".github/git@developer.sourcefind.cn:wangsen/mineru.git" did not exist on "6fede39bedc132e0cb08bccfcb089befe18c17d2"
Unverified Commit 3b3a0673 authored by Adam Osewski's avatar Adam Osewski Committed by GitHub
Browse files

Merge branch 'develop' into aosewski/int4_UT

parents cc7353d8 2327f1a6
add_custom_target(example_gemm_add_add_fastgelu_xdl)
add_example_executable(example_gemm_add_add_fastgelu_xdl_bf16 gemm_add_add_fastgelu_xdl_bf16.cpp) add_example_executable(example_gemm_add_add_fastgelu_xdl_bf16 gemm_add_add_fastgelu_xdl_bf16.cpp)
add_example_executable(example_gemm_add_add_fastgelu_xdl_fp16 gemm_add_add_fastgelu_xdl_fp16.cpp) add_example_executable(example_gemm_add_add_fastgelu_xdl_fp16 gemm_add_add_fastgelu_xdl_fp16.cpp)
add_example_executable(example_gemm_add_add_fastgelu_xdl_fp32 gemm_add_add_fastgelu_xdl_fp32.cpp) add_example_executable(example_gemm_add_add_fastgelu_xdl_fp32 gemm_add_add_fastgelu_xdl_fp32.cpp)
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_gemm_add_add_fastgelu_xdl_int4 gemm_add_add_fastgelu_xdl_int4.cpp)
endif(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_gemm_add_add_fastgelu_xdl_int8 gemm_add_add_fastgelu_xdl_int8.cpp) add_example_executable(example_gemm_add_add_fastgelu_xdl_int8 gemm_add_add_fastgelu_xdl_int8.cpp)
add_dependencies(example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_bf16)
add_dependencies(example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_fp16)
add_dependencies(example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_fp32)
if(USE_BITINT_EXTENSION_INT4)
add_dependencies(example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_int4)
endif(USE_BITINT_EXTENSION_INT4)
add_dependencies(example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_int8)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <algorithm>
#include <cstddef>
#include <iostream>
#include <stdexcept>
#include <string>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu;
using BF16 = ck::bhalf_t;
using F16 = ck::half_t;
using F32 = float;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
using I4 = ck::int4_t;
#endif
using I8 = int8_t;
using I32 = int32_t;
struct ProblemSize final
{
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideD0 = 0;
ck::index_t StrideD1 = 4096;
ck::index_t StrideE = 4096;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
};
inline bool
parse_cmd_args(int argc, char* argv[], ProblemSize& problem_size, ExecutionConfig config)
{
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
}
else if(argc == 12)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
problem_size.M = std::stoi(argv[4]);
problem_size.N = std::stoi(argv[5]);
problem_size.K = std::stoi(argv[6]);
problem_size.StrideA = std::stoi(argv[7]);
problem_size.StrideB = std::stoi(argv[8]);
problem_size.StrideD0 = std::stoi(argv[9]);
problem_size.StrideD1 = std::stoi(argv[10]);
problem_size.StrideE = std::stoi(argv[11]);
}
else
{
std::cerr << "arg1: verification (0=no, 1=yes)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<< std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl
<< "arg4 to 10: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD0, StrideD1, "
"StrideE"
<< std::endl;
return false;
}
return true;
}
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstddef> #include "common.hpp"
#include <iostream>
#include <stdexcept>
#include <string>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu;
using ADataType = BF16; using ADataType = BF16;
using BDataType = BF16; using BDataType = BF16;
...@@ -62,6 +34,14 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_C ...@@ -62,6 +34,14 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_C
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>; < ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>;
// clang-format on // clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
#include "run_gemm_add_add_fastgelu_example.inc" #include "run_gemm_add_add_fastgelu_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_add_add_fastgelu_example(argc, argv); } int main(int argc, char* argv[]) { return !run_gemm_add_add_fastgelu_example(argc, argv); }
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstddef> #include "common.hpp"
#include <iostream>
#include <stdexcept>
#include <string>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu;
using ADataType = F16; using ADataType = F16;
using BDataType = F16; using BDataType = F16;
...@@ -62,6 +34,14 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_C ...@@ -62,6 +34,14 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_C
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>; < ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>;
// clang-format on // clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
#include "run_gemm_add_add_fastgelu_example.inc" #include "run_gemm_add_add_fastgelu_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_add_add_fastgelu_example(argc, argv); } int main(int argc, char* argv[]) { return !run_gemm_add_add_fastgelu_example(argc, argv); }
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstddef> #include "common.hpp"
#include <iostream>
#include <stdexcept>
#include <string>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu;
using ADataType = F32; using ADataType = F32;
using BDataType = F32; using BDataType = F32;
...@@ -62,6 +34,14 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_C ...@@ -62,6 +34,14 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_C
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 32, 1, 8>, 4>; < ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 32, 1, 8>, 4>;
// clang-format on // clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
#include "run_gemm_add_add_fastgelu_example.inc" #include "run_gemm_add_add_fastgelu_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_add_add_fastgelu_example(argc, argv); } int main(int argc, char* argv[]) { return !run_gemm_add_add_fastgelu_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#error Should compile this file with ck::int4_t support
#endif
#include "common.hpp"
using ADataType = I4;
using BDataType = I4;
using AccDataType = I32;
using CShuffleDataType = I32;
using D0DataType = I4;
using D1DataType = I4;
using DsDataType = ck::Tuple<D0DataType, D1DataType>;
using EDataType = I4;
using KernelADataType = I8;
using KernelBDataType = I8;
using KernelD0DataType = I8;
using KernelD1DataType = I8;
using KernelDsDataType = ck::Tuple<KernelD0DataType, KernelD1DataType>;
using KernelEDataType = I8;
using ALayout = Row;
using BLayout = Col;
using D0Layout = Row;
using D1Layout = Row;
using DsLayout = ck::Tuple<D0Layout, D1Layout>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddAddFastGelu;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_CShuffle
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, DsLayout, ELayout, KernelADataType, KernelBDataType, AccDataType, CShuffleDataType, KernelDsDataType, KernelEDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 64, 1, 4>, 16>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
#define BUILD_INT4_EXAMPLE
#include "run_gemm_add_add_fastgelu_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_add_add_fastgelu_example(argc, argv); }
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstddef> #include "common.hpp"
#include <iostream>
#include <stdexcept>
#include <string>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using I8 = int8_t;
using I32 = int32_t;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu;
using ADataType = I8; using ADataType = I8;
using BDataType = I8; using BDataType = I8;
...@@ -62,6 +34,14 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_C ...@@ -62,6 +34,14 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_C
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 64, 1, 4>, 16>; < ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 64, 1, 4>, 16>;
// clang-format on // clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
#include "run_gemm_add_add_fastgelu_example.inc" #include "run_gemm_add_add_fastgelu_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_add_add_fastgelu_example(argc, argv); } int main(int argc, char* argv[]) { return !run_gemm_add_add_fastgelu_example(argc, argv); }
#pragma once #pragma once
struct ProblemSize final
{
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideD0 = 0;
ck::index_t StrideD1 = 4096;
ck::index_t StrideE = 4096;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
};
bool run_gemm_add_add_fastgelu(const ProblemSize& problem_size, const ExecutionConfig& config) bool run_gemm_add_add_fastgelu(const ProblemSize& problem_size, const ExecutionConfig& config)
{ {
#if defined(BUILD_INT4_EXAMPLE) && defined(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
static_assert(sizeof(ck::int4_t) == sizeof(int8_t));
#endif
using namespace ck::literals; using namespace ck::literals;
auto& [M, N, K, StrideA, StrideB, StrideD0, StrideD1, StrideE] = problem_size; auto& [M, N, K, StrideA, StrideB, StrideD0, StrideD1, StrideE] = problem_size;
...@@ -43,7 +26,14 @@ bool run_gemm_add_add_fastgelu(const ProblemSize& problem_size, const ExecutionC ...@@ -43,7 +26,14 @@ bool run_gemm_add_add_fastgelu(const ProblemSize& problem_size, const ExecutionC
Tensor<D0DataType> d0_m_n(f_host_tensor_descriptor(M, N, StrideD0, D0Layout{})); Tensor<D0DataType> d0_m_n(f_host_tensor_descriptor(M, N, StrideD0, D0Layout{}));
Tensor<D1DataType> d1_m_n(f_host_tensor_descriptor(M, N, StrideD1, D1Layout{})); Tensor<D1DataType> d1_m_n(f_host_tensor_descriptor(M, N, StrideD1, D1Layout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{})); Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{})); Tensor<
#ifdef BUILD_INT4_EXAMPLE
KernelEDataType
#else
EDataType
#endif
>
e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl; std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl; std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
...@@ -73,10 +63,22 @@ bool run_gemm_add_add_fastgelu(const ProblemSize& problem_size, const ExecutionC ...@@ -73,10 +63,22 @@ bool run_gemm_add_add_fastgelu(const ProblemSize& problem_size, const ExecutionC
DeviceMem d1_device_buf(sizeof(D1DataType) * d1_m_n.mDesc.GetElementSpaceSize()); DeviceMem d1_device_buf(sizeof(D1DataType) * d1_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize()); DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
#ifdef BUILD_INT4_EXAMPLE
const Tensor<KernelADataType> a_m_k_converted(a_m_k);
const Tensor<KernelBDataType> b_k_n_converted(b_k_n);
const Tensor<KernelD0DataType> d0_m_n_converted(d0_m_n);
const Tensor<KernelD1DataType> d1_m_n_converted(d1_m_n);
a_device_buf.ToDevice(a_m_k_converted.mData.data());
b_device_buf.ToDevice(b_k_n_converted.mData.data());
d0_device_buf.ToDevice(d0_m_n_converted.mData.data());
d1_device_buf.ToDevice(d1_m_n_converted.mData.data());
#else
a_device_buf.ToDevice(a_m_k.mData.data()); a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data()); b_device_buf.ToDevice(b_k_n.mData.data());
d0_device_buf.ToDevice(d0_m_n.mData.data()); d0_device_buf.ToDevice(d0_m_n.mData.data());
d1_device_buf.ToDevice(d1_m_n.mData.data()); d1_device_buf.ToDevice(d1_m_n.mData.data());
#endif
auto a_element_op = AElementOp{}; auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{}; auto b_element_op = BElementOp{};
...@@ -124,14 +126,6 @@ bool run_gemm_add_add_fastgelu(const ProblemSize& problem_size, const ExecutionC ...@@ -124,14 +126,6 @@ bool run_gemm_add_add_fastgelu(const ProblemSize& problem_size, const ExecutionC
{ {
Tensor<AccDataType> c_m_n(HostTensorDescriptor{M, N}); Tensor<AccDataType> c_m_n(HostTensorDescriptor{M, N});
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{}; auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker(); auto ref_invoker = ref_gemm.MakeInvoker();
...@@ -150,7 +144,13 @@ bool run_gemm_add_add_fastgelu(const ProblemSize& problem_size, const ExecutionC ...@@ -150,7 +144,13 @@ bool run_gemm_add_add_fastgelu(const ProblemSize& problem_size, const ExecutionC
e_device_buf.FromDevice(e_m_n_device_result.mData.data()); e_device_buf.FromDevice(e_m_n_device_result.mData.data());
#ifdef BUILD_INT4_EXAMPLE
const Tensor<EDataType> e_m_n_device_result_converted(e_m_n_device_result);
return ck::utils::check_err(e_m_n_device_result_converted.mData, e_m_n_host_result.mData);
#else
return ck::utils::check_err(e_m_n_device_result.mData, e_m_n_host_result.mData); return ck::utils::check_err(e_m_n_device_result.mData, e_m_n_host_result.mData);
#endif
} }
return true; return true;
...@@ -161,43 +161,6 @@ bool run_gemm_add_add_fastgelu_example(int argc, char* argv[]) ...@@ -161,43 +161,6 @@ bool run_gemm_add_add_fastgelu_example(int argc, char* argv[])
ProblemSize problem_size; ProblemSize problem_size;
ExecutionConfig config; ExecutionConfig config;
if(argc == 1) return !parse_cmd_args(argc, argv, problem_size, config) ||
{ run_gemm_add_add_fastgelu(problem_size, config);
// use default case
}
else if(argc == 4)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
}
else if(argc == 12)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
problem_size.M = std::stoi(argv[4]);
problem_size.N = std::stoi(argv[5]);
problem_size.K = std::stoi(argv[6]);
problem_size.StrideA = std::stoi(argv[7]);
problem_size.StrideB = std::stoi(argv[8]);
problem_size.StrideD0 = std::stoi(argv[9]);
problem_size.StrideD1 = std::stoi(argv[10]);
problem_size.StrideE = std::stoi(argv[11]);
}
else
{
std::cerr << "arg1: verification (0=no, 1=yes)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<< std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl
<< "arg4 to 10: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD0, StrideD1, "
"StrideE"
<< std::endl;
return true;
}
return run_gemm_add_add_fastgelu(problem_size, config);
} }
...@@ -12,6 +12,7 @@ ...@@ -12,6 +12,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm.hpp" #include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp" #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_gemm_xdl_cshuffle_v1.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_gemm_xdl_cshuffle_v1.hpp"
#include "ck/host_utility/device_prop.hpp" #include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp" #include "ck/host_utility/kernel_launch.hpp"
...@@ -188,6 +189,10 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout ...@@ -188,6 +189,10 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
static constexpr auto I1 = Number<1>{}; static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{}; static constexpr auto I2 = Number<2>{};
static constexpr auto matrix_padder =
GemmGemmPadder<GemmSpec, index_t, index_t, index_t, index_t>{
MPerBlock, NPerBlock, KPerBlock, Gemm1NPerBlock};
static auto MakeAGridDescriptor_AK0_M_AK1(index_t MRaw, index_t KRaw, index_t StrideA) static auto MakeAGridDescriptor_AK0_M_AK1(index_t MRaw, index_t KRaw, index_t StrideA)
{ {
const auto a_grid_desc_mraw_kraw = [&]() { const auto a_grid_desc_mraw_kraw = [&]() {
...@@ -203,92 +208,18 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout ...@@ -203,92 +208,18 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
} }
}(); }();
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock; const auto a_grid_desc_m_k = matrix_padder.PadADescriptor_M_K(a_grid_desc_mraw_kraw);
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto MPad = M - MRaw; const auto M = a_grid_desc_m_k.GetLength(I0);
const auto KPad = K - KRaw; const auto K = a_grid_desc_m_k.GetLength(I1);
if constexpr(GemmSpec == GemmSpecialization::MKPadding || const auto AK0 = K / AK1;
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both M and K
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad M, but not K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1; return transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
const auto a_grid_desc_ak0_m_ak1 = make_pass_through_transform(M)),
transform_tensor_descriptor(a_grid_desc_mraw_kraw, make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)), make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
make_right_pad_transform(MRaw, MPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad K, but not M
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else
{
// not pad M or K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
} }
static auto MakeBGridDescriptor_BK0_N_BK1(index_t KRaw, index_t NRaw, index_t StrideB) static auto MakeBGridDescriptor_BK0_N_BK1(index_t KRaw, index_t NRaw, index_t StrideB)
...@@ -306,84 +237,18 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout ...@@ -306,84 +237,18 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
} }
}(); }();
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock; const auto b_grid_desc_n_k = matrix_padder.PadBDescriptor_N_K(b_grid_desc_nraw_kraw);
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto NPad = N - NRaw;
const auto KPad = K - KRaw;
if constexpr(GemmSpec == GemmSpecialization::NKPadding || const auto N = b_grid_desc_n_k.GetLength(I0);
GemmSpec == GemmSpecialization::MNKPadding) const auto K = b_grid_desc_n_k.GetLength(I1);
{
// pad both N and K
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_right_pad_transform(NRaw, NPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad N, but not K
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 = const auto BK0 = K / BK1;
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1; return transform_tensor_descriptor(b_grid_desc_n_k,
} make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
else if constexpr(GemmSpec == GemmSpecialization::KPadding || make_pass_through_transform(N)),
GemmSpec == GemmSpecialization::MKPadding) make_tuple(Sequence<1>{}, Sequence<0>{}),
{ make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// pad K, but not N
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_pass_through_transform(NRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else
{
// not pad N or K
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
} }
// Args: Gemm1KRaw, Gemm1NRaw, StrideB1 // Args: Gemm1KRaw, Gemm1NRaw, StrideB1
...@@ -402,47 +267,19 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout ...@@ -402,47 +267,19 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
} }
}(); }();
const auto N = math::integer_divide_ceil(NRaw, Gemm1NPerBlock) * Gemm1NPerBlock; const auto b1_grid_desc_n_k = matrix_padder.PadB1Descriptor_N_K(b1_grid_desc_nraw_kraw);
const auto K = math::integer_divide_ceil(KRaw, Gemm1KPerBlock) * Gemm1KPerBlock;
const auto NPad = N - NRaw;
const auto KPad = K - KRaw;
// TODO: implement finer-grained padding const auto N = b1_grid_desc_n_k.GetLength(I0);
if constexpr(GemmSpec == GemmSpecialization::Default) const auto K = b1_grid_desc_n_k.GetLength(I1);
{
const auto B1K0 = KRaw / B1K1;
const auto b1_grid_desc_bk0_n_bk1 = transform_tensor_descriptor( const auto B1K0 = K / B1K1;
b1_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(B1K0, B1K1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b1_grid_desc_bk0_n_bk1; return transform_tensor_descriptor(
} b1_grid_desc_n_k,
else make_tuple(make_unmerge_transform(make_tuple(B1K0, B1K1)),
{ make_pass_through_transform(N)),
// pad both B1N and B1K make_tuple(Sequence<1>{}, Sequence<0>{}),
const auto B1K0 = K / B1K1; make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
const auto b1_grid_desc_n_k =
transform_tensor_descriptor(b1_grid_desc_nraw_kraw,
make_tuple(make_right_pad_transform(NRaw, NPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b1_grid_desc_bk0_n_bk1 = transform_tensor_descriptor(
b1_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(B1K0, B1K1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b1_grid_desc_bk0_n_bk1;
}
} }
static auto MakeCGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideC) static auto MakeCGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideC)
...@@ -460,47 +297,7 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout ...@@ -460,47 +297,7 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
} }
}(); }();
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock; return matrix_padder.PadCDescriptor_M_N(c_grid_desc_mraw_nraw);
const auto N = math::integer_divide_ceil(NRaw, Gemm1NPerBlock) * Gemm1NPerBlock;
const auto MPad = M - MRaw;
const auto NPad = N - NRaw;
if constexpr(GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad M and N
return transform_tensor_descriptor(c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad M, but not N
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad), make_pass_through_transform(NRaw)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad N, but not M
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
// not pad M or N
return c_grid_desc_mraw_nraw;
}
} }
struct ComputeBasePtrOfStridedBatch struct ComputeBasePtrOfStridedBatch
...@@ -651,13 +448,15 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout ...@@ -651,13 +448,15 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
b1_element_op_{b1_element_op}, b1_element_op_{b1_element_op},
c_element_op_{c_element_op}, c_element_op_{c_element_op},
batch_count_(Batch), batch_count_(Batch),
compute_base_ptr_of_batch_{BatchStrideA, BatchStrideB, BatchStrideB1, BatchStrideC} compute_base_ptr_of_batch_{BatchStrideA, BatchStrideB, BatchStrideB1, BatchStrideC},
raw_lengths_m_n_k_o_{MRaw, NRaw, KRaw, Gemm1NRaw}
{ {
if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_, if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_,
b_grid_desc_bk0_n_bk1_, b_grid_desc_bk0_n_bk1_,
b1_grid_desc_bk0_n_bk1_, b1_grid_desc_bk0_n_bk1_,
c_grid_desc_m_n_, c_grid_desc_m_n_,
block_2_ctile_map_)) block_2_ctile_map_,
raw_lengths_m_n_k_o_))
{ {
c_grid_desc_mblock_mperblock_nblock_nperblock_ = c_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock( GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
...@@ -684,6 +483,9 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout ...@@ -684,6 +483,9 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
CElementwiseOperation c_element_op_; CElementwiseOperation c_element_op_;
index_t batch_count_; index_t batch_count_;
ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch_; ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch_;
// For robust IsSupportedArgument() check
std::vector<index_t> raw_lengths_m_n_k_o_;
}; };
// Invoker // Invoker
...@@ -697,7 +499,8 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout ...@@ -697,7 +499,8 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
arg.b_grid_desc_bk0_n_bk1_, arg.b_grid_desc_bk0_n_bk1_,
arg.b1_grid_desc_bk0_n_bk1_, arg.b1_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_)) arg.block_2_ctile_map_,
arg.raw_lengths_m_n_k_o_))
{ {
throw std::runtime_error("wrong! GridwiseGemm has invalid setting"); throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
} }
...@@ -787,11 +590,37 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout ...@@ -787,11 +590,37 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
return false; return false;
} }
// Note: we need raw lengths since threadwise copy can not handle vector load when part of
// vector is out of bounds
const auto MRaw = arg.raw_lengths_m_n_k_o_[0];
const auto NRaw = arg.raw_lengths_m_n_k_o_[1];
const auto KRaw = arg.raw_lengths_m_n_k_o_[2];
const auto Gemm1NRaw = arg.raw_lengths_m_n_k_o_[3];
// Check scalar per vector requirement
const auto a_extent_lowest =
is_same_v<tensor_layout::gemm::RowMajor, ALayout> ? KRaw : MRaw;
const auto b_extent_lowest =
is_same_v<tensor_layout::gemm::RowMajor, BLayout> ? NRaw : KRaw;
const auto b1_extent_lowest =
is_same_v<tensor_layout::gemm::RowMajor, B1Layout> ? Gemm1NRaw : NRaw;
const auto c_extent_lowest =
is_same_v<tensor_layout::gemm::RowMajor, CLayout> ? Gemm1NRaw : MRaw;
if(!(a_extent_lowest % ABlockTransferSrcScalarPerVector == 0 &&
b_extent_lowest % BBlockTransferSrcScalarPerVector == 0 &&
b1_extent_lowest % B1BlockTransferSrcScalarPerVector == 0 &&
c_extent_lowest % CShuffleBlockTransferScalarPerVector_NPerBlock == 0))
{
return false;
}
return GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_, return GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_, arg.b_grid_desc_bk0_n_bk1_,
arg.b1_grid_desc_bk0_n_bk1_, arg.b1_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_); arg.block_2_ctile_map_,
arg.raw_lengths_m_n_k_o_);
} }
// polymorphic // polymorphic
...@@ -903,7 +732,8 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout ...@@ -903,7 +732,8 @@ struct DeviceBatchedGemmGemm_Xdl_CShuffle : public DeviceBatchedGemmGemm<ALayout
<< MPerBlock << ", " << MPerBlock << ", "
<< Gemm1NPerBlock << ", " << Gemm1NPerBlock << ", "
<< Gemm1KPerBlock << ", " << Gemm1KPerBlock << ", "
<< B1K1 << ">"; << B1K1 << ", "
<< getGemmSpecializationString(GemmSpec) << ">";
// clang-format on // clang-format on
return str.str(); return str.str();
......
...@@ -9,6 +9,7 @@ namespace device { ...@@ -9,6 +9,7 @@ namespace device {
enum struct GemmSpecialization enum struct GemmSpecialization
{ {
// Gemm
Default, Default,
MPadding, MPadding,
NPadding, NPadding,
...@@ -17,6 +18,15 @@ enum struct GemmSpecialization ...@@ -17,6 +18,15 @@ enum struct GemmSpecialization
MKPadding, MKPadding,
NKPadding, NKPadding,
MNKPadding, MNKPadding,
// Gemm + Gemm
OPadding,
MOPadding,
NOPadding,
KOPadding,
MNOPadding,
MKOPadding,
NKOPadding,
MNKOPadding,
}; };
inline std::string getGemmSpecializationString(const GemmSpecialization& s) inline std::string getGemmSpecializationString(const GemmSpecialization& s)
...@@ -31,6 +41,14 @@ inline std::string getGemmSpecializationString(const GemmSpecialization& s) ...@@ -31,6 +41,14 @@ inline std::string getGemmSpecializationString(const GemmSpecialization& s)
case GemmSpecialization::MKPadding: return "MKPadding"; case GemmSpecialization::MKPadding: return "MKPadding";
case GemmSpecialization::NKPadding: return "NKPadding"; case GemmSpecialization::NKPadding: return "NKPadding";
case GemmSpecialization::MNKPadding: return "MNKPadding"; case GemmSpecialization::MNKPadding: return "MNKPadding";
case GemmSpecialization::OPadding: return "OPadding";
case GemmSpecialization::MOPadding: return "MOPadding";
case GemmSpecialization::NOPadding: return "NOPadding";
case GemmSpecialization::KOPadding: return "KOPadding";
case GemmSpecialization::MNOPadding: return "MNOPadding";
case GemmSpecialization::MKOPadding: return "MKOPadding";
case GemmSpecialization::NKOPadding: return "NKOPadding";
case GemmSpecialization::MNKOPadding: return "MNKOPadding";
default: return "Unrecognized specialization!"; default: return "Unrecognized specialization!";
} }
} }
......
...@@ -12,166 +12,176 @@ namespace ck { ...@@ -12,166 +12,176 @@ namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
// For padding tensors without batch dimension
template <bool PadM,
bool PadN,
typename TensorDesc_MRaw_NRaw,
typename MPerBlockType,
typename NPerBlockType,
enable_if_t<TensorDesc_MRaw_NRaw::GetNumOfVisibleDimension() == 2, bool> = false>
__host__ __device__ constexpr auto
PadTensorDescriptor(const TensorDesc_MRaw_NRaw& tensor_desc_mraw_nraw,
MPerBlockType MPerBlock,
NPerBlockType NPerBlock)
{
const auto MRaw = tensor_desc_mraw_nraw.GetLength(Number<0>{});
const auto NRaw = tensor_desc_mraw_nraw.GetLength(Number<1>{});
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto MPad = M - MRaw;
const auto NPad = N - NRaw;
const auto MTransform = conditional_expr<PadM>(make_right_pad_transform(MRaw, MPad),
make_pass_through_transform(MRaw));
const auto NTransform = conditional_expr<PadN>(make_right_pad_transform(NRaw, NPad),
make_pass_through_transform(NRaw));
return transform_tensor_descriptor(tensor_desc_mraw_nraw,
make_tuple(MTransform, NTransform),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
// For padding tensors with batch dimension
template <bool PadM,
bool PadN,
typename TensorDesc_GRaw_MRaw_NRaw,
typename MPerBlockType,
typename NPerBlockType,
enable_if_t<TensorDesc_GRaw_MRaw_NRaw::GetNumOfVisibleDimension() == 3, bool> = false>
__host__ __device__ constexpr auto
PadTensorDescriptor(const TensorDesc_GRaw_MRaw_NRaw& tensor_desc_graw_mraw_nraw,
MPerBlockType MPerBlock,
NPerBlockType NPerBlock)
{
const auto GRaw = tensor_desc_graw_mraw_nraw.GetLength(Number<0>{});
const auto MRaw = tensor_desc_graw_mraw_nraw.GetLength(Number<1>{});
const auto NRaw = tensor_desc_graw_mraw_nraw.GetLength(Number<2>{});
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto MPad = M - MRaw;
const auto NPad = N - NRaw;
const auto MTransform = conditional_expr<PadM>(make_right_pad_transform(MRaw, MPad),
make_pass_through_transform(MRaw));
const auto NTransform = conditional_expr<PadN>(make_right_pad_transform(NRaw, NPad),
make_pass_through_transform(NRaw));
return transform_tensor_descriptor(
tensor_desc_graw_mraw_nraw,
make_tuple(make_pass_through_transform(GRaw), MTransform, NTransform),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
}
// M/N/K/OPerTileType could be index_t or Number<>
template <GemmSpecialization GemmSpec,
typename MPerTileType,
typename NPerTileType,
typename KPerTileType,
typename OPerTileType>
struct GemmGemmPadder
{
// TODO: hard to scale; use mask instead
static constexpr bool PadM =
GemmSpec == GemmSpecialization::MPadding || GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::MKPadding || GemmSpec == GemmSpecialization::MNKPadding ||
GemmSpec == GemmSpecialization::MOPadding || GemmSpec == GemmSpecialization::MNOPadding ||
GemmSpec == GemmSpecialization::MKOPadding || GemmSpec == GemmSpecialization::MNKOPadding;
static constexpr bool PadN =
GemmSpec == GemmSpecialization::NPadding || GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::NKPadding || GemmSpec == GemmSpecialization::MNKPadding ||
GemmSpec == GemmSpecialization::NOPadding || GemmSpec == GemmSpecialization::MNOPadding ||
GemmSpec == GemmSpecialization::NKOPadding || GemmSpec == GemmSpecialization::MNKOPadding;
static constexpr bool PadK =
GemmSpec == GemmSpecialization::KPadding || GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::NKPadding || GemmSpec == GemmSpecialization::MNKPadding ||
GemmSpec == GemmSpecialization::KOPadding || GemmSpec == GemmSpecialization::MKOPadding ||
GemmSpec == GemmSpecialization::NKOPadding || GemmSpec == GemmSpecialization::MNKOPadding;
static constexpr bool PadO =
GemmSpec == GemmSpecialization::OPadding || GemmSpec == GemmSpecialization::MOPadding ||
GemmSpec == GemmSpecialization::NOPadding || GemmSpec == GemmSpecialization::KOPadding ||
GemmSpec == GemmSpecialization::MNOPadding || GemmSpec == GemmSpecialization::MKOPadding ||
GemmSpec == GemmSpecialization::NKOPadding || GemmSpec == GemmSpecialization::MNKOPadding;
// A[M, K]
template <typename ADesc_MRaw_KRaw>
__host__ __device__ constexpr auto
PadADescriptor_M_K(const ADesc_MRaw_KRaw& a_desc_mraw_kraw) const
{
return PadTensorDescriptor<PadM, PadK>(a_desc_mraw_kraw, MPerTile_, KPerTile_);
}
// B[K, N]
template <typename BDesc_NRaw_KRaw>
__host__ __device__ constexpr auto
PadBDescriptor_N_K(const BDesc_NRaw_KRaw& b_desc_nraw_kraw) const
{
return PadTensorDescriptor<PadN, PadK>(b_desc_nraw_kraw, NPerTile_, KPerTile_);
}
// B1[Gemm1N, Gemm1K] = B1[O, N]
template <typename B1Desc_NRaw_KRaw>
__host__ __device__ constexpr auto
PadB1Descriptor_N_K(const B1Desc_NRaw_KRaw& b1_desc_nraw_kraw) const
{
return PadTensorDescriptor<PadO, PadN>(b1_desc_nraw_kraw, OPerTile_, NPerTile_);
}
// C[M, Gemm1N] = C[M, O]
template <typename CDesc_MRaw_NRaw>
__host__ __device__ constexpr auto
PadCDescriptor_M_N(const CDesc_MRaw_NRaw& c_desc_mraw_nraw) const
{
return PadTensorDescriptor<PadM, PadO>(c_desc_mraw_nraw, MPerTile_, OPerTile_);
}
MPerTileType MPerTile_;
NPerTileType NPerTile_;
KPerTileType KPerTile_;
OPerTileType OPerTile_;
};
// M/N/KPerTileType could be index_t or Number<> // M/N/KPerTileType could be index_t or Number<>
template <GemmSpecialization GemmSpec, template <GemmSpecialization GemmSpec,
typename MPerTileType, typename MPerTileType,
typename NPerTileType, typename NPerTileType,
typename KPerTileType> typename KPerTileType>
struct MatrixPadder struct GemmPadder
{ {
static constexpr auto I0 = Number<0>{}; static constexpr bool PadM =
static constexpr auto I1 = Number<1>{}; (GemmSpec == GemmSpecialization::MPadding || GemmSpec == GemmSpecialization::MNPadding ||
static constexpr auto I2 = Number<2>{}; GemmSpec == GemmSpecialization::MKPadding || GemmSpec == GemmSpecialization::MNKPadding);
static constexpr auto I3 = Number<3>{}; static constexpr bool PadN =
(GemmSpec == GemmSpecialization::NPadding || GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::NKPadding || GemmSpec == GemmSpecialization::MNKPadding);
static constexpr bool PadK =
(GemmSpec == GemmSpecialization::KPadding || GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::NKPadding || GemmSpec == GemmSpecialization::MNKPadding);
template <typename ADesc_MRaw_KRaw> template <typename ADesc_MRaw_KRaw>
__host__ __device__ constexpr auto __host__ __device__ constexpr auto
PadADescriptor_M_K(const ADesc_MRaw_KRaw& a_desc_mraw_kraw) const PadADescriptor_M_K(const ADesc_MRaw_KRaw& a_desc_mraw_kraw) const
{ {
const auto MRaw = a_desc_mraw_kraw.GetLength(I0); return PadTensorDescriptor<PadM, PadK>(a_desc_mraw_kraw, MPerTile_, KPerTile_);
const auto KRaw = a_desc_mraw_kraw.GetLength(I1);
const auto M = math::integer_divide_ceil(MRaw, MPerTile_) * MPerTile_;
const auto K = math::integer_divide_ceil(KRaw, KPerTile_) * KPerTile_;
const auto MPad = M - MRaw;
const auto KPad = K - KRaw;
if constexpr(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both M and K
return transform_tensor_descriptor(a_desc_mraw_kraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad M, but not K
return transform_tensor_descriptor(
a_desc_mraw_kraw,
make_tuple(make_right_pad_transform(MRaw, MPad), make_pass_through_transform(KRaw)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad K, but not M
return transform_tensor_descriptor(
a_desc_mraw_kraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
// not pad M or K
return a_desc_mraw_kraw;
}
} }
template <typename BDesc_NRaw_KRaw> template <typename BDesc_NRaw_KRaw>
__host__ __device__ constexpr auto __host__ __device__ constexpr auto
PadBDescriptor_N_K(const BDesc_NRaw_KRaw& b_desc_nraw_kraw) const PadBDescriptor_N_K(const BDesc_NRaw_KRaw& b_desc_nraw_kraw) const
{ {
const auto NRaw = b_desc_nraw_kraw.GetLength(I0); return PadTensorDescriptor<PadN, PadK>(b_desc_nraw_kraw, NPerTile_, KPerTile_);
const auto KRaw = b_desc_nraw_kraw.GetLength(I1);
const auto N = math::integer_divide_ceil(NRaw, NPerTile_) * NPerTile_;
const auto K = math::integer_divide_ceil(KRaw, KPerTile_) * KPerTile_;
const auto NPad = N - NRaw;
const auto KPad = K - KRaw;
if constexpr(GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both N and K
return transform_tensor_descriptor(b_desc_nraw_kraw,
make_tuple(make_right_pad_transform(NRaw, NPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad N, but not K
return transform_tensor_descriptor(
b_desc_nraw_kraw,
make_tuple(make_right_pad_transform(NRaw, NPad), make_pass_through_transform(KRaw)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad K, but not N
return transform_tensor_descriptor(
b_desc_nraw_kraw,
make_tuple(make_pass_through_transform(NRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
// not pad N or K
return b_desc_nraw_kraw;
}
} }
template <typename CDesc_MRaw_NRaw> template <typename CDesc_MRaw_NRaw>
__host__ __device__ constexpr auto __host__ __device__ constexpr auto
PadCDescriptor_M_N(const CDesc_MRaw_NRaw& c_desc_mraw_nraw) const PadCDescriptor_M_N(const CDesc_MRaw_NRaw& c_desc_mraw_nraw) const
{ {
const auto MRaw = c_desc_mraw_nraw.GetLength(I0); return PadTensorDescriptor<PadM, PadN>(c_desc_mraw_nraw, MPerTile_, NPerTile_);
const auto NRaw = c_desc_mraw_nraw.GetLength(I1);
const auto M = math::integer_divide_ceil(MRaw, MPerTile_) * MPerTile_;
const auto N = math::integer_divide_ceil(NRaw, NPerTile_) * NPerTile_;
const auto MPad = M - MRaw;
const auto NPad = N - NRaw;
if constexpr(GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad M and N
return transform_tensor_descriptor(c_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad M, but not N
return transform_tensor_descriptor(
c_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad), make_pass_through_transform(NRaw)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad N, but not M
return transform_tensor_descriptor(
c_desc_mraw_nraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
// not pad M or N
return c_desc_mraw_nraw;
}
} }
MPerTileType MPerTile_; MPerTileType MPerTile_;
...@@ -179,6 +189,15 @@ struct MatrixPadder ...@@ -179,6 +189,15 @@ struct MatrixPadder
KPerTileType KPerTile_; KPerTileType KPerTile_;
}; };
// Alias of GemmPadder; to deprecate
template <GemmSpecialization GemmSpec,
typename MPerTileType,
typename NPerTileType,
typename KPerTileType>
struct MatrixPadder : public GemmPadder<GemmSpec, MPerTileType, NPerTileType, KPerTileType>
{
};
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -177,7 +177,11 @@ struct AddAddFastGelu ...@@ -177,7 +177,11 @@ struct AddAddFastGelu
template <typename T> template <typename T>
static inline constexpr bool is_valid_param_type_v = static inline constexpr bool is_valid_param_type_v =
std::is_same_v<T, float> || std::is_same_v<T, half_t> || std::is_same_v<T, bhalf_t> || std::is_same_v<T, float> || std::is_same_v<T, half_t> || std::is_same_v<T, bhalf_t> ||
std::is_same_v<T, int32_t> || std::is_same_v<T, int8_t>; std::is_same_v<T, int32_t> || std::is_same_v<T, int8_t>
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
|| std::is_same_v<T, ck::int4_t>
#endif
;
template <typename E, typename C, typename D0, typename D1> template <typename E, typename C, typename D0, typename D1>
__host__ __device__ constexpr void __host__ __device__ constexpr void
......
...@@ -200,7 +200,8 @@ struct GridwiseBatchedGemmGemm_Xdl_CShuffle ...@@ -200,7 +200,8 @@ struct GridwiseBatchedGemmGemm_Xdl_CShuffle
const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1, const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1,
const B1GridDesc_BK0_N_BK1& b1_grid_desc_bk0_n_bk1, const B1GridDesc_BK0_N_BK1& b1_grid_desc_bk0_n_bk1,
const CGridDesc_M_N& c_grid_desc_m_n, const CGridDesc_M_N& c_grid_desc_m_n,
const Block2CTileMap& block_2_ctile_map) const Block2CTileMap& block_2_ctile_map,
const std::vector<index_t>& lengths_m_n_k_o)
{ {
static_assert((MPerBlock % (MPerXdl * MXdlPerWave) == 0) && static_assert((MPerBlock % (MPerXdl * MXdlPerWave) == 0) &&
(NPerBlock % (NXdlPerWave * NPerXdl)) == 0, (NPerBlock % (NXdlPerWave * NPerXdl)) == 0,
...@@ -216,6 +217,13 @@ struct GridwiseBatchedGemmGemm_Xdl_CShuffle ...@@ -216,6 +217,13 @@ struct GridwiseBatchedGemmGemm_Xdl_CShuffle
return false; return false;
} }
// K is rounded to nearest multiples of K1 during tensor transformation so instead get KRaw
const auto KRaw = lengths_m_n_k_o[2];
if(!(KRaw % AK1 == 0 && KRaw % BK1 == 0))
{
return false;
}
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K % KPerBlock == 0 && if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K % KPerBlock == 0 &&
Gemm1N % Gemm1NPerBlock == 0)) Gemm1N % Gemm1NPerBlock == 0))
{ {
......
...@@ -114,4 +114,18 @@ struct conditional<false, X, Y> ...@@ -114,4 +114,18 @@ struct conditional<false, X, Y>
template <bool predicate, class X, class Y> template <bool predicate, class X, class Y>
using conditional_t = typename conditional<predicate, X, Y>::type; using conditional_t = typename conditional<predicate, X, Y>::type;
// z = predicate ? x : y
template <bool predicate, typename X, typename Y>
constexpr auto conditional_expr(X&& x, Y&& y)
{
if constexpr(predicate)
{
return std::forward<X>(x);
}
else
{
return std::forward<Y>(y);
}
}
} // namespace ck } // namespace ck
...@@ -150,7 +150,12 @@ check_err(const std::vector<T>& out, ...@@ -150,7 +150,12 @@ check_err(const std::vector<T>& out,
} }
template <typename T> template <typename T>
typename std::enable_if<std::is_integral<T>::value && !std::is_same<T, bhalf_t>::value, bool>::type std::enable_if_t<(std::is_integral_v<T> && !std::is_same_v<T, bhalf_t>)
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
|| std::is_same_v<T, int4_t>
#endif
,
bool>
check_err(const std::vector<T>& out, check_err(const std::vector<T>& out,
const std::vector<T>& ref, const std::vector<T>& ref,
const std::string& msg = "Error: Incorrect results!", const std::string& msg = "Error: Incorrect results!",
......
...@@ -254,7 +254,7 @@ struct Tensor ...@@ -254,7 +254,7 @@ struct Tensor
Tensor(const HostTensorDescriptor& desc) : mDesc(desc), mData(mDesc.GetElementSpaceSize()) {} Tensor(const HostTensorDescriptor& desc) : mDesc(desc), mData(mDesc.GetElementSpaceSize()) {}
template <typename OutT> template <typename OutT>
Tensor<OutT> CopyAsType() Tensor<OutT> CopyAsType() const
{ {
Tensor<OutT> ret(mDesc); Tensor<OutT> ret(mDesc);
for(size_t i = 0; i < mData.size(); i++) for(size_t i = 0; i < mData.size(); i++)
...@@ -264,13 +264,18 @@ struct Tensor ...@@ -264,13 +264,18 @@ struct Tensor
return ret; return ret;
} }
Tensor(const Tensor& other) : mDesc(other.mDesc), mData(other.mData) {} Tensor() = delete;
Tensor(const Tensor&) = default;
Tensor(Tensor&&) = default;
Tensor& operator=(const Tensor& other) ~Tensor() = default;
Tensor& operator=(const Tensor&) = default;
Tensor& operator=(Tensor&&) = default;
template <typename FromT>
explicit Tensor(const Tensor<FromT>& other) : Tensor(other.template CopyAsType<T>())
{ {
mDesc = other.mDesc;
mData = other.mData;
return *this;
} }
const std::vector<std::size_t>& GetLengths() const { return mDesc.GetLengths(); } const std::vector<std::size_t>& GetLengths() const { return mDesc.GetLengths(); }
......
...@@ -26,6 +26,7 @@ using S = ck::Sequence<Is...>; ...@@ -26,6 +26,7 @@ using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default; static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmPadded = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
// c[g, m, n] = a[g, m, k] * b[g, n, k] // c[g, m, n] = a[g, m, k] * b[g, n, k]
using device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances = std::tuple< using device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances = std::tuple<
...@@ -37,7 +38,9 @@ using device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_inst ...@@ -37,7 +38,9 @@ using device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_inst
DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 256, 128, 32, 128, 32, 8, 8, 2, 32, 32, 2, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>, DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 256, 128, 32, 128, 32, 8, 8, 2, 32, 32, 2, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 128, 32, 128, 32, 8, 8, 2, 32, 32, 1, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>, DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 128, 32, 128, 32, 8, 8, 2, 32, 32, 1, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 128, 32, 64, 32, 8, 8, 2, 32, 32, 1, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>, DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 128, 32, 64, 32, 8, 8, 2, 32, 32, 1, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 64, 32, 128, 32, 8, 8, 2, 32, 32, 1, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8> DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 64, 32, 128, 32, 8, 8, 2, 32, 32, 1, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>,
// Padded fallback kernel
DeviceBatchedGemmGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmPadded, 1, 256, 128, 64, 32, 128, 32, 8, 8, 2, 32, 32, 1, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>
// clang-format on // clang-format on
>; >;
......
...@@ -195,6 +195,12 @@ bool profile_batched_gemm_gemm_impl(bool do_verification, ...@@ -195,6 +195,12 @@ bool profile_batched_gemm_gemm_impl(bool do_verification,
std::cout << "found " << op_ptrs.size() << " instances" << std::endl; std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
// early fail when no instances are found
if(op_ptrs.size() == 0)
{
return false;
}
if(do_verification) if(do_verification)
{ {
auto ref_gemm0 = ReferenceGemm0Instance{}; auto ref_gemm0 = ReferenceGemm0Instance{};
......
...@@ -19,6 +19,74 @@ TYPED_TEST_SUITE(TestBatchedGemmGemmFP16, KernelTypes); ...@@ -19,6 +19,74 @@ TYPED_TEST_SUITE(TestBatchedGemmGemmFP16, KernelTypes);
TYPED_TEST(TestBatchedGemmGemmFP16, Test_FP16) { this->Run(); } TYPED_TEST(TestBatchedGemmGemmFP16, Test_FP16) { this->Run(); }
TYPED_TEST(TestBatchedGemmGemmFP16, Test_FP16_PadM)
{
this->lengths_ = std::vector<std::vector<int>>{
{136, 128, 32, 128, 1},
};
this->Run();
}
TYPED_TEST(TestBatchedGemmGemmFP16, Test_FP16_PadN)
{
this->lengths_ = std::vector<std::vector<int>>{
{128, 136, 32, 128, 1},
};
this->Run();
}
TYPED_TEST(TestBatchedGemmGemmFP16, Test_FP16_PadK)
{
this->lengths_ = std::vector<std::vector<int>>{
{128, 128, 40, 128, 1},
{128, 128, 136, 128, 1},
};
this->Run();
}
TYPED_TEST(TestBatchedGemmGemmFP16, Test_FP16_PadO)
{
this->lengths_ = std::vector<std::vector<int>>{
{128, 128, 32, 136, 1},
};
this->Run();
}
TYPED_TEST(TestBatchedGemmGemmFP16, Test_FP16_OddM)
{
this->lengths_ = std::vector<std::vector<int>>{
{129, 128, 32, 128, 1},
};
this->Run();
}
TYPED_TEST(TestBatchedGemmGemmFP16, Test_FP16_OddN)
{
this->lengths_ = std::vector<std::vector<int>>{
{128, 129, 32, 128, 1},
};
this->Run();
}
// Currently expected that no kernels can support this case
TYPED_TEST(TestBatchedGemmGemmFP16, Test_FP16_OddK)
{
this->lengths_ = std::vector<std::vector<int>>{
{128, 128, 33, 128, 1},
{128, 128, 129, 128, 1},
};
this->Run();
}
// If kernel B1Layout is RowMajor, expect not to support odd O size
TYPED_TEST(TestBatchedGemmGemmFP16, Test_FP16_OddO)
{
this->lengths_ = std::vector<std::vector<int>>{
{128, 128, 32, 129, 1},
};
this->Run();
}
TYPED_TEST(TestBatchedGemmGemmFP16, DISABLED_Bench_FP16) TYPED_TEST(TestBatchedGemmGemmFP16, DISABLED_Bench_FP16)
{ {
this->lengths_ = std::vector<std::vector<int>>{ this->lengths_ = std::vector<std::vector<int>>{
...@@ -37,3 +105,44 @@ TYPED_TEST(TestBatchedGemmGemmFP16, DISABLED_Bench_FP16) ...@@ -37,3 +105,44 @@ TYPED_TEST(TestBatchedGemmGemmFP16, DISABLED_Bench_FP16)
this->verify_ = false; this->verify_ = false;
this->Run(); this->Run();
} }
using ck::tensor_operation::device::GemmSpecialization;
TEST(TestBatchedGemmGemmInterface, GemmSpecializationSizeMatch)
{
int P = 120; // requires padding
int Q = 128; // do not require padding
// IsSupported(M, N, K, O)
// clang-format off
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::Default>{}.IsSupported(Q, Q, Q, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MPadding>{}.IsSupported(P, Q, Q, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::NPadding>{}.IsSupported(Q, P, Q, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::KPadding>{}.IsSupported(Q, Q, P, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNPadding>{}.IsSupported(P, P, Q, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MKPadding>{}.IsSupported(P, Q, P, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::NKPadding>{}.IsSupported(Q, P, P, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKPadding>{}.IsSupported(P, P, P, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::OPadding>{}.IsSupported(Q, Q, Q, P));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MOPadding>{}.IsSupported(P, Q, Q, P));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::NOPadding>{}.IsSupported(Q, P, Q, P));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::KOPadding>{}.IsSupported(Q, Q, P, P));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNOPadding>{}.IsSupported(P, P, Q, P));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MKOPadding>{}.IsSupported(P, Q, P, P));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::NKOPadding>{}.IsSupported(Q, P, P, P));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKOPadding>{}.IsSupported(P, P, P, P));
// clang-format on
}
TEST(TestBatchedGemmGemmInterface, GemmSpecializationSizeMismatch)
{
// IsSupported(M, N, K, O)
// clang-format off
EXPECT_FALSE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::Default>{}.IsSupported(128, 128, 120, 128));
EXPECT_FALSE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKPadding>{}.IsSupported(128, 128, 128, 120));
// Kernel can't support odd K because K must be integer multiples of K1 values of either A or B
EXPECT_FALSE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKOPadding>{}.IsSupported(128, 128, 129, 128));
// Kernel can't support odd O size because it must satisfy SizeO % B1SrcScalarPerVector == 0
EXPECT_FALSE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKOPadding>{}.IsSupported(128, 128, 128, 129));
// clang-format on
}
...@@ -4,8 +4,12 @@ ...@@ -4,8 +4,12 @@
#include <iostream> #include <iostream>
#include <vector> #include <vector>
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp"
#include "profiler/include/profile_batched_gemm_gemm_impl.hpp" #include "profiler/include/profile_batched_gemm_gemm_impl.hpp"
using ck::tensor_operation::device::GemmSpecialization;
template <ck::index_t N> template <ck::index_t N>
using I = ck::Number<N>; using I = ck::Number<N>;
...@@ -66,3 +70,120 @@ struct TestBatchedGemmGemm : public ::testing::Test ...@@ -66,3 +70,120 @@ struct TestBatchedGemmGemm : public ::testing::Test
} }
} }
}; };
template <GemmSpecialization GemmSpec>
struct DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
{
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ALayout = Row;
using B0Layout = Col;
using B1Layout = Row;
using CLayout = Row;
using ADataType = F16;
using B0DataType = F16;
using B1DataType = F16;
using AccDataType = float;
using CShuffleDataType = float;
using CDataType = F16;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = PassThrough;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
// static constexpr auto GemmSpec = std::tuple_element_t<0, Tuple>::value;
using DeviceGemmGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmGemm_Xdl_CShuffle<
ALayout,
B0Layout,
B1Layout,
CLayout,
ADataType,
B0DataType,
B1DataType,
CDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
128, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<8, 32, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8>; // CShuffleBlockTransferScalarPerVector_NPerBlock
bool IsSupported(int M, int N, int K, int O)
{
auto gemm = DeviceGemmGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(static_cast<ADataType*>(nullptr),
static_cast<B0DataType*>(nullptr),
static_cast<B1DataType*>(nullptr),
static_cast<CDataType*>(nullptr),
M,
N,
K,
O,
0, // BatchCount
0, // StrideA
0, // StrideB0
0, // StrideB1
0, // StrideC
0, // BatchStrideA
0, // BatchStrideB0
0, // BatchStrideB1
0, // BatchStrideC
PassThrough{}, // a_element_op
PassThrough{}, // b0_element_op
PassThrough{}, // acc0_element_op
PassThrough{}, // b1_element_op
PassThrough{}); // c_element_op
return gemm.IsSupportedArgument(argument);
}
};
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment