using DeviceGemmInstance =
8, 8,
8, 8,
true, true,
1,
S<16, 16, 1>, // B1BlockTransfer S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>, S<0, 2, 1>,
S<0, 2, 1>, S<0, 2, 1>,
...@@ -217,7 +220,8 @@ using DeviceGemmInstance = ...@@ -217,7 +220,8 @@ using DeviceGemmInstance =
2, // CShuffleNXdlPerWavePerShuffle 2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock 8, // CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec, // MaskingSpecialization 1,
MaskingSpec, // MaskingSpecialization
Deterministic>; Deterministic>;
#elif(DIM <= 128) #elif(DIM <= 128)
using DeviceGemmInstance = using DeviceGemmInstance =
...@@ -277,6 +281,7 @@ using DeviceGemmInstance = ...@@ -277,6 +281,7 @@ using DeviceGemmInstance =
8, 8,
8, 8,
true, true,
1,
S<8, 32, 1>, // B1BlockTransfer S<8, 32, 1>, // B1BlockTransfer
S<0, 2, 1>, S<0, 2, 1>,
S<0, 2, 1>, S<0, 2, 1>,
...@@ -288,7 +293,8 @@ using DeviceGemmInstance = ...@@ -288,7 +293,8 @@ using DeviceGemmInstance =
2, // CShuffleNXdlPerWavePerShuffle 2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock 8, // CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec, // MaskingSpecialization 1,
MaskingSpec, // MaskingSpecialization
Deterministic>; Deterministic>;
#endif #endif
......
add_example_executable(example_batched_multihead_attention_bias_forward_v2 batched_multihead_attention_bias_forward_v2.cpp)
add_example_executable(example_grouped_multihead_attention_bias_forward_v2 grouped_multihead_attention_bias_forward_v2.cpp)
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#define DIM 128 // DIM should be a multiple of 8.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_mha_fwd_xdl_cshuffle_v2.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_dropout.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using U16 = unsigned short;
using INT32 = int32_t;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DataType = F16;
using GemmDataType = F16;
using ADataType = DataType;
using B0DataType = DataType;
using B1DataType = DataType;
using AccDataType = F32;
using CShuffleDataType = F32;
using CDataType = DataType;
using DDataType = F16;
using ZDataType = U16; // INT32
using LSEDataType = F32;
using Acc0BiasDataType = ck::Tuple<DDataType>;
using Acc1BiasDataType = ck::Tuple<>;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
static constexpr ck::index_t NumDimO = 1;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr bool Deterministic = false;
#if(DIM <= 32)
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
GemmDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
32, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
1, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
4,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
2,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 64, 1, 4>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
4,
MaskingSpec, // MaskingSpecialization
Deterministic>;
#elif(DIM <= 64)
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
GemmDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
64, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
2, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
4,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
4,
MaskingSpec, // MaskingSpecialization
Deterministic>;
#elif(DIM <= 128)
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
GemmDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
128, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
4,
S<8, 32, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
4,
MaskingSpec, // MaskingSpecialization
Deterministic>;
#endif
// Ref Gemm0: DataType in, AccDataType out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
AccDataType,
AccDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: AccDataType in, DataType out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<AccDataType, ADataType, AccDataType>;
// Ref Gemm1: DataType in, DataType out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
// Ref dropout
using ReferenceDropoutInstance =
ck::tensor_operation::host::ReferenceDropout<ZDataType, ADataType, ADataType>;
#include "run_batched_multihead_attention_bias_forward.inc"
int main(int argc, char* argv[]) { return run(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#define DIM 64 // DIM should be a multiple of 8.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_mha_fwd_xdl_cshuffle_v2.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_dropout.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using U16 = unsigned short;
using INT32 = int32_t;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DataType = F16;
using GemmDataType = F16;
using ADataType = DataType;
using B0DataType = DataType;
using B1DataType = DataType;
using AccDataType = F32;
using DDataType = F16;
using CShuffleDataType = F32;
using CDataType = DataType;
using ZDataType = U16; // INT32
using LSEDataType = F32;
using Acc0BiasDataType = ck::Tuple<DDataType>;
using Acc1BiasDataType = ck::Tuple<>;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
static constexpr ck::index_t NumDimO = 1;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr bool Deterministic = false;
#if(DIM <= 32)
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
GemmDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
32, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
1, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
1,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
2,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 64, 1, 4>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
1,
MaskingSpec, // MaskingSpecialization
Deterministic>;
#elif(DIM <= 64)
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
GemmDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
64, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
2, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
1,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
1,
MaskingSpec, // MaskingSpecialization
Deterministic>;
#elif(DIM <= 128)
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
GemmDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
128, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
1,
S<8, 32, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
1,
MaskingSpec, // MaskingSpecialization
Deterministic>;
#endif
// Ref Gemm0: DataType in, AccDataType out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
AccDataType,
AccDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: AccDataType in, DataType out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<AccDataType, ADataType, AccDataType>;
// Ref Gemm1: DataType in, DataType out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
// Ref dropout
using ReferenceDropoutInstance =
ck::tensor_operation::host::ReferenceDropout<ZDataType, ADataType, ADataType>;
#include "run_grouped_multihead_attention_bias_forward.inc"
int main(int argc, char* argv[]) { return run(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = true;
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck::index_t M = 1000; // 120
ck::index_t N = 1000; // 1000
ck::index_t K = DIM;
ck::index_t O = DIM;
// Output shape C[G0, M, G1, O]. Batch dim, outer dim, inner dim must match GEMM shape
// C_g0_g1_m_o = reshape(C_g_m_o, [g0, g1, m, o])
// C_g0_m_g1_o = permute(C_g0_g1_m_o, [0, 2, 1, 3])
ck::index_t G0 = 7;
ck::index_t G1 = 13;
bool input_permute = false;
bool output_permute = true;
float p_drop = 0.1;
const unsigned long long seed = 1;
const unsigned long long offset = 0;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 13)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
G0 = std::stoi(argv[8]);
G1 = std::stoi(argv[9]);
p_drop = std::stof(argv[10]);
input_permute = std::stoi(argv[11]);
output_permute = std::stoi(argv[12]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 11: M, N, K, O, G0, G1\n");
printf("arg10: scale (alpha)\n");
printf("arg11 to 12: input / output permute\n");
exit(0);
}
float p_dropout = 1 - p_drop;
ZDataType p_dropout_in_16bits = ZDataType(std::floor(p_dropout * 65535.0));
float rp_dropout = 1.0 / p_dropout;
float alpha = 1.f / std::sqrt(K);
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M, K};
std::vector<ck::index_t> a_gs_ms_ks_strides =
input_permute
? std::vector<ck::index_t>{M * G1 * K, K, G1 * K, 1} // A layout [G0, M, G1, K]
: std::vector<ck::index_t>{G1 * M * K, M * K, K, 1}; // A layout [G0, G1, M, K]
std::vector<ck::index_t> b0_gs_ns_ks_lengths{G0, G1, N, K};
std::vector<ck::index_t> b0_gs_ns_ks_strides =
input_permute
? std::vector<ck::index_t>{N * G1 * K, K, G1 * K, 1} // B0 layout [G0, N, G1, K]
: std::vector<ck::index_t>{G1 * N * K, N * K, K, 1}; // B0 layout [G0, G1, N, K]
std::vector<ck::index_t> b1_gs_os_ns_lengths{G0, G1, O, N};
std::vector<ck::index_t> b1_gs_os_ns_strides =
input_permute
? std::vector<ck::index_t>{N * G1 * O, O, 1, G1 * O} // B1 layout [G0, N, G1, O]
: std::vector<ck::index_t>{G1 * N * O, N * O, 1, O}; // B1 layout [G0, G1, N, O]
std::vector<ck::index_t> c_gs_ms_os_lengths{G0, G1, M, O};
std::vector<ck::index_t> c_gs_ms_os_strides =
output_permute
? std::vector<ck::index_t>{M * G1 * O, O, G1 * O, 1} // C layout [G0, M, G1, O]
: std::vector<ck::index_t>{G1 * M * O, M * O, O, 1}; // C layout [G0, G1, M, O]
std::vector<ck::index_t> d_gs_ms_ns_lengths{G0, G1, M, N};
std::vector<ck::index_t> d_gs_ms_ns_strides =
input_permute
? std::vector<ck::index_t>{M * G1 * N, N, G1 * N, 1} // D layout [G0, M, G1, N]
: std::vector<ck::index_t>{G1 * M * N, M * N, N, 1}; // D layout [G0, G1, M, N]
std::vector<ck::index_t> z_gs_ms_ns_lengths{G0, G1, M, N};
std::vector<ck::index_t> z_gs_ms_ns_strides =
input_permute
? std::vector<ck::index_t>{M * G1 * N, N, G1 * N, 1} // Z layout [G0, M, G1, N]
: std::vector<ck::index_t>{G1 * M * N, M * N, N, 1}; // Z layout [G0, G1, M, N]
std::vector<ck::index_t> lse_gs_ms_lengths{G0, G1, M};
std::vector<ck::index_t> lse_gs_ms_strides =
std::vector<ck::index_t>{G1 * M, M, 1}; // LSE layout [G0, G1, M]
Tensor<ADataType> a_gs_ms_ks(a_gs_ms_ks_lengths, a_gs_ms_ks_strides);
Tensor<B0DataType> b0_gs_ns_ks(b0_gs_ns_ks_lengths, b0_gs_ns_ks_strides);
Tensor<B1DataType> b1_gs_os_ns(b1_gs_os_ns_lengths, b1_gs_os_ns_strides);
Tensor<CDataType> c_gs_ms_os_host_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
Tensor<CDataType> c_gs_ms_os_device_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
Tensor<DDataType> d_gs_ms_ns(d_gs_ms_ns_lengths, z_gs_ms_ns_strides);
Tensor<ZDataType> z_gs_ms_ns(z_gs_ms_ns_lengths, z_gs_ms_ns_strides);
Tensor<LSEDataType> lse_gs_ms_host_result(lse_gs_ms_lengths, lse_gs_ms_strides);
Tensor<LSEDataType> lse_gs_ms_device_result(lse_gs_ms_lengths, lse_gs_ms_strides);
std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl;
std::cout << "b0_gs_ns_ks: " << b0_gs_ns_ks.mDesc << std::endl;
std::cout << "b1_gs_os_ns: " << b1_gs_os_ns.mDesc << std::endl;
std::cout << "c_gs_ms_os: " << c_gs_ms_os_host_result.mDesc << std::endl;
std::cout << "z_gs_ms_ns: " << z_gs_ms_ns.mDesc << std::endl;
std::cout << "lse_gs_ms_os: " << lse_gs_ms_host_result.mDesc << std::endl;
z_gs_ms_ns.GenerateTensorValue(GeneratorTensor_1<ZDataType>{0});
switch(init_method)
{
case 0: break;
case 1:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_2<DDataType>{-2, 2});
break;
case 2:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_3<DDataType>{-0.5, 0.5});
break;
case 3:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_1<DDataType>{1});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<2>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_1<DDataType>{1});
}
DeviceMem a_device_buf(sizeof(ADataType) * a_gs_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_gs_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem b1_device_buf(sizeof(B1DataType) * b1_gs_os_ns.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) *
c_gs_ms_os_device_result.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(DDataType) * d_gs_ms_ns.mDesc.GetElementSpaceSize());
DeviceMem z_device_buf(sizeof(ZDataType) * z_gs_ms_ns.mDesc.GetElementSpaceSize());
DeviceMem lse_device_buf(sizeof(LSEDataType) *
lse_gs_ms_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_gs_ms_ks.mData.data());
b0_device_buf.ToDevice(b0_gs_ns_ks.mData.data());
b1_device_buf.ToDevice(b1_gs_os_ns.mData.data());
d_device_buf.ToDevice(d_gs_ms_ns.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
// TODO ANT: replace array with vector?
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(
static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<ZDataType*>(nullptr),
static_cast<LSEDataType*>(lse_device_buf.GetDeviceBuffer()),
std::array<void*, 1>{d_device_buf.GetDeviceBuffer()}, // std::array<void*, 1> p_acc0_biases;
{}, // std::array<void*, 1> p_acc1_biases;
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b0_gs_ns_ks_lengths,
b0_gs_ns_ks_strides,
b1_gs_os_ns_lengths,
b1_gs_os_ns_strides,
c_gs_ms_os_lengths,
c_gs_ms_os_strides,
z_gs_ms_ns_lengths,
z_gs_ms_ns_strides,
lse_gs_ms_lengths,
std::array<std::vector<ck::index_t>, 1>{d_gs_ms_ns_lengths}, // acc0_biases_gs_ms_ns_lengths
std::array<std::vector<ck::index_t>, 1>{d_gs_ms_ns_strides}, // acc0_biases_gs_ms_ns_strides
{}, // std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_lengths},
{}, // std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_strides},
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op,
p_drop, // dropout ratio
{seed, offset}); // dropout random seed and offset, offset should be at least the number of
// elements on a thread
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
ck::index_t BatchCount = G0 * G1;
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O +
sizeof(DDataType) * M * N * Acc0BiasDataType::Size()) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
if(do_verification)
{
// run for storing z tensor
argument = gemm.MakeArgument(
static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<ZDataType*>(z_device_buf.GetDeviceBuffer()),
static_cast<LSEDataType*>(lse_device_buf.GetDeviceBuffer()),
std::array<void*, 1>{
d_device_buf.GetDeviceBuffer()}, // std::array<void*, 1> p_acc0_biases;
{}, // std::array<void*, 1> p_acc1_biases;
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b0_gs_ns_ks_lengths,
b0_gs_ns_ks_strides,
b1_gs_os_ns_lengths,
b1_gs_os_ns_strides,
c_gs_ms_os_lengths,
c_gs_ms_os_strides,
z_gs_ms_ns_lengths,
z_gs_ms_ns_strides,
lse_gs_ms_lengths,
std::array<std::vector<ck::index_t>, 1>{
d_gs_ms_ns_lengths}, // acc0_biases_gs_ms_ns_lengths
std::array<std::vector<ck::index_t>, 1>{
d_gs_ms_ns_strides}, // acc0_biases_gs_ms_ns_strides
{}, // std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_lengths},
{}, // std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_strides},
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op,
p_drop, // dropout ratio
{seed, offset}); // dropout random seed and offset, offset should be at least the number
// of elements on a thread
c_device_buf.SetZero();
lse_device_buf.SetZero();
invoker.Run(argument, StreamConfig{nullptr, false});
c_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
z_device_buf.FromDevice(z_gs_ms_ns.mData.data());
lse_device_buf.FromDevice(lse_gs_ms_device_result.mData.data());
Tensor<ADataType> a_g_m_k({BatchCount, M, K});
Tensor<B0DataType> b0_g_k_n({BatchCount, K, N});
Tensor<B1DataType> b1_g_n_o({BatchCount, N, O});
Tensor<AccDataType> acc0_g_m_n({BatchCount, M, N}); // scratch object after gemm0
Tensor<ADataType> a1_g_m_n({BatchCount, M, N}); // scratch object after softmax
Tensor<ADataType> a1_g_m_n_drop({G0 * G1, M, N});
Tensor<LSEDataType> lse_g_m_host_result(
{BatchCount, M}); // scratch object after max + ln(sum)
Tensor<DDataType> d_g_m_n({G0 * G1, M, N});
Tensor<ZDataType> z_g_m_n({G0 * G1, M, N});
Tensor<CDataType> c_g_m_o_host_result({BatchCount, M, O}); // scratch object after gemm1
// permute
a_gs_ms_ks.ForEach([&](auto& self, auto idx) {
a_g_m_k(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx);
});
b0_gs_ns_ks.ForEach([&](auto& self, auto idx) {
b0_g_k_n(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx);
});
b1_gs_os_ns.ForEach([&](auto& self, auto idx) {
b1_g_n_o(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx);
});
d_gs_ms_ns.ForEach([&](auto& self, auto idx) {
d_g_m_n(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx);
});
z_gs_ms_ns.ForEach([&](auto& self, auto idx) {
z_g_m_n(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx);
});
// gemm 0
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
// bias
acc0_g_m_n.ForEach([&](auto& self, auto idx) { self(idx) += d_g_m_n(idx); });
// masking
const auto mask = DeviceGemmInstance::C0MatrixMask(M, N);
acc0_g_m_n.ForEach([&](auto& self, auto idx) {
if(mask.IsMaskedElement(idx[1], idx[2]))
self(idx) = -ck::NumericLimits<float>::Infinity();
});
// softmax
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument =
ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2}, &lse_g_m_host_result);
ref_softmax_invoker.Run(ref_softmax_argument);
// dropout after softmax
auto ref_dropout = ReferenceDropoutInstance{};
auto ref_dropout_invoker = ref_dropout.MakeInvoker();
auto ref_dropout_argment = ref_dropout.MakeArgument(
z_g_m_n, a1_g_m_n, a1_g_m_n_drop, p_dropout_in_16bits, rp_dropout);
ref_dropout_invoker.Run(ref_dropout_argment);
// gemm1
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(a1_g_m_n_drop,
b1_g_n_o,
c_g_m_o_host_result,
PassThrough{},
b1_element_op,
c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
// permute
c_gs_ms_os_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * G1 + g1;
self(idx) = c_g_m_o_host_result(g, idx[2], idx[3]);
});
lse_gs_ms_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * G1 + g1;
self(idx) = lse_g_m_host_result(g, idx[2]);
});
// default absolute error and relative error is 0.001
double rtol = 1e-3;
double atol = 1e-3;
// when BF16 is taken, set absolute error and relative error to 0.01
if(std::is_same_v<DataType, ck::bhalf_t> || std::is_same_v<GemmDataType, ck::bhalf_t>)
{
rtol = 1e-2;
atol = 1e-2;
}
return ck::utils::check_err(c_gs_ms_os_device_result.mData,
c_gs_ms_os_host_result.mData,
"Error: Incorrect results c!",
rtol,
atol) &&
ck::utils::check_err(lse_gs_ms_device_result.mData,
lse_gs_ms_host_result.mData,
"Error: Incorrect results lse!",
rtol,
atol)
? 0
: 1;
}
return 0;
}
...@@ -100,6 +100,13 @@ __global__ void ...@@ -100,6 +100,13 @@ __global__ void
const long_index_t lse_batch_offset = __builtin_amdgcn_readfirstlane(static_cast<long_index_t>( const long_index_t lse_batch_offset = __builtin_amdgcn_readfirstlane(static_cast<long_index_t>(
arg_ptr[group_id].compute_base_ptr_of_batch_.GetLSEBasePtr(g_idx))); arg_ptr[group_id].compute_base_ptr_of_batch_.GetLSEBasePtr(g_idx)));
typename GridwiseGemm::D0sGridPointer p_d0s_grid = arg_ptr[group_id].p_d0s_grid_;
static_for<0, p_d0s_grid.Size(), 1>{}([&](auto In) {
const long_index_t d0_batch_offset =
__builtin_amdgcn_readfirstlane(static_cast<long_index_t>(
arg_ptr[group_id].compute_base_ptr_of_batch_.GetD0BasePtr(g_idx, In)));
p_d0s_grid(In) = p_d0s_grid(In) + d0_batch_offset;
});
if constexpr(Deterministic) if constexpr(Deterministic)
{ {
for(index_t i = 0; i < num_blocks_per_batch; i++) for(index_t i = 0; i < num_blocks_per_batch; i++)
...@@ -107,6 +114,7 @@ __global__ void ...@@ -107,6 +114,7 @@ __global__ void
GridwiseGemm::template Run<HasMainKBlockLoop, IsDropout, IsLseStoring>( GridwiseGemm::template Run<HasMainKBlockLoop, IsDropout, IsLseStoring>(
arg_ptr[group_id].p_a_grid_ + a_batch_offset, arg_ptr[group_id].p_a_grid_ + a_batch_offset,
arg_ptr[group_id].p_b_grid_ + b_batch_offset, arg_ptr[group_id].p_b_grid_ + b_batch_offset,
p_d0s_grid,
arg_ptr[group_id].p_b1_grid_ + b1_batch_offset, arg_ptr[group_id].p_b1_grid_ + b1_batch_offset,
arg_ptr[group_id].p_c_grid_ + c_batch_offset, arg_ptr[group_id].p_c_grid_ + c_batch_offset,
arg_ptr[group_id].p_z_grid_ == nullptr arg_ptr[group_id].p_z_grid_ == nullptr
...@@ -124,6 +132,7 @@ __global__ void ...@@ -124,6 +132,7 @@ __global__ void
c_element_op, c_element_op,
arg_ptr[group_id].a_grid_desc_ak0_m_ak1_, arg_ptr[group_id].a_grid_desc_ak0_m_ak1_,
arg_ptr[group_id].b_grid_desc_bk0_n_bk1_, arg_ptr[group_id].b_grid_desc_bk0_n_bk1_,
arg_ptr[group_id].d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_,
arg_ptr[group_id].b1_grid_desc_bk0_n_bk1_, arg_ptr[group_id].b1_grid_desc_bk0_n_bk1_,
arg_ptr[group_id].c_grid_desc_mblock_mperblock_nblock_nperblock_, arg_ptr[group_id].c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg_ptr[group_id].z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_, arg_ptr[group_id].z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_,
...@@ -144,6 +153,7 @@ __global__ void ...@@ -144,6 +153,7 @@ __global__ void
GridwiseGemm::template Run<HasMainKBlockLoop, IsDropout, IsLseStoring>( GridwiseGemm::template Run<HasMainKBlockLoop, IsDropout, IsLseStoring>(
arg_ptr[group_id].p_a_grid_ + a_batch_offset, arg_ptr[group_id].p_a_grid_ + a_batch_offset,
arg_ptr[group_id].p_b_grid_ + b_batch_offset, arg_ptr[group_id].p_b_grid_ + b_batch_offset,
p_d0s_grid,
arg_ptr[group_id].p_b1_grid_ + b1_batch_offset, arg_ptr[group_id].p_b1_grid_ + b1_batch_offset,
arg_ptr[group_id].p_c_grid_ + c_batch_offset, arg_ptr[group_id].p_c_grid_ + c_batch_offset,
arg_ptr[group_id].p_z_grid_ == nullptr ? nullptr arg_ptr[group_id].p_z_grid_ == nullptr ? nullptr
...@@ -160,6 +170,7 @@ __global__ void ...@@ -160,6 +170,7 @@ __global__ void
c_element_op, c_element_op,
arg_ptr[group_id].a_grid_desc_ak0_m_ak1_, arg_ptr[group_id].a_grid_desc_ak0_m_ak1_,
arg_ptr[group_id].b_grid_desc_bk0_n_bk1_, arg_ptr[group_id].b_grid_desc_bk0_n_bk1_,
arg_ptr[group_id].d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_,
arg_ptr[group_id].b1_grid_desc_bk0_n_bk1_, arg_ptr[group_id].b1_grid_desc_bk0_n_bk1_,
arg_ptr[group_id].c_grid_desc_mblock_mperblock_nblock_nperblock_, arg_ptr[group_id].c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg_ptr[group_id].z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_, arg_ptr[group_id].z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_,
...@@ -247,6 +258,7 @@ template <index_t NumDimG, ...@@ -247,6 +258,7 @@ template <index_t NumDimG,
index_t BBlockTransferSrcScalarPerVector, index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1, index_t BBlockTransferDstScalarPerVector_BK1,
bool BBlockLdsExtraN, bool BBlockLdsExtraN,
index_t Acc0BiasTransferSrcScalarPerVector,
typename B1BlockTransferThreadClusterLengths_BK0_N_BK1, typename B1BlockTransferThreadClusterLengths_BK0_N_BK1,
typename B1BlockTransferThreadClusterArrangeOrder, typename B1BlockTransferThreadClusterArrangeOrder,
typename B1BlockTransferSrcAccessOrder, typename B1BlockTransferSrcAccessOrder,
...@@ -258,6 +270,7 @@ template <index_t NumDimG, ...@@ -258,6 +270,7 @@ template <index_t NumDimG,
index_t CShuffleNXdlPerWavePerShuffle, index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock, typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock, index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
index_t Acc1BiasTransferSrcScalarPerVector,
MaskingSpecialization MaskingSpec, MaskingSpecialization MaskingSpec,
bool Deterministic, bool Deterministic,
LoopScheduler LoopSched = LoopScheduler::Default> LoopScheduler LoopSched = LoopScheduler::Default>
...@@ -285,11 +298,11 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -285,11 +298,11 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
static_assert(NumDimG > 0 && NumDimM > 0 && NumDimN > 0 && NumDimK > 0 && NumDimO > 0, static_assert(NumDimG > 0 && NumDimM > 0 && NumDimN > 0 && NumDimK > 0 && NumDimO > 0,
"Number of dimension must be greater than 0"); "Number of dimension must be greater than 0");
static constexpr index_t NumAcc0Bias = Acc0BiasDataType::Size(); static constexpr index_t NumD0Tensor = Acc0BiasDataType::Size();
static constexpr index_t NumAcc1Bias = Acc1BiasDataType::Size(); static constexpr index_t NumD1Tensor = Acc1BiasDataType::Size();
// TODO ANT: implement bias combination // TODO ANT: implement bias combination
static_assert(NumAcc0Bias == 0 && NumAcc0Bias == 0, "Bias addition is unimplemented"); static_assert(NumD1Tensor == 0, "Acc1 Bias addition is unimplemented");
#if 0 #if 0
// TODO ANT: use alias // TODO ANT: use alias
...@@ -392,18 +405,44 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -392,18 +405,44 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
} }
} }
static auto MakeD0sGridDescriptor_M_N(
const std::vector<std::vector<ck::index_t>>& acc0_biases_gs_ms_ns_lengths,
const std::vector<std::vector<ck::index_t>>& acc0_biases_gs_ms_ns_strides)
{
return generate_tuple(
[&](auto i) {
return Transform::MakeCGridDescriptor_M_N(acc0_biases_gs_ms_ns_lengths[i],
acc0_biases_gs_ms_ns_strides[i]);
},
Number<NumD0Tensor>{});
}
static auto MakeD0sGridDescriptor_G_M_N(
const std::vector<std::vector<ck::index_t>>& acc0_biases_gs_ms_ns_lengths,
const std::vector<std::vector<ck::index_t>>& acc0_biases_gs_ms_ns_strides)
{
return generate_tuple(
[&](auto i) {
return Transform::MakeCGridDescriptor_G_M_N(acc0_biases_gs_ms_ns_lengths[i],
acc0_biases_gs_ms_ns_strides[i]);
},
Number<NumD0Tensor>{});
}
using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1({}, {})); using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1({}, {}));
using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1({}, {})); using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1({}, {}));
using D0sGridDesc_M_N = decltype(MakeD0sGridDescriptor_M_N({}, {}));
using B1GridDesc_BK0_N_BK1 = decltype(MakeB1GridDescriptor_BK0_N_BK1({}, {})); using B1GridDesc_BK0_N_BK1 = decltype(MakeB1GridDescriptor_BK0_N_BK1({}, {}));
using CGridDesc_M_N = decltype(Transform::MakeCGridDescriptor_M_N({}, {})); using CGridDesc_M_N = decltype(Transform::MakeCGridDescriptor_M_N({}, {}));
using LSEGridDesc_M = decltype(MakeLSEGridDescriptor_M(1)); using LSEGridDesc_M = decltype(MakeLSEGridDescriptor_M(1));
using ZGridDesc_M_N = decltype(MakeZGridDescriptor_M_N({}, {})); using ZGridDesc_M_N = decltype(MakeZGridDescriptor_M_N({}, {}));
using AGridDesc_G_M_K = decltype(Transform::MakeAGridDescriptor_G_M_K({}, {})); using AGridDesc_G_M_K = decltype(Transform::MakeAGridDescriptor_G_M_K({}, {}));
using BGridDesc_G_N_K = decltype(Transform::MakeB0GridDescriptor_G_N_K({}, {})); using BGridDesc_G_N_K = decltype(Transform::MakeB0GridDescriptor_G_N_K({}, {}));
using B1GridDesc_G_N_K = decltype(Transform::MakeB1GridDescriptor_G_N_K({}, {})); using D0sGridDesc_G_M_N = decltype(MakeD0sGridDescriptor_G_M_N({}, {}));
using CGridDesc_G_M_N = decltype(Transform::MakeCGridDescriptor_G_M_N({}, {})); using B1GridDesc_G_N_K = decltype(Transform::MakeB1GridDescriptor_G_N_K({}, {}));
using ZGridDesc_G_M_N = decltype(Transform::MakeCGridDescriptor_G_M_N({}, {})); using CGridDesc_G_M_N = decltype(Transform::MakeCGridDescriptor_G_M_N({}, {}));
using ZGridDesc_G_M_N = decltype(Transform::MakeCGridDescriptor_G_M_N({}, {}));
constexpr static auto make_MaskOutPredicate() constexpr static auto make_MaskOutPredicate()
{ {
...@@ -426,12 +465,14 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -426,12 +465,14 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
{ {
ComputeBasePtrOfStridedBatch(const AGridDesc_G_M_K& a_grid_desc_g_m_k, ComputeBasePtrOfStridedBatch(const AGridDesc_G_M_K& a_grid_desc_g_m_k,
const BGridDesc_G_N_K& b_grid_desc_g_n_k, const BGridDesc_G_N_K& b_grid_desc_g_n_k,
const D0sGridDesc_G_M_N& d0s_grid_desc_g_m_n,
const B1GridDesc_G_N_K& b1_grid_desc_g_n_k, const B1GridDesc_G_N_K& b1_grid_desc_g_n_k,
const CGridDesc_G_M_N& c_grid_desc_g_m_n, const CGridDesc_G_M_N& c_grid_desc_g_m_n,
const ZGridDesc_G_M_N& z_grid_desc_g_m_n, const ZGridDesc_G_M_N& z_grid_desc_g_m_n,
index_t BatchStrideLSE) index_t BatchStrideLSE)
: a_grid_desc_g_m_k_(a_grid_desc_g_m_k), : a_grid_desc_g_m_k_(a_grid_desc_g_m_k),
b_grid_desc_g_n_k_(b_grid_desc_g_n_k), b_grid_desc_g_n_k_(b_grid_desc_g_n_k),
d0s_grid_desc_g_m_n_(d0s_grid_desc_g_m_n),
b1_grid_desc_g_n_k_(b1_grid_desc_g_n_k), b1_grid_desc_g_n_k_(b1_grid_desc_g_n_k),
c_grid_desc_g_m_n_(c_grid_desc_g_m_n), c_grid_desc_g_m_n_(c_grid_desc_g_m_n),
z_grid_desc_g_m_n_(z_grid_desc_g_m_n), z_grid_desc_g_m_n_(z_grid_desc_g_m_n),
...@@ -449,6 +490,13 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -449,6 +490,13 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
return b_grid_desc_g_n_k_.CalculateOffset(make_multi_index(g_idx, 0, 0)); return b_grid_desc_g_n_k_.CalculateOffset(make_multi_index(g_idx, 0, 0));
} }
template <index_t I>
__host__ __device__ constexpr long_index_t GetD0BasePtr(index_t g_idx,
Number<I> d0_idx) const
{
return d0s_grid_desc_g_m_n_[d0_idx].CalculateOffset(make_multi_index(g_idx, 0, 0));
}
__host__ __device__ constexpr long_index_t GetB1BasePtr(index_t g_idx) const __host__ __device__ constexpr long_index_t GetB1BasePtr(index_t g_idx) const
{ {
return b1_grid_desc_g_n_k_.CalculateOffset(make_multi_index(g_idx, 0, 0)); return b1_grid_desc_g_n_k_.CalculateOffset(make_multi_index(g_idx, 0, 0));
...@@ -472,6 +520,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -472,6 +520,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
private: private:
AGridDesc_G_M_K a_grid_desc_g_m_k_; AGridDesc_G_M_K a_grid_desc_g_m_k_;
BGridDesc_G_N_K b_grid_desc_g_n_k_; BGridDesc_G_N_K b_grid_desc_g_n_k_;
D0sGridDesc_G_M_N d0s_grid_desc_g_m_n_;
B1GridDesc_G_N_K b1_grid_desc_g_n_k_; B1GridDesc_G_N_K b1_grid_desc_g_n_k_;
CGridDesc_G_M_N c_grid_desc_g_m_n_; CGridDesc_G_M_N c_grid_desc_g_m_n_;
ZGridDesc_G_M_N z_grid_desc_g_m_n_; ZGridDesc_G_M_N z_grid_desc_g_m_n_;
...@@ -482,6 +531,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -482,6 +531,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
// GridwiseGemm // GridwiseGemm
using GridwiseGemm = GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2< using GridwiseGemm = GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2<
ADataType, // TODO: distinguish A/B datatype ADataType, // TODO: distinguish A/B datatype
Acc0BiasDataType,
ZDataType, ZDataType,
GemmDataType, GemmDataType,
GemmAccDataType, GemmAccDataType,
...@@ -496,6 +546,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -496,6 +546,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
InMemoryDataOperationEnum::Set, InMemoryDataOperationEnum::Set,
AGridDesc_AK0_M_AK1, AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1, BGridDesc_BK0_N_BK1,
D0sGridDesc_M_N,
B1GridDesc_BK0_N_BK1, B1GridDesc_BK0_N_BK1,
CGridDesc_M_N, CGridDesc_M_N,
ZGridDesc_M_N, ZGridDesc_M_N,
...@@ -531,6 +582,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -531,6 +582,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
BBlockTransferDstScalarPerVector_BK1, BBlockTransferDstScalarPerVector_BK1,
true, true,
BBlockLdsExtraN, BBlockLdsExtraN,
Acc0BiasTransferSrcScalarPerVector,
B1BlockTransferThreadClusterLengths_BK0_N_BK1, B1BlockTransferThreadClusterLengths_BK0_N_BK1,
B1BlockTransferThreadClusterArrangeOrder, B1BlockTransferThreadClusterArrangeOrder,
B1BlockTransferSrcAccessOrder, B1BlockTransferSrcAccessOrder,
...@@ -543,6 +595,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -543,6 +595,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
CShuffleNXdlPerWavePerShuffle, CShuffleNXdlPerWavePerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock, CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock, CShuffleBlockTransferScalarPerVector_NPerBlock,
Acc1BiasTransferSrcScalarPerVector,
LoopSched, LoopSched,
Transform::matrix_padder.PadN, Transform::matrix_padder.PadN,
MaskingSpec != MaskingSpecialization::MaskDisabled, MaskingSpec != MaskingSpecialization::MaskDisabled,
...@@ -555,6 +608,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -555,6 +608,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
// pointers // pointers
const ADataType* p_a_grid_; const ADataType* p_a_grid_;
const BDataType* p_b_grid_; const BDataType* p_b_grid_;
typename GridwiseGemm::D0sGridPointer p_d0s_grid_;
const B1DataType* p_b1_grid_; const B1DataType* p_b1_grid_;
CDataType* p_c_grid_; CDataType* p_c_grid_;
ZDataType* p_z_grid_; ZDataType* p_z_grid_;
...@@ -563,6 +617,8 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -563,6 +617,8 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
// tensor descriptors for block/thread-wise copy // tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_; AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_; BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
typename GridwiseGemm::D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_;
B1GridDesc_BK0_N_BK1 b1_grid_desc_bk0_n_bk1_; B1GridDesc_BK0_N_BK1 b1_grid_desc_bk0_n_bk1_;
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_; c_grid_desc_mblock_mperblock_nblock_nperblock_;
...@@ -600,6 +656,9 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -600,6 +656,9 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
// for gridwise gemm check // for gridwise gemm check
CGridDesc_M_N c_grid_desc_m_n_; CGridDesc_M_N c_grid_desc_m_n_;
// raw data
std::array<std::vector<ck::index_t>, NumD0Tensor> d0s_n_length_stride_;
}; };
// Argument // Argument
...@@ -628,28 +687,40 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -628,28 +687,40 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
b1_element_op_{b1_element_op}, b1_element_op_{b1_element_op},
c_element_op_{c_element_op} c_element_op_{c_element_op}
{ {
ignore = p_acc1_biases_vec;
// TODO ANT: implement bias addition // TODO ANT: implement bias addition
group_count_ = problem_desc_vec.size(); group_count_ = problem_desc_vec.size();
if(!(group_count_ == p_a_vec.size() && group_count_ == p_b_vec.size() && if(!(group_count_ == p_a_vec.size() && group_count_ == p_b_vec.size() &&
group_count_ == p_b1_vec.size() && group_count_ == p_c_vec.size())) group_count_ == p_b1_vec.size() && group_count_ == p_c_vec.size() &&
(group_count_ == p_acc0_biases_vec.size() || p_acc0_biases_vec.size() == 0)))
{ {
throw std::runtime_error("wrong! group_count_ != a/b/b1/c_vec.size"); throw std::runtime_error("wrong! group_count_ != a/b/b1/c_vec.size");
} }
if(!(p_acc0_biases_vec.size() == p_acc1_biases_vec.size()))
{
throw std::runtime_error("wrong! acc0_bias_vec.size != acc1_bias_vec.size");
}
grid_size_ = 0; grid_size_ = 0;
index_t z_random_matrix_offset = 0; index_t z_random_matrix_offset = 0;
for(std::size_t i = 0; i < group_count_; i++) for(std::size_t i = 0; i < group_count_; i++)
{ {
const auto p_a_grid = static_cast<const ADataType*>(p_a_vec[i]); const auto p_a_grid = static_cast<const ADataType*>(p_a_vec[i]);
const auto p_b_grid = static_cast<const BDataType*>(p_b_vec[i]); const auto p_b_grid = static_cast<const BDataType*>(p_b_vec[i]);
const auto& problem_desc = problem_desc_vec[i];
std::array<std::vector<ck::index_t>, NumD0Tensor> d0s_n_length_stride;
typename GridwiseGemm::D0sGridPointer p_d0s_grid;
static_for<0, NumD0Tensor, 1>{}([&](auto j) {
using D0DataType = remove_cvref_t<tuple_element_t<j.value, Acc0BiasDataType>>;
// D0 pointer
p_d0s_grid(j) = static_cast<const D0DataType*>(p_acc0_biases_vec[i][j]);
// for check
d0s_n_length_stride[j].push_back(
problem_desc.acc0_biases_gs_ms_ns_lengths[j][NumDimG + NumDimM]);
d0s_n_length_stride[j].push_back(
problem_desc.acc0_biases_gs_ms_ns_strides[j][NumDimG + NumDimM]);
});
const auto p_b1_grid = static_cast<const B1DataType*>(p_b1_vec[i]); const auto p_b1_grid = static_cast<const B1DataType*>(p_b1_vec[i]);
const auto p_c_grid = static_cast<CDataType*>(p_c_vec[i]); const auto p_c_grid = static_cast<CDataType*>(p_c_vec[i]);
const auto p_z_grid = static_cast<ZDataType*>(p_z_vec[i]); const auto p_z_grid = static_cast<ZDataType*>(p_z_vec[i]);
...@@ -660,12 +731,16 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -660,12 +731,16 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
is_lse_storing_ = false; is_lse_storing_ = false;
} }
const auto& problem_desc = problem_desc_vec[i];
const auto a_grid_desc_ak0_m_ak1 = MakeAGridDescriptor_AK0_M_AK1( const auto a_grid_desc_ak0_m_ak1 = MakeAGridDescriptor_AK0_M_AK1(
problem_desc.a_gs_ms_ks_lengths, problem_desc.a_gs_ms_ks_strides); problem_desc.a_gs_ms_ks_lengths, problem_desc.a_gs_ms_ks_strides);
const auto b_grid_desc_bk0_n_bk1 = MakeBGridDescriptor_BK0_N_BK1( const auto b_grid_desc_bk0_n_bk1 = MakeBGridDescriptor_BK0_N_BK1(
problem_desc.b0_gs_ns_ks_lengths, problem_desc.b0_gs_ns_ks_strides); problem_desc.b0_gs_ns_ks_lengths, problem_desc.b0_gs_ns_ks_strides);
const D0sGridDesc_M_N d0s_grid_desc_m_n{
DeviceOp::MakeD0sGridDescriptor_M_N(problem_desc.acc0_biases_gs_ms_ns_lengths,
problem_desc.acc0_biases_gs_ms_ns_strides)};
const auto d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5 =
GridwiseGemm::MakeD0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(
d0s_grid_desc_m_n);
const auto b1_grid_desc_bk0_n_bk1 = MakeB1GridDescriptor_BK0_N_BK1( const auto b1_grid_desc_bk0_n_bk1 = MakeB1GridDescriptor_BK0_N_BK1(
problem_desc.b1_gs_os_ns_lengths, problem_desc.b1_gs_os_ns_strides); problem_desc.b1_gs_os_ns_lengths, problem_desc.b1_gs_os_ns_strides);
const auto c_grid_desc_m_n = Transform::MakeCGridDescriptor_M_N( const auto c_grid_desc_m_n = Transform::MakeCGridDescriptor_M_N(
...@@ -679,6 +754,9 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -679,6 +754,9 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
problem_desc.a_gs_ms_ks_lengths, problem_desc.a_gs_ms_ks_strides); problem_desc.a_gs_ms_ks_lengths, problem_desc.a_gs_ms_ks_strides);
const auto b_grid_desc_g_n_k = Transform::MakeB0GridDescriptor_G_N_K( const auto b_grid_desc_g_n_k = Transform::MakeB0GridDescriptor_G_N_K(
problem_desc.b0_gs_ns_ks_lengths, problem_desc.b0_gs_ns_ks_strides); problem_desc.b0_gs_ns_ks_lengths, problem_desc.b0_gs_ns_ks_strides);
const auto d0s_grid_desc_g_m_n = DeviceOp::MakeD0sGridDescriptor_G_M_N(
problem_desc.acc0_biases_gs_ms_ns_lengths,
problem_desc.acc0_biases_gs_ms_ns_strides);
const auto b1_grid_desc_g_n_k = Transform::MakeB1GridDescriptor_G_N_K( const auto b1_grid_desc_g_n_k = Transform::MakeB1GridDescriptor_G_N_K(
problem_desc.b1_gs_os_ns_lengths, problem_desc.b1_gs_os_ns_strides); problem_desc.b1_gs_os_ns_lengths, problem_desc.b1_gs_os_ns_strides);
const auto c_grid_desc_g_m_n = Transform::MakeCGridDescriptor_G_M_N( const auto c_grid_desc_g_m_n = Transform::MakeCGridDescriptor_G_M_N(
...@@ -710,6 +788,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -710,6 +788,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
const auto compute_base_ptr_of_batch = ComputeBasePtrOfStridedBatch( const auto compute_base_ptr_of_batch = ComputeBasePtrOfStridedBatch(
a_grid_desc_g_m_k, a_grid_desc_g_m_k,
b_grid_desc_g_n_k, b_grid_desc_g_n_k,
d0s_grid_desc_g_m_n,
b1_grid_desc_g_n_k, b1_grid_desc_g_n_k,
c_grid_desc_g_m_n, c_grid_desc_g_m_n,
z_grid_desc_g_m_n, z_grid_desc_g_m_n,
...@@ -721,12 +800,12 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -721,12 +800,12 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
grid_size_ += grid_size_grp; grid_size_ += grid_size_grp;
// for each group, make sure acc0_biases_gs_ms_ns_lengths.size() == NumAcc0Bias and // for each group, make sure acc0_biases_gs_ms_ns_lengths.size() == NumD0Tensor and
// so on // so on
if(!(problem_desc.acc0_biases_gs_ms_ns_lengths.size() == NumAcc0Bias && if(!(problem_desc.acc0_biases_gs_ms_ns_lengths.size() == NumD0Tensor &&
problem_desc.acc0_biases_gs_ms_ns_strides.size() == NumAcc0Bias && problem_desc.acc0_biases_gs_ms_ns_strides.size() == NumD0Tensor &&
problem_desc.acc1_biases_gs_ms_os_lengths.size() == NumAcc1Bias && problem_desc.acc1_biases_gs_ms_os_lengths.size() == NumD1Tensor &&
problem_desc.acc1_biases_gs_ms_os_strides.size() == NumAcc1Bias)) problem_desc.acc1_biases_gs_ms_os_strides.size() == NumD1Tensor))
{ {
throw std::runtime_error( throw std::runtime_error(
"wrong! number of biases in function argument does not " "wrong! number of biases in function argument does not "
...@@ -740,12 +819,14 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -740,12 +819,14 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
group_kernel_args_.push_back({p_a_grid, group_kernel_args_.push_back({p_a_grid,
p_b_grid, p_b_grid,
p_d0s_grid,
p_b1_grid, p_b1_grid,
p_c_grid, p_c_grid,
p_z_grid, p_z_grid,
p_lse_grid, p_lse_grid,
a_grid_desc_ak0_m_ak1, a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1, b_grid_desc_bk0_n_bk1,
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
b1_grid_desc_bk0_n_bk1, b1_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock, c_grid_desc_mblock_mperblock_nblock_nperblock,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5, z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
...@@ -777,7 +858,8 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -777,7 +858,8 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
problem_desc.b1_gs_os_ns_strides[NumDimG + NumDimO + NumDimN - 1]}, problem_desc.b1_gs_os_ns_strides[NumDimG + NumDimO + NumDimN - 1]},
{problem_desc.c_gs_ms_os_strides[NumDimG + NumDimM - 1], {problem_desc.c_gs_ms_os_strides[NumDimG + NumDimM - 1],
problem_desc.c_gs_ms_os_strides[NumDimG + NumDimM + NumDimO - 1]}, problem_desc.c_gs_ms_os_strides[NumDimG + NumDimM + NumDimO - 1]},
c_grid_desc_m_n}); c_grid_desc_m_n,
d0s_n_length_stride});
} }
is_dropout_ = p_dropout > 0.0; // is_dropout_ = p_dropout > 0.0; //
...@@ -997,6 +1079,19 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -997,6 +1079,19 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
return false; return false;
} }
for(int In = 0; In < NumD0Tensor; In++)
{
if(device_arg.d0s_n_length_stride_[In][1] == 1 &&
device_arg.d0s_n_length_stride_[In][0] % Acc0BiasTransferSrcScalarPerVector != 0)
{
return false;
}
if(device_arg.d0s_n_length_stride_[In][1] != 1 &&
Acc0BiasTransferSrcScalarPerVector != 1)
{
return false;
}
}
// Check if having main loop // Check if having main loop
const auto K = kernel_arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * const auto K = kernel_arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) *
kernel_arg.a_grid_desc_ak0_m_ak1_.GetLength(I2); kernel_arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
......
...@@ -25,6 +25,7 @@ namespace ck { ...@@ -25,6 +25,7 @@ namespace ck {
* *
*/ */
template <typename FloatAB, template <typename FloatAB,
typename D0sDataType,
typename ZDataType, typename ZDataType,
typename FloatGemm, typename FloatGemm,
typename FloatGemmAcc, typename FloatGemmAcc,
...@@ -39,6 +40,7 @@ template <typename FloatAB, ...@@ -39,6 +40,7 @@ template <typename FloatAB,
InMemoryDataOperationEnum CGlobalMemoryDataOperation, InMemoryDataOperationEnum CGlobalMemoryDataOperation,
typename AGridDesc_AK0_M_AK1, typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1, typename BGridDesc_BK0_N_BK1,
typename D0sGridDesc_M_N,
typename B1GridDesc_BK0_N_BK1, typename B1GridDesc_BK0_N_BK1,
typename CGridDesc_M_N, typename CGridDesc_M_N,
typename ZGridDesc_M_N, typename ZGridDesc_M_N,
...@@ -74,6 +76,7 @@ template <typename FloatAB, ...@@ -74,6 +76,7 @@ template <typename FloatAB,
index_t BBlockTransferDstScalarPerVector_BK1, index_t BBlockTransferDstScalarPerVector_BK1,
bool BThreadTransferSrcResetCoordinateAfterRun, // ignored bool BThreadTransferSrcResetCoordinateAfterRun, // ignored
index_t BBlockLdsExtraN, index_t BBlockLdsExtraN,
index_t D0BlockTransferSrcScalarPerVector,
typename B1BlockTransferThreadClusterLengths_BK0_N_BK1, typename B1BlockTransferThreadClusterLengths_BK0_N_BK1,
typename B1BlockTransferThreadClusterArrangeOrder, typename B1BlockTransferThreadClusterArrangeOrder,
typename B1BlockTransferSrcAccessOrder, typename B1BlockTransferSrcAccessOrder,
...@@ -86,6 +89,7 @@ template <typename FloatAB, ...@@ -86,6 +89,7 @@ template <typename FloatAB,
index_t CShuffleNXdlPerWavePerShuffle, index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock, typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock, index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
index_t D1BlockTransferSrcScalarPerVector,
LoopScheduler LoopSched, LoopScheduler LoopSched,
bool PadN, bool PadN,
bool MaskOutUpperTriangle, bool MaskOutUpperTriangle,
...@@ -93,6 +97,11 @@ template <typename FloatAB, ...@@ -93,6 +97,11 @@ template <typename FloatAB,
PipelineVersion PipelineVer = PipelineVersion::v1> PipelineVersion PipelineVer = PipelineVersion::v1>
struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2 struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
{ {
static_assert(D0BlockTransferSrcScalarPerVector == 1 ||
D0BlockTransferSrcScalarPerVector == 2 ||
D0BlockTransferSrcScalarPerVector == 4,
"D0BlockTransferSrcScalarPerVector must be 1 or 2 or 4");
static constexpr index_t NumD0Tensor = D0sDataType::Size();
static_assert(LoopSched == LoopScheduler::Default, static_assert(LoopSched == LoopScheduler::Default,
"Non-default loop scheduler is currently not supported"); "Non-default loop scheduler is currently not supported");
...@@ -407,6 +416,52 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -407,6 +416,52 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
c_grid_desc_m_n); c_grid_desc_m_n);
} }
static constexpr auto MakeD0sGridPointer()
{
return generate_tuple(
[&](auto i) {
using D0DataType = remove_cvref_t<tuple_element_t<i.value, D0sDataType>>;
return static_cast<const D0DataType*>(nullptr);
},
Number<NumD0Tensor>{});
}
// D0 desc for source in blockwise copy
template <typename D0GridDesc_M_N>
__host__ __device__ static constexpr auto
MakeGemm0D0GridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(const D0GridDesc_M_N& d0_grid_desc_m_n)
{
const auto M = d0_grid_desc_m_n.GetLength(I0);
const auto N = d0_grid_desc_m_n.GetLength(I1);
constexpr auto mfma = MfmaSelector<FloatAB, MPerXdl, NPerXdl>::selected_mfma;
constexpr auto N3 = mfma.num_groups_per_blk;
constexpr auto N4 = mfma.num_input_blks;
constexpr auto N5 = mfma.group_size;
return transform_tensor_descriptor(
d0_grid_desc_m_n,
make_tuple(make_unmerge_transform(
make_tuple(M / MPerBlock, MXdlPerWave, Gemm0MWaves, MPerXdl)),
make_unmerge_transform(
make_tuple(N / NPerBlock, NXdlPerWave, Gemm0NWaves, N3, N4, N5))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2, 4, 6>{}, Sequence<1, 3, 5, 7, 8, 9>{}));
}
// D0s desc for source in blockwise copy
__host__ __device__ static constexpr auto
MakeD0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(const D0sGridDesc_M_N& ds_grid_desc_m_n)
{
return generate_tuple(
[&](auto i) {
return MakeGemm0D0GridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(ds_grid_desc_m_n[i]);
},
Number<NumD0Tensor>{});
}
using D0sGridPointer = decltype(MakeD0sGridPointer());
using D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5 = remove_cvref_t<decltype(
MakeD0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(D0sGridDesc_M_N{}))>;
using CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t<decltype( using CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t<decltype(
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(CGridDesc_M_N{}))>; MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(CGridDesc_M_N{}))>;
...@@ -465,6 +520,7 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -465,6 +520,7 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
typename C0MatrixMask> typename C0MatrixMask>
__device__ static void Run(const FloatAB* __restrict__ p_a_grid, __device__ static void Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid, const FloatAB* __restrict__ p_b_grid,
D0sGridPointer p_d0s_grid,
const FloatAB* __restrict__ p_b1_grid, const FloatAB* __restrict__ p_b1_grid,
FloatC* __restrict__ p_c_grid, FloatC* __restrict__ p_c_grid,
ZDataType* __restrict__ p_z_grid, ZDataType* __restrict__ p_z_grid,
...@@ -477,6 +533,8 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -477,6 +533,8 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
const CElementwiseOperation& c_element_op, const CElementwiseOperation& c_element_op,
const AGridDesc_AK0_M_AK1& a_grid_desc_ak0_m_ak1, const AGridDesc_AK0_M_AK1& a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1, const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1,
const D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5&
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
const B1GridDesc_BK0_N_BK1& b1_grid_desc_bk0_n_bk1, const B1GridDesc_BK0_N_BK1& b1_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock& const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock&
c_grid_desc_mblock_mperblock_nblock_nperblock, c_grid_desc_mblock_mperblock_nblock_nperblock,
...@@ -891,6 +949,65 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -891,6 +949,65 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
// gemm1 K loop // gemm1 K loop
index_t gemm1_k_block_outer_index = 0; index_t gemm1_k_block_outer_index = 0;
const auto wave_id = GetGemm0WaveIdx();
const auto wave_m_n_id = GetGemm0WaveMNIdx(wave_id[I2]); // I2: 0~63
// bias (d matrix)
constexpr auto d0_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5 =
make_naive_tensor_descriptor_packed(make_tuple(I1, // MBlockId
I1, // NBlockId
m0, // MRepeat
n0, // NRepeat
m1, // MWaveId
n1, // NWaveId
m2, // MPerXdl
n2, // NGroupNum
n3, // NInputNum
n4)); // RegisterNum
auto d0s_threadwise_copy = generate_tuple(
[&](auto i) {
using D0DataType = remove_cvref_t<tuple_element_t<i.value, D0sDataType>>;
return ThreadwiseTensorSliceTransfer_v2<
D0DataType,
D0DataType,
decltype(d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i]),
decltype(d0_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5),
Sequence<I1, // MBlockId
I1, // NBlockID
m0, // MRepeat
n0, // NRepeat
m1, // MWaveId
n1, // NWaveId
m2, // MPerXdl
n2, // NGroupNum
n3, // NInputNum
n4>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7, 8, 9>,
9,
D0BlockTransferSrcScalarPerVector,
1,
false>(d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i],
make_multi_index(block_work_idx_m, // MBlockId
0, // NBlockId
0, // mrepeat
0, // nrepeat
wave_id[I0], // MWaveId
wave_id[I1], // NWaveId
wave_m_n_id[I1], // MPerXdl
0, // group
wave_m_n_id[I0], // NInputIndex
0)); // register number
},
Number<NumD0Tensor>{});
const auto d0s_grid_buf = generate_tuple(
[&](auto i) {
return make_dynamic_buffer<AddressSpaceEnum::Global>(
p_d0s_grid[i],
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i].GetElementSpaceSize());
},
Number<NumD0Tensor>{});
// z is random number matrix for dropout verify // z is random number matrix for dropout verify
// //
// z vgpr copy to global // z vgpr copy to global
...@@ -983,9 +1100,6 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -983,9 +1100,6 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
static_cast<ushort*>(p_shared), static_cast<ushort*>(p_shared),
z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetElementSpaceSize()); z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetElementSpaceSize());
const auto wave_id = GetGemm0WaveIdx();
const auto wave_m_n_id = GetGemm0WaveMNIdx(wave_id[I2]); // I2: 0~63
auto z_tmp_thread_copy_vgpr_to_lds = ThreadwiseTensorSliceTransfer_v1r3< auto z_tmp_thread_copy_vgpr_to_lds = ThreadwiseTensorSliceTransfer_v1r3<
ushort, ushort,
ushort, ushort,
...@@ -1163,6 +1277,31 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2 ...@@ -1163,6 +1277,31 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
block_sync_lds(); // wait for lds read in gemm0 blockwise gemm block_sync_lds(); // wait for lds read in gemm0 blockwise gemm
// add bias
static_for<0, NumD0Tensor, 1>{}([&](auto i) {
// get register
using D0DataType = remove_cvref_t<tuple_element_t<i.value, D0sDataType>>;
StaticBuffer<AddressSpaceEnum::Vgpr,
D0DataType,
d0_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5.GetElementSpaceSize(),
true>
d0_thread_buf;
// load data from global
d0s_threadwise_copy(i).Run(d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i],
d0s_grid_buf[i],
d0_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0, I0, I0),
d0_thread_buf);
// acc add bias
static_for<0, m0 * n0 * n2 * n4, 1>{}(
[&](auto j) { acc_thread_buf(j) += d0_thread_buf[j]; });
d0s_threadwise_copy(i).MoveSrcSliceWindow(
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i],
make_multi_index(0, 1, 0, 0, 0, 0, 0, 0, 0, 0));
});
// softmax // softmax
SoftmaxBuf& max = blockwise_softmax.max_value_buf; SoftmaxBuf& max = blockwise_softmax.max_value_buf;
SoftmaxBuf& sum = blockwise_softmax.sum_value_buf; SoftmaxBuf& sum = blockwise_softmax.sum_value_buf;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment