Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
2b5ec663
"...composable_kernel.git" did not exist on "56c7203541460a3787a795fabede9ec294fcdbcd"
Commit
2b5ec663
authored
Jan 27, 2022
by
rocking
Browse files
Add bias version of example
parent
f23b8324
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
331 additions
and
0 deletions
+331
-0
composable_kernel/include/tensor_operation/element_wise_operation.hpp
...ernel/include/tensor_operation/element_wise_operation.hpp
+16
-0
example/2_gemm_xdl_bias/README.md
example/2_gemm_xdl_bias/README.md
+56
-0
example/2_gemm_xdl_bias/gemm_xdl_bias.cpp
example/2_gemm_xdl_bias/gemm_xdl_bias.cpp
+256
-0
example/CMakeLists.txt
example/CMakeLists.txt
+3
-0
No files found.
composable_kernel/include/tensor_operation/element_wise_operation.hpp
View file @
2b5ec663
#ifndef CK_ELEMENT_WISE_OPERATION_HPP
#ifndef CK_ELEMENT_WISE_OPERATION_HPP
#define CK_ELEMENT_WISE_OPERATION_HPP
#define CK_ELEMENT_WISE_OPERATION_HPP
#include "data_type.hpp"
namespace
ck
{
namespace
ck
{
namespace
tensor_operation
{
namespace
tensor_operation
{
namespace
element_wise
{
namespace
element_wise
{
...
@@ -21,6 +23,20 @@ struct PassThrough
...
@@ -21,6 +23,20 @@ struct PassThrough
}
}
};
};
// TODO - Move bias functor to the kernel
struct
Bias
{
__host__
__device__
constexpr
void
operator
()(
float
&
y_plus_bias
,
const
float
&
y
,
const
float
&
bias
)
const
{
y_plus_bias
=
y
+
bias
;
}
__host__
__device__
constexpr
void
operator
()(
half_t
&
y_plus_bias
,
const
half_t
&
y
,
const
float
&
bias
)
const
{
y_plus_bias
=
y
+
bias
;
}
};
struct
AddRelu
struct
AddRelu
{
{
template
<
typename
T
>
template
<
typename
T
>
...
...
example/2_gemm_xdl_bias/README.md
0 → 100644
View file @
2b5ec663
# Instructions for ```gemm_xdl``` Example
## Docker script
```
bash
docker run
\
-it
\
--rm
\
--privileged
\
--group-add
sudo
\
-w
/root/workspace
\
-v
${
PATH_TO_LOCAL_WORKSPACE
}
:/root/workspace
\
rocm/tensorflow:rocm4.3.1-tf2.6-dev
\
/bin/bash
```
## Build ```gemm_xdl```
```
bash
mkdir
build
&&
cd
build
```
```
bash
# Need to specify target ID, example below is gfx908
cmake
\
-D
BUILD_DEV
=
OFF
\
-D
CMAKE_BUILD_TYPE
=
Release
\
-D
CMAKE_CXX_FLAGS
=
"-DCK_AMD_GPU_GFX908 --amdgpu-target=gfx908 -O3 "
\
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_PREFIX_PATH
=
/opt/rocm
\
..
```
```
bash
make
-j
gemm_xdl
```
## Run ```gemm_xdl```
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
./example/gemm_xdl 0 1 5
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
a_m_k: dim 2, lengths {3840, 4096}, strides {4096, 1}
b_k_n: dim 2, lengths {4096, 4096}, strides {1, 4096}
c_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
arg.a_grid_desc_k0_m_k1_{512, 3840, 8}
arg.b_grid_desc_k0_n_k1_{512, 4096, 8}
arg.c_grid_desc_m_n_{ 3840, 4096}
launch_and_time_kernel: grid_dim {480, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 1.19685 ms, 107.657 TFlops, 78.8501 GB/s
```
example/2_gemm_xdl_bias/gemm_xdl_bias.cpp
0 → 100644
View file @
2b5ec663
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "device_gemm_xdl_c_shuffle_bias.hpp"
#include "element_wise_operation.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
ADataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
// TODO
// using C0DataType = float;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
Bias
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmXdl_C_Shuffle_Bias
<
ADataType
,
// ADataType
BDataType
,
// BDataType
CDataType
,
// CDataType
AccDataType
,
// AccDataType
ALayout
,
// ALayout
BLayout
,
// BLayout
CLayout
,
// CLayout
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CElementOp
,
// CElementwiseOperation
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
4
,
// K0PerBlock
8
,
// K1
32
,
// MPerXDL
32
,
// NPerXDL
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
// CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
8
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
template
<
typename
AType
,
typename
BType
,
typename
CType
,
typename
C0Type
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
static
void
host_verify
(
const
Tensor
<
AType
>&
a_m_k
,
const
Tensor
<
BType
>&
b_k_n
,
const
Tensor
<
C0Type
>&
c0_k_n
,
Tensor
<
CType
>&
c_m_n
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CElementwiseOperation
&
c_element_op
)
{
auto
f_mk_kn_mn
=
[
&
](
auto
m
,
auto
n
)
{
const
int
K
=
a_m_k
.
mDesc
.
GetLengths
()[
1
];
AccDataType
v
=
0
;
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
v
+=
static_cast
<
AccDataType
>
(
a_element_op
(
a_m_k
(
m
,
k
)))
*
static_cast
<
AccDataType
>
(
b_element_op
(
b_k_n
(
k
,
n
)));
}
c_element_op
(
c_m_n
(
m
,
n
),
v
,
c0_k_n
(
m
,
n
));
};
make_ParallelTensorFunctor
(
f_mk_kn_mn
,
c_m_n
.
mDesc
.
GetLengths
()[
0
],
c_m_n
.
mDesc
.
GetLengths
()[
1
])(
std
::
thread
::
hardware_concurrency
());
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
0
;
int
init_method
=
0
;
int
nrepeat
=
5
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
auto
f_bias_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
)
{
// TODO - stride with {0, 1}
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
0
}));
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
BDataType
>
c0_m_n
(
f_bias_host_tensor_descriptor
(
M
,
N
));
Tensor
<
BDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
BDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_m_n: "
<<
c0_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
c0_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
c0_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c0_m_n_device_buf
(
sizeof
(
CDataType
)
*
c0_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpace
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
c0_m_n_device_buf
.
ToDevice
(
c0_m_n
.
mData
.
data
());
c_m_n_device_buf
.
ToDevice
(
c_m_n_device_result
.
mData
.
data
());
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c0_m_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
AElementOp
{},
BElementOp
{},
CElementOp
{});
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
nrepeat
);
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
{
host_verify
(
a_m_k
,
b_k_n
,
c0_m_n
,
c_m_n_host_result
,
AElementOp
{},
BElementOp
{},
CElementOp
{});
check_error
(
c_m_n_host_result
,
c_m_n_device_result
);
}
}
example/CMakeLists.txt
View file @
2b5ec663
...
@@ -12,6 +12,7 @@ include_directories(BEFORE
...
@@ -12,6 +12,7 @@ include_directories(BEFORE
)
)
set
(
GEMM_XDL_SOURCE 1_gemm_xdl/gemm_xdl.cpp
)
set
(
GEMM_XDL_SOURCE 1_gemm_xdl/gemm_xdl.cpp
)
set
(
GEMM_XDL_BIAS_SOURCE 2_gemm_xdl_bias/gemm_xdl_bias.cpp
)
set
(
GEMM_XDL_BIAS_RELU_ADD_SOURCE 3_gemm_xdl_bias_relu_add/gemm_xdl_bias_relu_add.cpp
)
set
(
GEMM_XDL_BIAS_RELU_ADD_SOURCE 3_gemm_xdl_bias_relu_add/gemm_xdl_bias_relu_add.cpp
)
set
(
CONV2D_FWD_XDL_SOURCE 4_conv2d_fwd_xdl/conv2d_fwd_xdl.cpp
)
set
(
CONV2D_FWD_XDL_SOURCE 4_conv2d_fwd_xdl/conv2d_fwd_xdl.cpp
)
set
(
CONV2D_FWD_XDL_BIAS_RELU_SOURCE 5_conv2d_fwd_xdl_bias_relu/conv2d_fwd_xdl_bias_relu.cpp
)
set
(
CONV2D_FWD_XDL_BIAS_RELU_SOURCE 5_conv2d_fwd_xdl_bias_relu/conv2d_fwd_xdl_bias_relu.cpp
)
...
@@ -19,6 +20,7 @@ set(CONV2D_FWD_XDL_BIAS_RELU_ADD_SOURCE 6_conv2d_fwd_xdl_bias_relu_add/conv2d_fw
...
@@ -19,6 +20,7 @@ set(CONV2D_FWD_XDL_BIAS_RELU_ADD_SOURCE 6_conv2d_fwd_xdl_bias_relu_add/conv2d_fw
set
(
CONV2D_FWD_XDL_BIAS_RELU_ATOMIC_ADD_SOURCE 7_conv2d_fwd_xdl_bias_relu_atomic_add/conv2d_fwd_xdl_bias_relu_atomic_add.cpp
)
set
(
CONV2D_FWD_XDL_BIAS_RELU_ATOMIC_ADD_SOURCE 7_conv2d_fwd_xdl_bias_relu_atomic_add/conv2d_fwd_xdl_bias_relu_atomic_add.cpp
)
add_executable
(
gemm_xdl
${
GEMM_XDL_SOURCE
}
)
add_executable
(
gemm_xdl
${
GEMM_XDL_SOURCE
}
)
add_executable
(
gemm_xdl_bias
${
GEMM_XDL_BIAS_SOURCE
}
)
add_executable
(
gemm_xdl_bias_relu_add
${
GEMM_XDL_BIAS_RELU_ADD_SOURCE
}
)
add_executable
(
gemm_xdl_bias_relu_add
${
GEMM_XDL_BIAS_RELU_ADD_SOURCE
}
)
add_executable
(
conv2d_fwd_xdl
${
CONV2D_FWD_XDL_SOURCE
}
)
add_executable
(
conv2d_fwd_xdl
${
CONV2D_FWD_XDL_SOURCE
}
)
add_executable
(
conv2d_fwd_xdl_bias_relu
${
CONV2D_FWD_XDL_BIAS_RELU_SOURCE
}
)
add_executable
(
conv2d_fwd_xdl_bias_relu
${
CONV2D_FWD_XDL_BIAS_RELU_SOURCE
}
)
...
@@ -26,6 +28,7 @@ add_executable(conv2d_fwd_xdl_bias_relu_add ${CONV2D_FWD_XDL_BIAS_RELU_ADD_SOURC
...
@@ -26,6 +28,7 @@ add_executable(conv2d_fwd_xdl_bias_relu_add ${CONV2D_FWD_XDL_BIAS_RELU_ADD_SOURC
add_executable
(
conv2d_fwd_xdl_bias_relu_atomic_add
${
CONV2D_FWD_XDL_BIAS_RELU_ATOMIC_ADD_SOURCE
}
)
add_executable
(
conv2d_fwd_xdl_bias_relu_atomic_add
${
CONV2D_FWD_XDL_BIAS_RELU_ATOMIC_ADD_SOURCE
}
)
target_link_libraries
(
gemm_xdl PRIVATE host_tensor
)
target_link_libraries
(
gemm_xdl PRIVATE host_tensor
)
target_link_libraries
(
gemm_xdl_bias PRIVATE host_tensor
)
target_link_libraries
(
gemm_xdl_bias_relu_add PRIVATE host_tensor
)
target_link_libraries
(
gemm_xdl_bias_relu_add PRIVATE host_tensor
)
target_link_libraries
(
conv2d_fwd_xdl PRIVATE host_tensor
)
target_link_libraries
(
conv2d_fwd_xdl PRIVATE host_tensor
)
target_link_libraries
(
conv2d_fwd_xdl_bias_relu PRIVATE host_tensor
)
target_link_libraries
(
conv2d_fwd_xdl_bias_relu PRIVATE host_tensor
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment