"git@developer.sourcefind.cn:modelzoo/resnet50_tensorflow.git" did not exist on "cb8ce606fddeccdcb2cb454fed985197eb08bd32"
Unverified Commit 38470e04 authored by Po Yen Chen's avatar Po Yen Chen Committed by GitHub
Browse files

Add client example of grouped conv2d backward weight (data type: fp16) (#498)

* Remove redundant CMake setting

* Extract common code from files

* Rename folder 'convnd' to 'conv'

* Use std::array<> to accept compile-time kwnown # of arguments

* Fix compilation error of tuning parameter

* In example, use same setting as unit-test

* Remove no-longer used include directive

* Add interface for grouped conv bwd weight

* Add group support for conv bwd weight

* Add grouped conv bwd weight example

* Use group parameter in example

* Rename example folder

* Remove non-grouped version example source files

* Rename device op template

* Add group support to convolution backward weight

* Remove debug messages

* Use smaller group size in example

* Use named variable as loop terminate condition

* Prettify example output message

* Enlarge used grid size

* Allow real grid size exceeds expected grid size

* Rename interface file

* Add client example for grouped conv2d bwd weight

* Fix wrong include directive

* Rename client example folder
parent 67423a22
add_executable(client_grouped_conv2d_bwd_weight grouped_conv2d_bwd_weight.cpp)
target_link_libraries(client_grouped_conv2d_bwd_weight PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_weight.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 32;
static constexpr ck::index_t N = 256;
static constexpr ck::index_t K = 192;
static constexpr ck::index_t C = 192;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 28;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main()
{
std::array<ck::index_t, NumDimSpatial> input_spatial_lengths{Hi, Wi};
std::array<ck::index_t, NumDimSpatial> filter_spatial_lengths{Y, X};
std::array<ck::index_t, NumDimSpatial> output_spatial_lengths{Ho, Wo};
std::array<ck::index_t, NumDimSpatial> conv_filter_strides{1, 1};
std::array<ck::index_t, NumDimSpatial> conv_filter_dilations{1, 1};
std::array<ck::index_t, NumDimSpatial> input_left_pads{1, 1};
std::array<ck::index_t, NumDimSpatial> input_right_pads{1, 1};
ck::index_t split_k = 2;
SimpleDeviceMem in(sizeof(InDataType) * G * N * Hi * Wi * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * G * N * Ho * Wo * K);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvBwdWeight<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
PassThrough,
PassThrough,
PassThrough>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
out.GetDeviceBuffer(),
G,
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
PassThrough{},
split_k);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * G * N * K * C * Ho * Wo * Y * X;
std::size_t num_bytes = sizeof(InDataType) * G * N * Hi * Wi * C +
sizeof(WeiDataType) * G * K * Y * X * C +
sizeof(OutDataType) * G * N * Ho * Wo * K;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cerr << op_name << " does not support this problem" << std::endl;
}
}
if(best_op_id < 0)
{
std::cerr << "no suitable instance" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
out.GetDeviceBuffer(),
G,
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
PassThrough{},
split_k);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
}
add_example_executable(example_convnd_bwd_weight_xdl_fp16 convnd_bwd_weight_xdl_fp16.cpp)
add_example_executable(example_convnd_bwd_weight_xdl_bf16 convnd_bwd_weight_xdl_bf16.cpp)
target_link_libraries(example_convnd_bwd_weight_xdl_fp16 PRIVATE utility)
target_link_libraries(example_convnd_bwd_weight_xdl_bf16 PRIVATE utility)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_bwd_weight_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_convnd_bwd_weight_nwc_kxc_nwk_xdl_cshuffle.hpp"
using InDataType = ck::bhalf_t;
// bf16 kernel use fp32 atomic add to accumulate Weight tensor into global memory
using WeiDataType = float;
using OutDataType = ck::bhalf_t;
using AccDataType = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvBwdWeightDefault =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Default;
template <ck::index_t NDimSpatial>
using DeviceConvndBwdWeightInstance =
ck::tensor_operation::device::DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle<
NDimSpatial, // NDimSpatial
InDataType, // InDataType
WeiDataType, // WeiDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
InElementOp, // InElementwiseOperation
WeiElementOp, // WeiElementwiseOperation
OutElementOp, // OutElementwiseOperation
ConvBwdWeightDefault, // ConvolutionBackwardWeightSpecialization
256, // BlockSize
128, // MPerBlock
128, // NPerBlock
4, // K0PerBlock
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
2, // NXdlPerWave
S<1, 4, 16, 4>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<0, 3, 1, 2>, // ABlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
2, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<1, 4, 16, 4>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<0, 3, 1, 2>, // BBlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
2, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 4>, // CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
4>; // CBlockTransferScalarPerVector_NWaveNPerXdl
int main(int argc, char* argv[])
{
namespace ctc = ck::tensor_layout::convolution;
print_helper_msg();
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
ck::utils::conv::ConvParam conv_param{
2, 1, 32, 256, 1024, {3, 3}, {14, 14}, {2, 2}, {1, 1}, {1, 1}, {1, 1}};
ck::index_t split_k = 4;
if(argc == 1)
{
// use default
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t num_dim_spatial = std::stoi(argv[4]);
conv_param = ck::utils::conv::parse_conv_param(num_dim_spatial, 5, argv);
split_k = std::stoi(argv[5 + 3 + 6 * num_dim_spatial - 1]);
split_k = std::max(1, split_k);
}
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{};
if(conv_param.num_dim_spatial_ == 1)
{
using InLayout = ctc::GNWC;
using WeiLayout = ctc::GKXC;
using OutLayout = ctc::GNWK;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
return run_conv_bwd_weight<1,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceConvndBwdWeightInstance<1>>(do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op,
split_k);
}
else if(conv_param.num_dim_spatial_ == 2)
{
using InLayout = ctc::GNHWC;
using WeiLayout = ctc::GKYXC;
using OutLayout = ctc::GNHWK;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
return run_conv_bwd_weight<2,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceConvndBwdWeightInstance<2>>(do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op,
split_k);
}
else if(conv_param.num_dim_spatial_ == 3)
{
using InLayout = ctc::GNDHWC;
using WeiLayout = ctc::GKZYXC;
using OutLayout = ctc::GNDHWK;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
return run_conv_bwd_weight<3,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceConvndBwdWeightInstance<3>>(do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op,
split_k);
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_bwd_weight_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_convnd_bwd_weight_nwc_kxc_nwk_xdl_cshuffle.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvBwdWeightDefault =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Default;
template <ck::index_t NDimSpatial>
using DeviceConvndBwdWeightInstance =
ck::tensor_operation::device::DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle<
NDimSpatial, // NDimSpatial
InDataType, // InDataType
WeiDataType, // WeiDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
InElementOp, // InElementwiseOperation
WeiElementOp, // WeiElementwiseOperation
OutElementOp, // OutElementwiseOperation
ConvBwdWeightDefault, // ConvolutionBackwardWeightSpecialization
256, // BlockSize
128, // MPerBlock
128, // NPerBlock
4, // K0PerBlock
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
2, // NXdlPerWave
S<1, 4, 16, 4>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<0, 3, 1, 2>, // ABlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
2, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<1, 4, 16, 4>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<0, 3, 1, 2>, // BBlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
2, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 4>, // CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8>; // CBlockTransferScalarPerVector_NWaveNPerXdl
int main(int argc, char* argv[])
{
namespace ctc = ck::tensor_layout::convolution;
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
ck::utils::conv::ConvParam conv_param{
2, 1, 32, 256, 1024, {3, 3}, {14, 14}, {2, 2}, {1, 1}, {1, 1}, {1, 1}};
ck::index_t split_k = 4;
if(argc == 1)
{
// use default
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t num_dim_spatial = std::stoi(argv[4]);
conv_param = ck::utils::conv::parse_conv_param(num_dim_spatial, 5, argv);
split_k = std::stoi(argv[5 + 3 + 6 * num_dim_spatial - 1]);
split_k = std::max(1, split_k);
}
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{};
if(conv_param.num_dim_spatial_ == 1)
{
using InLayout = ctc::GNWC;
using WeiLayout = ctc::GKXC;
using OutLayout = ctc::GNWK;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
return run_conv_bwd_weight<1,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceConvndBwdWeightInstance<1>>(do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op,
split_k);
}
else if(conv_param.num_dim_spatial_ == 2)
{
using InLayout = ctc::GNHWC;
using WeiLayout = ctc::GKYXC;
using OutLayout = ctc::GNHWK;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
return run_conv_bwd_weight<2,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceConvndBwdWeightInstance<2>>(do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op,
split_k);
}
else if(conv_param.num_dim_spatial_ == 3)
{
using InLayout = ctc::GNDHWC;
using WeiLayout = ctc::GKZYXC;
using OutLayout = ctc::GNDHWK;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
return run_conv_bwd_weight<3,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceConvndBwdWeightInstance<3>>(do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op,
split_k);
}
return 0;
}
add_custom_target(example_grouped_conv_bwd_weight)
add_example_executable(example_grouped_conv_bwd_weight_xdl_fp16 grouped_conv_bwd_weight_xdl_fp16.cpp)
add_example_executable(example_grouped_conv_bwd_weight_xdl_bf16 grouped_conv_bwd_weight_xdl_bf16.cpp)
add_dependencies(example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_fp16
example_grouped_conv_bwd_weight_xdl_bf16)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <algorithm>
#include <iostream>
#include <iterator>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_gnwc_gkxc_gnwk_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_weight.hpp"
using BF16 = ck::bhalf_t;
using F16 = ck::half_t;
using F32 = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvBwdWeightDefault =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Default;
template <typename InputLay, typename WeightLay, typename OutputLay>
struct CommonLayoutSetting
{
using InputLayout = InputLay;
using WeightLayout = WeightLay;
using OutputLayout = OutputLay;
};
template <ck::index_t NDimSpatial>
struct CommonLayoutSettingSelector;
namespace ctl = ck::tensor_layout::convolution;
template <>
struct CommonLayoutSettingSelector<1> final : CommonLayoutSetting<ctl::GNWC, ctl::GKXC, ctl::GNWK>
{
};
template <>
struct CommonLayoutSettingSelector<2> final
: CommonLayoutSetting<ctl::GNHWC, ctl::GKYXC, ctl::GNHWK>
{
};
template <>
struct CommonLayoutSettingSelector<3> final
: CommonLayoutSetting<ctl::GNDHWC, ctl::GKZYXC, ctl::GNDHWK>
{
};
template <ck::index_t NDimSpatial>
using InputLayout = typename CommonLayoutSettingSelector<NDimSpatial>::InputLayout;
template <ck::index_t NDimSpatial>
using WeightLayout = typename CommonLayoutSettingSelector<NDimSpatial>::WeightLayout;
template <ck::index_t NDimSpatial>
using OutputLayout = typename CommonLayoutSettingSelector<NDimSpatial>::OutputLayout;
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
};
#define DefaultConvParam \
ck::utils::conv::ConvParam \
{ \
2, 4, 1, 128, 256, {3, 3}, {14, 14}, {1, 1}, {1, 1}, {1, 1}, { 1, 1 } \
}
inline void print_help_msg()
{
std::cerr << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: time kernel (0=no, 1=yes)\n"
<< ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
}
inline bool parse_cmd_args(int argc,
char* argv[],
ExecutionConfig& config,
ck::utils::conv::ConvParam& conv_param)
{
constexpr int num_execution_config_args =
3; // arguments for do_verification, init_method, time_kernel
constexpr int num_conv_param_leading_args = 5; // arguments for num_dim_spatial_, G_, N_, K_, C_
constexpr int threshold_to_catch_partial_args = 1 + num_execution_config_args;
constexpr int threshold_to_catch_all_args =
threshold_to_catch_partial_args + num_conv_param_leading_args;
if(argc == 1)
{
// use default
}
// catch only ExecutionConfig arguments
else if(argc == threshold_to_catch_partial_args)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
}
// catch both ExecutionConfig & ConvParam arguments
else if(threshold_to_catch_all_args < argc && ((argc - threshold_to_catch_all_args) % 3 == 0))
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
const ck::index_t num_dim_spatial = std::stoi(argv[4]);
conv_param = ck::utils::conv::parse_conv_param(
num_dim_spatial, threshold_to_catch_partial_args, argv);
}
else
{
print_help_msg();
return false;
}
return true;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using InDataType = BF16;
// bf16 kernel use fp32 atomic add to accumulate Weight tensor into global memory
using WeiDataType = F32;
using OutDataType = BF16;
using AccDataType = F32;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = PassThrough;
#include "run_grouped_conv_bwd_weight_example.inc"
int main(int argc, char* argv[]) { return !run_grouped_conv_bwd_weight_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using InDataType = F16;
using WeiDataType = F16;
using OutDataType = F16;
using AccDataType = F32;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = PassThrough;
#include "run_grouped_conv_bwd_weight_example.inc"
int main(int argc, char* argv[]) { return !run_grouped_conv_bwd_weight_example(argc, argv); }
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream> template <ck::index_t NDimSpatial>
#include <numeric> using DeviceConvBwdWeightInstance =
#include <initializer_list> ck::tensor_operation::device::DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Xdl_CShuffle<
#include <cstdlib> NDimSpatial, // NDimSpatial
InDataType, // InDataType
#include "ck/ck.hpp" WeiDataType, // WeiDataType
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" OutDataType, // OutDataType
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" AccDataType, // AccDataType
InElementOp, // InElementwiseOperation
#include "ck/library/utility/check_err.hpp" WeiElementOp, // WeiElementwiseOperation
#include "ck/library/utility/device_memory.hpp" OutElementOp, // OutElementwiseOperation
#include "ck/library/utility/host_tensor.hpp" ConvBwdWeightDefault, // ConvolutionBackwardWeightSpecialization
#include "ck/library/utility/host_tensor_generator.hpp" 256, // BlockSize
#include "ck/library/utility/convolution_parameter.hpp" 128, // MPerBlock
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp" 128, // NPerBlock
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_weight.hpp" 4, // K0PerBlock
8, // K1
void print_helper_msg() 32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
2, // NXdlPerWave
S<1, 4, 16, 4>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<0, 3, 1, 2>, // ABlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
2, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<1, 4, 16, 4>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<0, 3, 1, 2>, // BBlockTransferThreadClusterArrangeOrder
S<0, 2, 1, 3>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
2, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 4>, // CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
128 / (sizeof(WeiDataType) * CHAR_BIT)>; // CBlockTransferScalarPerVector_NWaveNPerXdl
template <ck::index_t NDimSpatial>
using HostConvBwdWeightInstance = ck::tensor_operation::host::ReferenceConvBwdWeight<NDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>;
template <ck::index_t NDimSpatial>
bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
const ck::utils::conv::ConvParam& conv_param)
{ {
std::cout << "arg1: verification (0=no, 1=yes)\n" constexpr ck::index_t split_k = 2;
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: time kernel (0=no, 1=yes)\n" const auto in_g_n_c_wis_desc =
<< ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl; ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<
} InputLayout<NDimSpatial>>(conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<
WeightLayout<NDimSpatial>>(conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<
OutputLayout<NDimSpatial>>(conv_param);
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp,
typename DeviceConvBwdWeightInstance>
int run_conv_bwd_weight(bool do_verification,
int init_method,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op,
ck::index_t split_k)
{
Tensor<InDataType> in(in_g_n_c_wis_desc); Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei_host_result(wei_g_k_c_xs_desc); Tensor<WeiDataType> wei_host_result(wei_g_k_c_xs_desc);
Tensor<WeiDataType> wei_device_result(wei_g_k_c_xs_desc); Tensor<WeiDataType> wei_device_result(wei_g_k_c_xs_desc);
...@@ -55,7 +77,7 @@ int run_conv_bwd_weight(bool do_verification, ...@@ -55,7 +77,7 @@ int run_conv_bwd_weight(bool do_verification,
std::cout << "wei: " << wei_host_result.mDesc << std::endl; std::cout << "wei: " << wei_host_result.mDesc << std::endl;
std::cout << "out: " << out.mDesc << std::endl; std::cout << "out: " << out.mDesc << std::endl;
switch(init_method) switch(config.init_method)
{ {
case 0: break; case 0: break;
case 1: case 1:
...@@ -77,36 +99,55 @@ int run_conv_bwd_weight(bool do_verification, ...@@ -77,36 +99,55 @@ int run_conv_bwd_weight(bool do_verification,
// init to 0 // init to 0
wei_device_buf.SetZero(); wei_device_buf.SetZero();
std::array<ck::index_t, NDimSpatial> input_spatial_lengths{};
std::array<ck::index_t, NDimSpatial> filter_spatial_lengths{};
std::array<ck::index_t, NDimSpatial> output_spatial_lengths{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto range_copy = [](const auto& from, auto to) { std::copy(begin(from), end(from), to); };
range_copy(conv_param.input_spatial_lengths_, begin(input_spatial_lengths));
range_copy(conv_param.filter_spatial_lengths_, begin(filter_spatial_lengths));
range_copy(conv_param.output_spatial_lengths_, begin(output_spatial_lengths));
range_copy(conv_param.conv_filter_strides_, begin(conv_filter_strides));
range_copy(conv_param.conv_filter_dilations_, begin(conv_filter_dilations));
range_copy(conv_param.input_left_pads_, begin(input_left_pads));
range_copy(conv_param.input_right_pads_, begin(input_right_pads));
// do GEMM // do GEMM
auto conv = DeviceConvBwdWeightInstance{}; auto conv = DeviceConvBwdWeightInstance<NDimSpatial>{};
auto invoker = conv.MakeInvoker(); auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()), auto argument = conv.MakeArgument(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()), static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()), static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
conv_param.G_,
conv_param.N_, conv_param.N_,
conv_param.K_, conv_param.K_,
conv_param.C_, conv_param.C_,
conv_param.input_spatial_lengths_, input_spatial_lengths,
conv_param.filter_spatial_lengths_, filter_spatial_lengths,
conv_param.output_spatial_lengths_, output_spatial_lengths,
conv_param.conv_filter_strides_, conv_filter_strides,
conv_param.conv_filter_dilations_, conv_filter_dilations,
conv_param.input_left_pads_, input_left_pads,
conv_param.input_right_pads_, input_right_pads,
in_element_op, InElementOp{},
wei_element_op, WeiElementOp{},
out_element_op, OutElementOp{},
split_k); split_k);
if(!conv.IsSupportedArgument(argument)) if(!conv.IsSupportedArgument(argument))
{ {
std::cout << "wrong! device_conv with the specified compilation parameters does " std::cerr << "wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem" "not support this Conv problem"
<< std::endl; << std::endl;
return 1; return false;
} }
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel}); float avg_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
std::size_t flop = conv_param.GetFlops(); std::size_t flop = conv_param.GetFlops();
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>(); std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>();
...@@ -115,21 +156,14 @@ int run_conv_bwd_weight(bool do_verification, ...@@ -115,21 +156,14 @@ int run_conv_bwd_weight(bool do_verification,
float gb_per_sec = num_btype / 1.E6 / avg_time; float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s" std::cerr << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< conv.GetTypeString() << std::endl; << std::endl
<< "DeviceOp: " << conv.GetTypeString() << std::endl;
if(do_verification) if(config.do_verification)
{ {
auto ref_conv = ck::tensor_operation::host::ReferenceConvBwdWeight<NDimSpatial, auto ref_conv = HostConvBwdWeightInstance<NDimSpatial>{};
InDataType, auto ref_invoker = ref_conv.MakeInvoker();
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>{};
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in, auto ref_argument = ref_conv.MakeArgument(in,
wei_host_result, wei_host_result,
out, out,
...@@ -145,8 +179,28 @@ int run_conv_bwd_weight(bool do_verification, ...@@ -145,8 +179,28 @@ int run_conv_bwd_weight(bool do_verification,
wei_device_buf.FromDevice(wei_device_result.mData.data()); wei_device_buf.FromDevice(wei_device_result.mData.data());
return ck::utils::check_err(wei_device_result.mData, wei_host_result.mData) ? 0 : 1; return ck::utils::check_err(wei_device_result.mData, wei_host_result.mData);
}
return true;
}
bool run_grouped_conv_bwd_weight_example(int argc, char* argv[])
{
ExecutionConfig config;
ck::utils::conv::ConvParam conv_param = DefaultConvParam;
if(!parse_cmd_args(argc, argv, config, conv_param))
{
return false;
}
switch(conv_param.num_dim_spatial_)
{
case 1: return run_grouped_conv_bwd_weight<1>(config, conv_param);
case 2: return run_grouped_conv_bwd_weight<2>(config, conv_param);
case 3: return run_grouped_conv_bwd_weight<3>(config, conv_param);
} }
return 0; return false;
} }
...@@ -3,7 +3,7 @@ ...@@ -3,7 +3,7 @@
#pragma once #pragma once
#include <vector> #include <array>
#include "ck/tensor_operation/gpu/device/device_base.hpp" #include "ck/tensor_operation/gpu/device/device_base.hpp"
...@@ -11,7 +11,7 @@ namespace ck { ...@@ -11,7 +11,7 @@ namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
template <ck::index_t NumDimSpatial, template <ck::index_t NDimSpatial,
typename InLayout, typename InLayout,
typename WeiLayout, typename WeiLayout,
typename OutLayout, typename OutLayout,
...@@ -21,22 +21,23 @@ template <ck::index_t NumDimSpatial, ...@@ -21,22 +21,23 @@ template <ck::index_t NumDimSpatial,
typename InElementwiseOperation, typename InElementwiseOperation,
typename WeiElementwiseOperation, typename WeiElementwiseOperation,
typename OutElementwiseOperation> typename OutElementwiseOperation>
struct DeviceConvBwdWeight : public BaseOperator struct DeviceGroupedConvBwdWeight : public BaseOperator
{ {
virtual std::unique_ptr<BaseArgument> virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in, MakeArgumentPointer(const void* p_in,
void* p_wei, void* p_wei,
const void* p_out, const void* p_out,
ck::index_t G,
ck::index_t N, ck::index_t N,
ck::index_t K, ck::index_t K,
ck::index_t C, ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths, std::array<ck::index_t, NDimSpatial> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths, std::array<ck::index_t, NDimSpatial> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths, std::array<ck::index_t, NDimSpatial> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides, std::array<ck::index_t, NDimSpatial> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations, std::array<ck::index_t, NDimSpatial> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads, std::array<ck::index_t, NDimSpatial> input_left_pads,
std::vector<ck::index_t> input_right_pads, std::array<ck::index_t, NDimSpatial> input_right_pads,
InElementwiseOperation in_element_op, InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op, WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op, OutElementwiseOperation out_element_op,
......
...@@ -67,6 +67,8 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -67,6 +67,8 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
WeiElementwiseOperation, WeiElementwiseOperation,
OutElementwiseOperation> OutElementwiseOperation>
{ {
static constexpr ck::index_t NDimSpatial = 2;
using DeviceOp = using DeviceOp =
DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K; DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K;
...@@ -107,18 +109,18 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -107,18 +109,18 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
static constexpr auto BBlockLdsN0PerBlock = NPerBlock / BBlockLdsN1PerBlock; static constexpr auto BBlockLdsN0PerBlock = NPerBlock / BBlockLdsN1PerBlock;
static constexpr auto BBlockLdsN1Padding = 4; static constexpr auto BBlockLdsN1Padding = 4;
static auto static auto MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(ck::index_t N, ck::index_t N,
ck::index_t K, ck::index_t K,
ck::index_t C, ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths, std::array<ck::index_t, NDimSpatial> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths, std::array<ck::index_t, NDimSpatial> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths, std::array<ck::index_t, NDimSpatial> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides, std::array<ck::index_t, NDimSpatial> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations, std::array<ck::index_t, NDimSpatial> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads, std::array<ck::index_t, NDimSpatial> input_left_pads,
std::vector<ck::index_t> input_right_pads, std::array<ck::index_t, NDimSpatial> input_right_pads,
ck::index_t batch_k) ck::index_t batch_k)
{ {
using namespace ck; using namespace ck;
...@@ -390,13 +392,13 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -390,13 +392,13 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
ck::index_t N, ck::index_t N,
ck::index_t K, ck::index_t K,
ck::index_t C, ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths, std::array<ck::index_t, NDimSpatial> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths, std::array<ck::index_t, NDimSpatial> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths, std::array<ck::index_t, NDimSpatial> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides, std::array<ck::index_t, NDimSpatial> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations, std::array<ck::index_t, NDimSpatial> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads, std::array<ck::index_t, NDimSpatial> input_left_pads,
std::vector<ck::index_t> input_right_pads, std::array<ck::index_t, NDimSpatial> input_right_pads,
ck::index_t M01, ck::index_t M01,
ck::index_t N01, ck::index_t N01,
InElementwiseOperation in_element_op, InElementwiseOperation in_element_op,
...@@ -473,11 +475,11 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -473,11 +475,11 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
index_t Conv_N_; index_t Conv_N_;
index_t Conv_K_; index_t Conv_K_;
index_t Conv_C_; index_t Conv_C_;
std::vector<index_t> output_spatial_lengths_; std::array<index_t, NDimSpatial> output_spatial_lengths_;
std::vector<index_t> filter_spatial_lengths_; std::array<index_t, NDimSpatial> filter_spatial_lengths_;
std::vector<index_t> conv_filter_strides_; std::array<index_t, NDimSpatial> conv_filter_strides_;
std::vector<index_t> input_left_pads_; std::array<index_t, NDimSpatial> input_left_pads_;
std::vector<index_t> input_right_pads_; std::array<index_t, NDimSpatial> input_right_pads_;
index_t k_batch_; index_t k_batch_;
}; };
...@@ -682,13 +684,13 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -682,13 +684,13 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
ck::index_t N, ck::index_t N,
ck::index_t K, ck::index_t K,
ck::index_t C, ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths, std::array<ck::index_t, NDimSpatial> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths, std::array<ck::index_t, NDimSpatial> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths, std::array<ck::index_t, NDimSpatial> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides, std::array<ck::index_t, NDimSpatial> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations, std::array<ck::index_t, NDimSpatial> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads, std::array<ck::index_t, NDimSpatial> input_left_pads,
std::vector<ck::index_t> input_right_pads, std::array<ck::index_t, NDimSpatial> input_right_pads,
InElementwiseOperation in_element_op, InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op, WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op, OutElementwiseOperation out_element_op,
...@@ -724,13 +726,13 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_ ...@@ -724,13 +726,13 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
ck::index_t N, ck::index_t N,
ck::index_t K, ck::index_t K,
ck::index_t C, ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths, std::array<ck::index_t, NDimSpatial> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths, std::array<ck::index_t, NDimSpatial> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths, std::array<ck::index_t, NDimSpatial> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides, std::array<ck::index_t, NDimSpatial> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations, std::array<ck::index_t, NDimSpatial> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads, std::array<ck::index_t, NDimSpatial> input_left_pads,
std::vector<ck::index_t> input_right_pads, std::array<ck::index_t, NDimSpatial> input_right_pads,
InElementwiseOperation in_element_op, InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op, WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op, OutElementwiseOperation out_element_op,
......
...@@ -364,14 +364,16 @@ struct BlockToCTileMap_KSplit_M00_N00_M01_N01 ...@@ -364,14 +364,16 @@ struct BlockToCTileMap_KSplit_M00_N00_M01_N01
index_t M01 = 1, index_t M01 = 1,
index_t N01 = 1, index_t N01 = 1,
index_t KSplit = 1) index_t KSplit = 1)
: M01_(M01), : c_grid_desc_m_n_(c_grid_desc_m_n),
M01_(M01),
N01_(N01), N01_(N01),
KSplit_(KSplit), KSplit_(KSplit),
underlying_map_(GetBlockToCTileMap(c_grid_desc_m_n, M01, N01, KSplit)) underlying_map_(GetBlockToCTileMap(c_grid_desc_m_n, M01, N01, KSplit))
{ {
} }
__host__ constexpr index_t CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n) const __host__ __device__ constexpr index_t
CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n) const
{ {
const auto M0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I0), MPerBlock); const auto M0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I0), MPerBlock);
const auto N0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I1), NPerBlock); const auto N0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I1), NPerBlock);
...@@ -387,7 +389,10 @@ struct BlockToCTileMap_KSplit_M00_N00_M01_N01 ...@@ -387,7 +389,10 @@ struct BlockToCTileMap_KSplit_M00_N00_M01_N01
template <typename TopIdx> template <typename TopIdx>
__host__ __device__ constexpr auto CalculateBottomIndex(const TopIdx& idx_top) const __host__ __device__ constexpr auto CalculateBottomIndex(const TopIdx& idx_top) const
{ {
return underlying_map_.CalculateBottomIndex(idx_top); static_assert(TopIdx::Size() == 1);
return underlying_map_.CalculateBottomIndex(
make_multi_index(idx_top[I0] % CalculateGridSize()));
} }
template <typename CTileIdx, typename CTileDim> template <typename CTileIdx, typename CTileDim>
...@@ -418,6 +423,11 @@ struct BlockToCTileMap_KSplit_M00_N00_M01_N01 ...@@ -418,6 +423,11 @@ struct BlockToCTileMap_KSplit_M00_N00_M01_N01
} }
private: private:
__device__ constexpr index_t CalculateGridSize() const
{
return CalculateGridSize(c_grid_desc_m_n_);
}
__host__ static constexpr auto GetBlockToCTileMap(const CGridDesc_M_N& c_grid_desc_m_n, __host__ static constexpr auto GetBlockToCTileMap(const CGridDesc_M_N& c_grid_desc_m_n,
index_t M01, index_t M01,
index_t N01, index_t N01,
...@@ -450,6 +460,7 @@ struct BlockToCTileMap_KSplit_M00_N00_M01_N01 ...@@ -450,6 +460,7 @@ struct BlockToCTileMap_KSplit_M00_N00_M01_N01
return c_blockid_to_ksplit_m0_n0_block_cluster_adaptor; return c_blockid_to_ksplit_m0_n0_block_cluster_adaptor;
} }
CGridDesc_M_N c_grid_desc_m_n_;
index_t M01_, N01_, KSplit_; index_t M01_, N01_, KSplit_;
using UnderlyingMap = decltype(GetBlockToCTileMap(CGridDesc_M_N{}, 1, 1, 1)); using UnderlyingMap = decltype(GetBlockToCTileMap(CGridDesc_M_N{}, 1, 1, 1));
UnderlyingMap underlying_map_; UnderlyingMap underlying_map_;
......
...@@ -131,17 +131,22 @@ struct ReferenceConvBwdWeight : public device::BaseOperator ...@@ -131,17 +131,22 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
else if constexpr(NDimSpatial == 2) else if constexpr(NDimSpatial == 2)
{ {
auto f_kcyx = [&](auto g, auto k, auto c, auto y, auto x) { auto f_kcyx = [&](auto g, auto k, auto c, auto y, auto x) {
std::size_t N = arg.output_.GetLengths()[1];
std::size_t Ho = arg.output_.GetLengths()[3];
std::size_t Wo = arg.output_.GetLengths()[4];
float v_acc = 0; float v_acc = 0;
for(std::size_t n = 0; n < arg.output_.GetLengths()[1]; ++n) for(std::size_t n = 0; n < N; ++n)
{ {
for(std::size_t ho = 0; ho < arg.output_.GetLengths()[3]; ++ho) for(std::size_t ho = 0; ho < Ho; ++ho)
{ {
auto hi = static_cast<ck::long_index_t>(ho * arg.conv_strides_[0]) + auto hi = static_cast<ck::long_index_t>(ho * arg.conv_strides_[0]) +
static_cast<ck::long_index_t>(y * arg.conv_dilations_[0]) - static_cast<ck::long_index_t>(y * arg.conv_dilations_[0]) -
static_cast<ck::long_index_t>(arg.in_left_pads_[0]); static_cast<ck::long_index_t>(arg.in_left_pads_[0]);
for(std::size_t wo = 0; wo < arg.output_.GetLengths()[4]; ++wo) for(std::size_t wo = 0; wo < Wo; ++wo)
{ {
auto wi = auto wi =
static_cast<ck::long_index_t>(wo * arg.conv_strides_[1]) + static_cast<ck::long_index_t>(wo * arg.conv_strides_[1]) +
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// conv1d backward weight
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<1,
NWC,
KXC,
NWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<1,
NWC,
KXC,
NWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f32_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<1,
NWC,
KXC,
NWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// conv2d backward weight
void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<2,
NHWC,
KYXC,
NHWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<2,
NHWC,
KYXC,
NHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<2,
NHWC,
KYXC,
NHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// conv3d backward weight
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<3,
NDHWC,
KZYXC,
NDHWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<3,
NDHWC,
KZYXC,
NDHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f32_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<3,
NDHWC,
KZYXC,
NDHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBwdWeight<
NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceConvBwdWeight<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 1 && is_same_v<InLayout, NWC> && is_same_v<WeiLayout, KXC> &&
is_same_v<OutLayout, NWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_f32_bf16_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWC> &&
is_same_v<WeiLayout, KYXC> && is_same_v<OutLayout, NHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_bf16_f32_bf16_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWC> &&
is_same_v<WeiLayout, KZYXC> && is_same_v<OutLayout, NDHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_bf16_f32_bf16_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// conv1d backward weight
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<1,
GNWC,
GKXC,
GNWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// conv2d backward weight
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC,
GKYXC,
GNHWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC,
GKYXC,
GNHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<2,
GNHWC,
GKYXC,
GNHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// conv3d backward weight
void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
GNDHWC,
GKZYXC,
GNDHWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
GNDHWC,
GKZYXC,
GNDHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
GNDHWC,
GKZYXC,
GNDHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedConvBwdWeight<
NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceGroupedConvBwdWeight<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 1 && is_same_v<InLayout, GNWC> &&
is_same_v<WeiLayout, GKXC> && is_same_v<OutLayout, GNWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_grouped_conv1d_bwd_weight_xdl_gnwc_gkxc_gnwk_bf16_f32_bf16_instances(
op_ptrs);
}
}
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, GNHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_grouped_conv2d_bwd_weight_xdl_gnhwc_gkyxc_gnhwk_bf16_f32_bf16_instances(
op_ptrs);
}
}
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, GNDHWC> &&
is_same_v<WeiLayout, GKZYXC> && is_same_v<OutLayout, GNDHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f32_instances(
op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f16_instances(
op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_instances(
op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
add_instance_library(device_conv1d_bwd_weight_instance
device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instance.cpp
device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f32_instance.cpp
device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_instance.cpp
)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_convnd_bwd_weight_nwc_kxc_nwk_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using BF16 = bhalf_t;
using F32 = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using NWC = ck::tensor_layout::convolution::NWC;
using KXC = ck::tensor_layout::convolution::KXC;
using NWK = ck::tensor_layout::convolution::NWK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvBwdWeightDefault =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Default;
static constexpr auto ConvBwdWeightFilter1x1Stride1Pad0 =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0;
// Compilation parameters for in[n, wi, c] * wei[k, x, c] = out[n, wo, k]
using device_conv1d_bwd_weight_xdl_c_shuffle_nwc_kxc_nwk_bf16_f32_bf16_instances = std::tuple<
// clang-format off
//#########################################| Num| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer|
//#########################################| Dim| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector|
//#########################################| Spatial| | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl|
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 4>
// clang-format on
>;
using device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_1x1_s1_p0_bf16_f32_bf16_instances = std::tuple<
// clang-format off
//#########################################| Num| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer|
//#########################################| Dim| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector|
//#########################################| Spatial| | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl|
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, BF16, F32, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 4>
// clang-format on
>;
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<1,
NWC,
KXC,
NWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances, device_conv1d_bwd_weight_xdl_c_shuffle_nwc_kxc_nwk_bf16_f32_bf16_instances{});
add_device_operation_instances(
instances, device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_1x1_s1_p0_bf16_f32_bf16_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_convnd_bwd_weight_nwc_kxc_nwk_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using NWC = ck::tensor_layout::convolution::NWC;
using KXC = ck::tensor_layout::convolution::KXC;
using NWK = ck::tensor_layout::convolution::NWK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvBwdWeightDefault =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Default;
static constexpr auto ConvBwdWeightFilter1x1Stride1Pad0 =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0;
// Compilation parameters for in[n, wi, c] * wei[k, x, c] = out[n, wo, k]
using device_conv1d_bwd_weight_xdl_c_shuffle_nwc_kxc_nwk_f16_default_instances = std::tuple<
// clang-format off
//#########################################| Num| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer|
//#########################################| Dim| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector|
//#########################################| Spatial| | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl|
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8>
// clang-format on
>;
using device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_1x1_s1_p0_f16_instances = std::tuple<
// clang-format off
//#########################################| Num| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer|
//#########################################| Dim| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector|
//#########################################| Spatial| | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl|
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle< 1, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8>
// clang-format on
>;
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<1,
NWC,
KXC,
NWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances, device_conv1d_bwd_weight_xdl_c_shuffle_nwc_kxc_nwk_f16_default_instances{});
add_device_operation_instances(
instances, device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_1x1_s1_p0_f16_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment