Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
3190d495
Commit
3190d495
authored
Oct 12, 2022
by
rocking
Browse files
Add conv bias relu quantization exmaple
parent
ac199f2f
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
338 additions
and
0 deletions
+338
-0
example/44_conv2d_fwd_quant/CMakeLists.txt
example/44_conv2d_fwd_quant/CMakeLists.txt
+1
-0
example/44_conv2d_fwd_quant/conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
...t/conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
+315
-0
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
...or_operation/gpu/element/unary_element_wise_operation.hpp
+22
-0
No files found.
example/44_conv2d_fwd_quant/CMakeLists.txt
View file @
3190d495
add_example_executable
(
example_conv2d_fwd_xdl_perlayer_quantization_int8 conv2d_fwd_xdl_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8 conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
)
example/44_conv2d_fwd_quant/conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
0 → 100644
View file @
3190d495
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
BiasDataType
=
int32_t
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
int32_t
;
using
OutDataType
=
int8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
ActivationOp
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add_Activation_Mul_Clamp
<
ActivationOp
>
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
BiasLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
BiasLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
BiasDataType
>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
64
,
// KPerBlock
16
,
// AK1
16
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
16
,
// ABlockTransferSrcScalarPerVector
16
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
16
,
// BBlockTransferSrcScalarPerVector
16
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
8
>
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
DeviceConvNDFwdInstance
>
bool
run_grouped_conv_fwd
(
bool
do_verification
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
bias_g_k_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
{
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
BiasDataType
>
bias
(
bias_g_k_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias: "
<<
bias
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_host
.
mDesc
<<
std
::
endl
;
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
bias
.
GenerateTensorValue
(
GeneratorTensor_2
<
BiasDataType
>
{
-
5
,
5
});
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_device_buf
(
sizeof
(
BiasDataType
)
*
bias
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias
.
mData
.
data
());
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d0_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d0_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
auto
&
x
,
auto
&
y
)
{
std
::
copy
(
x
.
begin
(),
x
.
end
(),
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
bias_g_k_desc
.
GetLengths
(),
d0_g_n_k_wos_lengths
);
copy
(
bias_g_k_desc
.
GetStrides
(),
d0_g_n_k_wos_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
// do Conv
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
bias_device_buf
.
GetDeviceBuffer
()},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
1
>
{{
d0_g_n_k_wos_lengths
}},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
1
>
{{
d0_g_n_k_wos_strides
}},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_host
(
out_g_n_k_wos_desc
);
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
CShuffleDataType
,
InElementOp
,
WeiElementOp
,
PassThrough
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei
,
c_host
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
// TODO: implement elementwise operation for host
out_host
.
ForEach
(
[
&
](
auto
&
,
auto
idx
)
{
out_element_op
(
out_host
(
idx
),
c_host
(
idx
),
bias
(
idx
));
});
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
out_device
.
mData
,
out_host
.
mData
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
);
}
return
true
;
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
const
ck
::
index_t
ndim_spatial
=
2
;
ck
::
utils
::
conv
::
ConvParam
conv_param
{
ndim_spatial
,
// n_dim
1
,
// group
4
,
// batch
64
,
// output channels
32
,
// input chanels
{
3
,
3
},
// weight HW
{
71
,
71
},
// x HW
{
2
,
2
},
// strides
{
1
,
1
},
// dilations
{
1
,
1
},
// left_pads
{
1
,
1
}
// right_pads
};
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{
0.5
f
,
ActivationOp
{}};
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
BiasLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
// TODO - make_bias_host_tensor_descriptor_g_n_k_wos_packed()
const
auto
bias_g_k_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// ho
0
// wo
});
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
std
::
cout
<<
out_g_n_k_wos_desc
<<
std
::
endl
;
return
run_grouped_conv_fwd
<
ndim_spatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceGroupedConvNDFwdInstance
<
ndim_spatial
,
InLayout
,
WeiLayout
,
BiasLayout
,
OutLayout
>>
(
do_verification
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
bias_g_k_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
View file @
3190d495
...
...
@@ -277,6 +277,28 @@ struct Activation_Mul_Clamp
Activation
activationOp_
;
};
// For Activation function which is piecewise linear function, such as relu, leaky relu ...etc
template
<
typename
Activation
>
struct
Add_Activation_Mul_Clamp
{
Add_Activation_Mul_Clamp
(
float
multiplier
,
Activation
activationOp
)
:
multiplier_
(
multiplier
),
activationOp_
(
activationOp
)
{
}
__host__
__device__
constexpr
void
operator
()(
int8_t
&
y
,
const
int32_t
&
x1
,
const
int32_t
&
x2
)
const
{
float
y_fp32
=
ck
::
type_convert
<
float
>
(
x1
+
x2
);
activationOp_
(
y_fp32
,
y_fp32
);
y_fp32
=
math
::
clamp
(
multiplier_
*
y_fp32
,
-
128.
f
,
127.
f
);
y
=
ck
::
type_convert
<
int8_t
>
(
y_fp32
);
}
float
multiplier_
;
Activation
activationOp_
;
};
}
// namespace element_wise
}
// namespace tensor_operation
}
// namespace ck
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment