Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
3c959547
Commit
3c959547
authored
Jul 25, 2022
by
Jing Zhang
Browse files
add multiD to gemm_c_permute
parent
85978e02
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
172 additions
and
113 deletions
+172
-113
example/25_gemm_bias_c_permute/gemm_bias_c_permute_xdl_fp16.cpp
...e/25_gemm_bias_c_permute/gemm_bias_c_permute_xdl_fp16.cpp
+28
-43
include/ck/tensor_operation/gpu/device/device_gemm_bias_c_permute.hpp
...ensor_operation/gpu/device/device_gemm_bias_c_permute.hpp
+24
-16
include/ck/tensor_operation/gpu/device/device_gemm_bias_c_permute_xdl.hpp
...r_operation/gpu/device/device_gemm_bias_c_permute_xdl.hpp
+118
-53
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp
...ration/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp
+2
-1
No files found.
example/25_gemm_bias_c_permute/gemm_bias_c_permute_xdl_fp16.cpp
View file @
3c959547
...
...
@@ -34,7 +34,8 @@ using ADataType = F16;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DDataType
=
F16
;
using
D0DataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
>
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
...
...
@@ -54,7 +55,7 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmBiasCPermute_Xd
//######| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
1
>
;
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
D
s
DataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
1
>
;
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
...
...
@@ -74,8 +75,9 @@ int main(int argc, char* argv[])
ck
::
index_t
N
=
N0
*
N1
;
ck
::
index_t
K
=
128
;
ck
::
index_t
stride_A
=
K
;
ck
::
index_t
stride_B
=
K
;
ck
::
index_t
stride_A
=
K
;
ck
::
index_t
stride_B
=
K
;
ck
::
index_t
stride_D0
=
0
;
#if 1
// E = [M0, N0, M1, N1, M2]
...
...
@@ -84,21 +86,7 @@ int main(int argc, char* argv[])
ck
::
index_t
stride_E_M2
=
1
;
ck
::
index_t
stride_E_N0
=
M1
*
N1
*
M2
;
ck
::
index_t
stride_E_N1
=
M2
;
// D = [0, N0, 0, N1, 0]
ck
::
index_t
stride_D_M0
=
0
;
ck
::
index_t
stride_D_M1
=
0
;
ck
::
index_t
stride_D_M2
=
0
;
ck
::
index_t
stride_D_N0
=
N1
;
ck
::
index_t
stride_D_N1
=
1
;
#else
// D = [0, 0, 0, N0, N1]
ck
::
index_t
stride_D_M0
=
0
;
ck
::
index_t
stride_D_M1
=
0
;
ck
::
index_t
stride_D_M2
=
0
;
ck
::
index_t
stride_D_N0
=
N1
;
ck
::
index_t
stride_D_N1
=
1
;
// E = [M0, M1, M2, N0, N1]
ck
::
index_t
stride_E_M0
=
M1
*
M2
*
N0
*
N1
;
ck
::
index_t
stride_E_M1
=
M2
*
N0
*
N1
;
...
...
@@ -107,9 +95,7 @@ int main(int argc, char* argv[])
ck
::
index_t
stride_E_N1
=
1
;
#endif
const
ck
::
tensor_operation
::
device
::
DEGridDesc_M0_M1_M2_N0_N1
d_grid_desc
{
M0
,
M1
,
M2
,
N0
,
N1
,
stride_D_M0
,
stride_D_M1
,
stride_D_M2
,
stride_D_N0
,
stride_D_N1
};
const
ck
::
tensor_operation
::
device
::
DEGridDesc_M0_M1_M2_N0_N1
e_grid_desc
{
const
ck
::
tensor_operation
::
device
::
EGridDesc_M0_M1_M2_N0_N1
e_grid_desc
{
M0
,
M1
,
M2
,
N0
,
N1
,
stride_E_M0
,
stride_E_M1
,
stride_E_M2
,
stride_E_N0
,
stride_E_N1
};
if
(
argc
==
1
)
...
...
@@ -145,17 +131,17 @@ int main(int argc, char* argv[])
};
auto
f_host_de_tensor_descriptor
=
[](
ck
::
tensor_operation
::
device
::
D
EGridDesc_M0_M1_M2_N0_N1
d
e_grid_desc
)
{
std
::
size_t
m0
=
d
e_grid_desc
.
M0_
;
std
::
size_t
m1
=
d
e_grid_desc
.
M1_
;
std
::
size_t
m2
=
d
e_grid_desc
.
M2_
;
std
::
size_t
n0
=
d
e_grid_desc
.
N0_
;
std
::
size_t
n1
=
d
e_grid_desc
.
N1_
;
std
::
size_t
stride_m0
=
d
e_grid_desc
.
stride_M0_
;
std
::
size_t
stride_m1
=
d
e_grid_desc
.
stride_M1_
;
std
::
size_t
stride_m2
=
d
e_grid_desc
.
stride_M2_
;
std
::
size_t
stride_n0
=
d
e_grid_desc
.
stride_N0_
;
std
::
size_t
stride_n1
=
d
e_grid_desc
.
stride_N1_
;
[](
ck
::
tensor_operation
::
device
::
EGridDesc_M0_M1_M2_N0_N1
e_grid_desc
_
)
{
std
::
size_t
m0
=
e_grid_desc
_
.
M0_
;
std
::
size_t
m1
=
e_grid_desc
_
.
M1_
;
std
::
size_t
m2
=
e_grid_desc
_
.
M2_
;
std
::
size_t
n0
=
e_grid_desc
_
.
N0_
;
std
::
size_t
n1
=
e_grid_desc
_
.
N1_
;
std
::
size_t
stride_m0
=
e_grid_desc
_
.
stride_M0_
;
std
::
size_t
stride_m1
=
e_grid_desc
_
.
stride_M1_
;
std
::
size_t
stride_m2
=
e_grid_desc
_
.
stride_M2_
;
std
::
size_t
stride_n0
=
e_grid_desc
_
.
stride_N0_
;
std
::
size_t
stride_n1
=
e_grid_desc
_
.
stride_N1_
;
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
m0
,
m1
,
m2
,
n0
,
n1
}),
std
::
vector
<
std
::
size_t
>
({
stride_m0
,
stride_m1
,
stride_m2
,
stride_n0
,
stride_n1
}));
...
...
@@ -163,13 +149,13 @@ int main(int argc, char* argv[])
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
stride_A
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
stride_B
,
BLayout
{}));
Tensor
<
DDataType
>
d
_m
0_m
1_m2_n0_n1
(
f_host_
de_
tensor_descriptor
(
d_grid_desc
));
Tensor
<
D
0
DataType
>
d0_m
_n
(
f_host_tensor_descriptor
(
M
,
N
,
stride_D0
,
DLayout
{}
));
Tensor
<
EDataType
>
e_m0_m1_m2_n0_n1_host_result
(
f_host_de_tensor_descriptor
(
e_grid_desc
));
Tensor
<
EDataType
>
e_m0_m1_m2_n0_n1_device_result
(
f_host_de_tensor_descriptor
(
e_grid_desc
));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d
_m
0_m
1_m2_n0_n1
: "
<<
d
_m
0_m
1_m2_n0_n1
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_m
_n
: "
<<
d0_m
_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m0_m1_m2_n0_n1: "
<<
e_m0_m1_m2_n0_n1_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
...
...
@@ -178,24 +164,23 @@ int main(int argc, char* argv[])
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d
_m
0_m
1_m2_n0_n1
.
GenerateTensorValue
(
GeneratorTensor_2
<
DDataType
>
{
-
5
,
5
});
d0_m
_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D
0
DataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d
_m
0_m
1_m2_n0_n1
.
GenerateTensorValue
(
GeneratorTensor_3
<
DDataType
>
{
0.0
,
1.0
});
d0_m
_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D
0
DataType
>
{
0.0
,
1.0
});
}
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
d_m0_m1_m2_n0_n1_device_buf
(
sizeof
(
DDataType
)
*
d_m0_m1_m2_n0_n1
.
mDesc
.
GetElementSpace
());
DeviceMem
d0_m_n_device_buf
(
sizeof
(
D0DataType
)
*
d0_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
e_m0_m1_m2_n0_n1_device_buf
(
sizeof
(
EDataType
)
*
e_m0_m1_m2_n0_n1_device_result
.
mDesc
.
GetElementSpace
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d
_m
0_m
1_m2_n0_n1
_device_buf
.
ToDevice
(
d
_m
0_m
1_m2_n0_n1
.
mData
.
data
());
d0_m
_n
_device_buf
.
ToDevice
(
d0_m
_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
...
...
@@ -206,14 +191,14 @@ int main(int argc, char* argv[])
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_m_k_device_buf
.
GetDeviceBuffer
(),
b_k_n_device_buf
.
GetDeviceBuffer
(),
d_m0_m1_m2_n0_n1
_device_buf
.
GetDeviceBuffer
(),
{
d0_m_n
_device_buf
.
GetDeviceBuffer
()
}
,
e_m0_m1_m2_n0_n1_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
stride_A
,
stride_B
,
d_grid_desc
,
{
stride_D0
}
,
e_grid_desc
,
a_element_op
,
b_element_op
,
...
...
@@ -228,7 +213,7 @@ int main(int argc, char* argv[])
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
DDataType
)
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
sizeof
(
D
0
DataType
)
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
...
...
@@ -269,7 +254,7 @@ int main(int argc, char* argv[])
cde_element_op
(
e_m0_m1_m2_n0_n1_host_result
(
m0
,
m1
,
m2
,
n0
,
n1
),
ck
::
type_convert
<
EDataType
>
(
c_m_n
(
m
,
n
)),
d
_m
0_m
1_m2_n0_n1
(
m0
,
m1
,
m2
,
n0
,
n1
));
d0_m
_n
(
m
,
n
));
}
e_m0_m1_m2_n0_n1_device_buf
.
FromDevice
(
e_m0_m1_m2_n0_n1_device_result
.
mData
.
data
());
...
...
include/ck/tensor_operation/gpu/device/device_gemm_bias_c_permute.hpp
View file @
3c959547
...
...
@@ -11,34 +11,48 @@ namespace ck {
namespace
tensor_operation
{
namespace
device
{
struct
D
EGridDesc_M0_M1_M2_N0_N1
struct
EGridDesc_M0_M1_M2_N0_N1
{
ck
::
index_t
M0_
,
M1_
,
M2_
,
N0_
,
N1_
;
ck
::
index_t
stride_M0_
,
stride_M1_
,
stride_M2_
,
stride_N0_
,
stride_N1_
;
};
// input : A[M, K], B[K, N],
// input : D[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D)
template
<
typename
AElementwiseOperation
,
// GEMM:
// input : A[M, K], B[K, N],
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// D0, D1, ... have the same layout
template
<
typename
ALayout
,
typename
BLayout
,
typename
DLayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
>
struct
DeviceGemmBiasCPermute
:
public
BaseOperator
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
const
void
*
p_d
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_d
s
,
void
*
p_e
,
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB
,
DEGridDesc_M0_M1_M2_N0_N1
d_gride_desc
,
D
EGridDesc_M0_M1_M2_N0_N1
e_gride_desc
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
StrideDs
,
EGridDesc_M0_M1_M2_N0_N1
e_gride_desc
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
=
0
;
...
...
@@ -46,12 +60,6 @@ struct DeviceGemmBiasCPermute : public BaseOperator
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
using
DeviceGemmBiasCPermutePtr
=
std
::
unique_ptr
<
DeviceGemmBiasCPermute
<
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_gemm_bias_c_permute_xdl.hpp
View file @
3c959547
...
...
@@ -96,12 +96,12 @@ namespace device {
// E = cde_op(C, D0, D1, ...)
template
<
typename
ALayout
,
typename
BLayout
,
typename
CDE
Layout
,
typename
D
Layout
,
typename
ADataType
,
typename
BDataType
,
typename
GemmAccDataType
,
typename
CShuffleDataType
,
typename
DDataType
,
typename
D
s
DataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
...
...
@@ -137,19 +137,26 @@ template <typename ALayout,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
struct
DeviceGemmBiasCPermute_Xdl
:
public
DeviceGemmBiasCPermute
<
AElementwiseOperation
,
struct
DeviceGemmBiasCPermute_Xdl
:
public
DeviceGemmBiasCPermute
<
ALayout
,
BLayout
,
DLayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceGemmBiasCPermute_Xdl
;
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
index_t
NumDTensor
=
I1
;
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
...
...
@@ -356,19 +363,19 @@ struct DeviceGemmBiasCPermute_Xdl : public DeviceGemmBiasCPermute<AElementwiseOp
}
}
static
auto
MakeEGridDescriptor_M_N
(
D
EGridDesc_M0_M1_M2_N0_N1
d_
e_grid_desc
)
static
auto
MakeEGridDescriptor_M_N
(
EGridDesc_M0_M1_M2_N0_N1
e_grid_desc
)
{
index_t
M0
=
d_
e_grid_desc
.
M0_
;
index_t
M1
=
d_
e_grid_desc
.
M1_
;
index_t
M2
=
d_
e_grid_desc
.
M2_
;
index_t
N0
=
d_
e_grid_desc
.
N0_
;
index_t
N1
=
d_
e_grid_desc
.
N1_
;
index_t
stride_M0
=
d_
e_grid_desc
.
stride_M0_
;
index_t
stride_M1
=
d_
e_grid_desc
.
stride_M1_
;
index_t
stride_M2
=
d_
e_grid_desc
.
stride_M2_
;
index_t
stride_N0
=
d_
e_grid_desc
.
stride_N0_
;
index_t
stride_N1
=
d_
e_grid_desc
.
stride_N1_
;
index_t
M0
=
e_grid_desc
.
M0_
;
index_t
M1
=
e_grid_desc
.
M1_
;
index_t
M2
=
e_grid_desc
.
M2_
;
index_t
N0
=
e_grid_desc
.
N0_
;
index_t
N1
=
e_grid_desc
.
N1_
;
index_t
stride_M0
=
e_grid_desc
.
stride_M0_
;
index_t
stride_M1
=
e_grid_desc
.
stride_M1_
;
index_t
stride_M2
=
e_grid_desc
.
stride_M2_
;
index_t
stride_N0
=
e_grid_desc
.
stride_N0_
;
index_t
stride_N1
=
e_grid_desc
.
stride_N1_
;
const
auto
MRaw
=
M0
*
M1
*
M2
;
const
auto
NRaw
=
N0
*
N1
;
...
...
@@ -429,16 +436,74 @@ struct DeviceGemmBiasCPermute_Xdl : public DeviceGemmBiasCPermute<AElementwiseOp
}
}
static
auto
MakeDGridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
StrideD
)
{
const
auto
d_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
DLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
StrideD
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
DLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
I1
,
StrideD
));
}
}();
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerBlock
)
*
NPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
const
auto
NPad
=
N
-
NRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad M and N
return
transform_tensor_descriptor
(
d_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad M, but not N
return
transform_tensor_descriptor
(
d_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad N, but not M
return
transform_tensor_descriptor
(
d_grid_desc_mraw_nraw
,
make_tuple
(
make_pass_through_transform
(
MRaw
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
// not pad M or N
return
d_grid_desc_mraw_nraw
;
}
}
using
AGridDesc_AK0_M_AK1
=
decltype
(
MakeAGridDescriptor_AK0_M_AK1
(
1
,
1
,
1
));
using
BGridDesc_BK0_N_BK1
=
decltype
(
MakeBGridDescriptor_BK0_N_BK1
(
1
,
1
,
1
));
using
EGridDesc_M_N
=
decltype
(
MakeEGridDescriptor_M_N
(
D
EGridDesc_M0_M1_M2_N0_N1
{}));
using
EGridDesc_M_N
=
decltype
(
MakeEGridDescriptor_M_N
(
EGridDesc_M0_M1_M2_N0_N1
{}));
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
GemmAccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
DDataType
>
,
D
s
DataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
...
...
@@ -480,20 +545,24 @@ struct DeviceGemmBiasCPermute_Xdl : public DeviceGemmBiasCPermute<AElementwiseOp
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
using
DGridDesc_M_N
=
decltype
(
MakeDGridDescriptor_M_N
(
1
,
1
,
1
));
using
DGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
=
decltype
(
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
DGridDesc_M_N
{}));
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
void
*
p_a_grid
,
const
void
*
p_b_grid
,
const
void
*
p_d_grid
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_d
s
_grid
,
void
*
p_e_grid
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
DEGridDesc_M0_M1_M2_N0_N1
d_grid_desc
,
D
EGridDesc_M0_M1_M2_N0_N1
e_grid_desc
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
EGridDesc_M0_M1_M2_N0_N1
e_grid_desc
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
...
...
@@ -512,16 +581,6 @@ struct DeviceGemmBiasCPermute_Xdl : public DeviceGemmBiasCPermute<AElementwiseOp
cde_element_op_
{
cde_element_op
}
{
if
(
MRaw
!=
d_grid_desc
.
M0_
*
d_grid_desc
.
M1_
*
d_grid_desc
.
M2_
)
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
if
(
NRaw
!=
d_grid_desc
.
N0_
*
d_grid_desc
.
N1_
)
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_ak0_m_ak1_
,
b_grid_desc_bk0_n_bk1_
,
e_grid_desc_m_n_
,
...
...
@@ -531,13 +590,18 @@ struct DeviceGemmBiasCPermute_Xdl : public DeviceGemmBiasCPermute<AElementwiseOp
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n_
);
p_ds_grid_
(
I0
)
=
static_cast
<
const
DDataType
*>
(
p_d_grid
);
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
const
auto
d_grid_desc_m_n
=
DeviceOp
::
MakeEGridDescriptor_M_N
(
d_grid_desc
);
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
p_ds_grid
[
i
]
);
ds_grid_desc_mblock_mperblock_nblock_nperblock_
(
I0
)
=
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
d_grid_desc_m_n
);
const
auto
d_grid_desc_m_n
=
DeviceOp
::
MakeDGridDescriptor_M_N
(
MRaw
,
NRaw
,
StrideDs
[
i
]);
ds_grid_desc_mblock_mperblock_nblock_nperblock_
(
i
)
=
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
d_grid_desc_m_n
);
});
}
}
...
...
@@ -546,17 +610,19 @@ struct DeviceGemmBiasCPermute_Xdl : public DeviceGemmBiasCPermute<AElementwiseOp
const
BDataType
*
p_b_grid_
;
typename
GridwiseGemm
::
DsGridPointer
p_ds_grid_
;
EDataType
*
p_e_grid_
;
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
StaticallyIndexedArray
<
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
NumDTensor
>
StaticallyIndexedArray
<
DGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
NumDTensor
>
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
// FIXME: Ds desc may be of different
// type from E
EGridDesc_M_N
e_grid_desc_m_n_
;
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
typename
GridwiseGemm
::
DefaultBlock2ETileMap
block_2_etile_map_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
...
...
@@ -596,9 +662,8 @@ struct DeviceGemmBiasCPermute_Xdl : public DeviceGemmBiasCPermute<AElementwiseOp
CDEElementwiseOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
ck
::
StaticallyIndexedArray
<
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
NumDTensor
>
,
ck
::
StaticallyIndexedArray
<
DGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
NumDTensor
>
,
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
DefaultBlock2ETileMap
,
has_main_loop
>
;
...
...
@@ -665,29 +730,29 @@ struct DeviceGemmBiasCPermute_Xdl : public DeviceGemmBiasCPermute<AElementwiseOp
static
auto
MakeArgument
(
const
void
*
p_a
,
const
void
*
p_b
,
const
void
*
p_d
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_d
s
,
void
*
p_e
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
DEGridDesc_M0_M1_M2_N0_N1
d_grid_desc
,
D
EGridDesc_M0_M1_M2_N0_N1
e_grid_desc
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
EGridDesc_M0_M1_M2_N0_N1
e_grid_desc
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_d
,
p_d
s
,
p_e
,
MRaw
,
NRaw
,
KRaw
,
StrideA
,
StrideB
,
d_grid_desc
,
StrideDs
,
e_grid_desc
,
a_element_op
,
b_element_op
,
...
...
@@ -700,29 +765,29 @@ struct DeviceGemmBiasCPermute_Xdl : public DeviceGemmBiasCPermute<AElementwiseOp
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
const
void
*
p_d
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_d
s
,
void
*
p_e
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
DEGridDesc_M0_M1_M2_N0_N1
d_grid_desc
,
D
EGridDesc_M0_M1_M2_N0_N1
e_grid_desc
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
StrideDs
,
EGridDesc_M0_M1_M2_N0_N1
e_grid_desc
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_a
,
p_b
,
p_d
,
p_d
s
,
p_e
,
MRaw
,
NRaw
,
KRaw
,
StrideA
,
StrideB
,
d_grid_desc
,
StrideDs
,
e_grid_desc
,
a_element_op
,
b_element_op
,
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp
View file @
3c959547
...
...
@@ -210,8 +210,9 @@ struct GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle
return
GridwiseGemmPipe
::
CalculateHasMainLoop
(
num_loop
);
}
template
<
typename
DEGridDesc_M_N
>
__host__
__device__
static
constexpr
auto
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
EGridDesc_M_N
&
e_grid_desc_m_n
)
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
D
EGridDesc_M_N
&
e_grid_desc_m_n
)
{
const
auto
M
=
e_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
e_grid_desc_m_n
.
GetLength
(
I1
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment