Commit 2f2cf35b authored by Chao Liu's avatar Chao Liu
Browse files

initial cuda build

parent d51b8158
add_executable(conv EXCLUDE_FROM_ALL conv.cpp)
add_executable(conv EXCLUDE_FROM_ALL conv.cu)
target_link_libraries(conv convolution)
#include <iostream>
#include "nvToolsExt.h"
#include "tensor.hpp"
#include "device_tensor.cuh"
#include "direct_convolution.cuh"
template <typename T>
void direct_convolution(const Tensor<T>& in,
const Tensor<T>& wei,
Tensor<T>& out,
std::size_t num_thread)
void host_convolution(const Tensor<T>& in,
const Tensor<T>& wei,
Tensor<T>& out,
std::size_t num_thread)
{
auto f = [&](auto n, auto k, auto ho, auto wo) {
double v = 0;
......@@ -33,6 +36,35 @@ void direct_convolution(const Tensor<T>& in,
f_par(num_thread);
}
template <class T>
void device_convolution(const Tensor<T>& in, const Tensor<T>& wei, Tensor<T>& out)
{
DeviceTensorDescriptor in_desc_device(in.mDesc);
DeviceTensorDescriptor wei_desc_device(wei.mDesc);
DeviceTensorDescriptor out_desc_device(out.mDesc);
std::size_t data_sz = sizeof(T);
DeviceMem in_device_buf(data_sz * in.mDesc.GetElementSpace());
DeviceMem wei_device_buf(data_sz * wei.mDesc.GetElementSpace());
DeviceMem out_device_buf(data_sz * out.mDesc.GetElementSpace());
in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
dim3 block_dim(256, 1, 1);
dim3 grid_dim(1, 1, 1);
direct_convolution<T, 256>
<<<grid_dim, block_dim>>>(in_desc_device,
static_cast<T*>(in_device_buf.GetDeviceBuffer()),
wei_desc_device,
static_cast<T*>(wei_device_buf.GetDeviceBuffer()),
out_desc_device,
static_cast<T*>(out_device_buf.GetDeviceBuffer()));
out_device_buf.FromDevice(out.mData.data());
}
template <class T>
struct Generator
{
......@@ -46,9 +78,16 @@ struct Generator
int main()
{
#if 0
Tensor<float> in({3, 16, 128, 128});
Tensor<float> wei({4, 16, 3, 3});
Tensor<float> out({3, 4, 126, 126});
Tensor<float> out_host({3, 4, 126, 126});
#else
Tensor<float> in({1, 1, 4, 4});
Tensor<float> wei({1, 1, 3, 3});
Tensor<float> out_host({1, 1, 2, 2});
#endif
Tensor<float> out_device = out_host;
int num_thread = std::thread::hardware_concurrency();
......@@ -57,11 +96,13 @@ int main()
in.GenerateTensorValue(Generator<float>{}, num_thread);
wei.GenerateTensorValue(Generator<float>{}, num_thread);
direct_convolution(in, wei, out, num_thread);
host_convolution(in, wei, out_host, num_thread);
device_convolution(in, wei, out_device);
std::cout << __func__ << ": done" << std::endl;
LogRange(std::cout, in.mData, ",") << std::endl;
LogRange(std::cout, wei.mData, ",") << std::endl;
LogRange(std::cout, out.mData, ",") << std::endl;
LogRange(std::cout, out_host.mData, ",") << std::endl;
LogRange(std::cout, out_device.mData, ",") << std::endl;
}
#pragma once
#include "helper_cuda.h"
#include "tensor.hpp"
struct DeviceTensorDescriptor
{
DeviceTensorDescriptor() = delete;
__host__ DeviceTensorDescriptor(const TensorDescriptor& host_desc)
: mDataType(host_desc.GetDataType()), mDim(host_desc.GetDimension())
{
std::size_t data_sz = host_desc.GetDataType() == DataType_t::Float ? 4 : 2;
checkCudaErrors(cudaMalloc(&mpLengths, data_sz * mDim));
checkCudaErrors(cudaMalloc(&mpStrides, data_sz * mDim));
checkCudaErrors(
cudaMemcpy(const_cast<void*>(static_cast<const void*>(host_desc.GetLengths().data())),
mpLengths,
data_sz * mDim,
cudaMemcpyHostToDevice));
checkCudaErrors(
cudaMemcpy(const_cast<void*>(static_cast<const void*>(host_desc.GetStrides().data())),
mpStrides,
data_sz * mDim,
cudaMemcpyHostToDevice));
}
__host__ ~DeviceTensorDescriptor()
{
checkCudaErrors(cudaFree(mpLengths));
checkCudaErrors(cudaFree(mpStrides));
}
DataType_t mDataType;
unsigned long mDim;
unsigned long* mpLengths;
unsigned long* mpStrides;
};
#pragma once
#include "device_tensor.cuh"
template <class TFloat, int NBlockDim>
__global__ void direct_convolution(DeviceTensorDescriptor in_desc,
TFloat* const in,
DeviceTensorDescriptor wei_desc,
TFloat* const wei,
DeviceTensorDescriptor out_desc,
TFloat* out)
{
}
#pragma once
#include <thread>
#include <vector>
#include <numeric>
......@@ -89,6 +90,7 @@ struct TensorDescriptor
{
}
DataType_t GetDataType() const;
std::size_t GetDimension() const;
std::size_t GetElementSize() const;
std::size_t GetElementSpace() const;
......@@ -105,35 +107,36 @@ struct TensorDescriptor
}
private:
DataType_t mDataType;
std::vector<std::size_t> mLens;
std::vector<std::size_t> mStrides;
DataType_t mDataType;
};
struct GpuMem
struct DeviceMem
{
GpuMem() = delete;
GpuMem(std::size_t size, std::size_t data_size) : mSize(size), mDataSize(data_size)
DeviceMem() = delete;
DeviceMem(std::size_t mem_size) : mMemSize(mem_size)
{
cudaMalloc(static_cast<void**>(&mGpuBuf), mDataSize * mSize);
cudaMalloc(static_cast<void**>(&mpDeviceBuf), mMemSize);
}
int ToGpu(void* p)
void* GetDeviceBuffer() { return mpDeviceBuf; }
int ToDevice(const void* p)
{
return static_cast<int>(cudaMemcpy(mGpuBuf, p, mDataSize * mSize, cudaMemcpyHostToDevice));
return static_cast<int>(
cudaMemcpy(mpDeviceBuf, const_cast<void*>(p), mMemSize, cudaMemcpyHostToDevice));
}
int FromGpu(void* p)
int FromDevice(void* p)
{
return static_cast<int>(cudaMemcpy(p, mGpuBuf, mDataSize * mSize, cudaMemcpyDeviceToHost));
return static_cast<int>(cudaMemcpy(p, mpDeviceBuf, mMemSize, cudaMemcpyDeviceToHost));
}
~GpuMem() { cudaFree(mGpuBuf); }
~DeviceMem() { cudaFree(mpDeviceBuf); }
void* mGpuBuf;
std::size_t mSize;
std::size_t mDataSize;
void* mpDeviceBuf;
std::size_t mMemSize;
};
struct joinable_thread : std::thread
......
......@@ -28,6 +28,8 @@ void TensorDescriptor::CalculateStrides()
mLens.rbegin(), mLens.rend() - 1, mStrides.rbegin() + 1, std::multiplies<std::size_t>());
}
DataType_t TensorDescriptor::GetDataType() const { return mDataType; }
std::size_t TensorDescriptor::GetDimension() const { return mLens.size(); }
std::size_t TensorDescriptor::GetElementSize() const
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment