Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
261d3267
Commit
261d3267
authored
Nov 14, 2023
by
Bartlomiej Wroblewski
Browse files
Merge remote-tracking branch 'origin/develop' into bwroblew/direct_loads
parents
2d5b22fe
f2398f61
Changes
372
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
578 additions
and
130 deletions
+578
-130
Jenkinsfile
Jenkinsfile
+33
-17
client_example/05_layernorm/CMakeLists.txt
client_example/05_layernorm/CMakeLists.txt
+5
-2
client_example/05_layernorm/layernorm2d_fwd.cpp
client_example/05_layernorm/layernorm2d_fwd.cpp
+10
-10
client_example/05_layernorm/layernorm4d_fwd.cpp
client_example/05_layernorm/layernorm4d_fwd.cpp
+201
-0
client_example/07_grouped_convnd_fwd/grouped_conv1d_fwd.cpp
client_example/07_grouped_convnd_fwd/grouped_conv1d_fwd.cpp
+12
-12
client_example/07_grouped_convnd_fwd/grouped_conv2d_fwd.cpp
client_example/07_grouped_convnd_fwd/grouped_conv2d_fwd.cpp
+12
-12
client_example/09_quantization/conv2d_fwd_bias_relu_perchannel_quantization.cpp
...tization/conv2d_fwd_bias_relu_perchannel_quantization.cpp
+1
-1
client_example/09_quantization/conv2d_fwd_bias_relu_perlayer_quantization.cpp
...antization/conv2d_fwd_bias_relu_perlayer_quantization.cpp
+12
-12
client_example/09_quantization/conv2d_fwd_bias_tanh_perchannel_quantization.cpp
...tization/conv2d_fwd_bias_tanh_perchannel_quantization.cpp
+1
-1
client_example/09_quantization/conv2d_fwd_bias_tanh_perlayer_quantization.cpp
...antization/conv2d_fwd_bias_tanh_perlayer_quantization.cpp
+12
-12
client_example/09_quantization/conv2d_fwd_perchannel_quantization.cpp
...le/09_quantization/conv2d_fwd_perchannel_quantization.cpp
+13
-13
client_example/09_quantization/conv2d_fwd_perlayer_quantization.cpp
...mple/09_quantization/conv2d_fwd_perlayer_quantization.cpp
+12
-12
client_example/11_grouped_conv_bwd_weight/CMakeLists.txt
client_example/11_grouped_conv_bwd_weight/CMakeLists.txt
+2
-0
client_example/11_grouped_conv_bwd_weight/common.hpp
client_example/11_grouped_conv_bwd_weight/common.hpp
+6
-2
client_example/11_grouped_conv_bwd_weight/grouped_conv3d_bwd_weight_fp16_comp_bf8_fp8.cpp
...wd_weight/grouped_conv3d_bwd_weight_fp16_comp_bf8_fp8.cpp
+70
-0
client_example/16_convnd_fwd/common.hpp
client_example/16_convnd_fwd/common.hpp
+14
-14
client_example/18_groupnorm/groupnorm_swish.cpp
client_example/18_groupnorm/groupnorm_swish.cpp
+10
-10
client_example/23_elementwise_transpose/CMakeLists.txt
client_example/23_elementwise_transpose/CMakeLists.txt
+2
-0
client_example/23_elementwise_transpose/elementwise_transpose_3d.cpp
...ple/23_elementwise_transpose/elementwise_transpose_3d.cpp
+139
-0
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/CMakeLists.txt
..._grouped_convnd_fwd_scaleadd_scaleadd_relu/CMakeLists.txt
+11
-0
No files found.
Jenkinsfile
View file @
261d3267
...
@@ -139,7 +139,7 @@ def buildDocker(install_prefix){
...
@@ -139,7 +139,7 @@ def buildDocker(install_prefix){
else
{
else
{
echo
"Checking for image: ${image_name}"
echo
"Checking for image: ${image_name}"
sh
"docker manifest inspect --insecure ${image_name}"
sh
"docker manifest inspect --insecure ${image_name}"
echo
"Image: ${image_name} found!
!
Skipping building image"
echo
"Image: ${image_name} found! Skipping building image"
}
}
}
}
catch
(
Exception
ex
){
catch
(
Exception
ex
){
...
@@ -213,8 +213,10 @@ def cmake_build(Map conf=[:]){
...
@@ -213,8 +213,10 @@ def cmake_build(Map conf=[:]){
if
(
setup_args
.
contains
(
"gfx94"
)){
if
(
setup_args
.
contains
(
"gfx94"
)){
invocation_tag
=
"gfx94"
invocation_tag
=
"gfx94"
}
}
echo
"invocation tag: ${invocation_tag}"
def
redis_pre_setup_cmd
=
pre_setup_cmd
if
(
check_host
()
&&
params
.
USE_SCCACHE
&&
"${env.CK_SCCACHE}"
!=
"null"
&&
"${invocation_tag}"
!=
""
)
{
if
(
check_host
()
&&
params
.
USE_SCCACHE
&&
"${env.CK_SCCACHE}"
!=
"null"
&&
"${invocation_tag}"
!=
""
)
{
pre_setup_cmd
=
pre_setup_cmd
+
"""
redis_
pre_setup_cmd
=
pre_setup_cmd
+
"""
#!/bin/bash
#!/bin/bash
export ROCM_PATH=/opt/rocm
export ROCM_PATH=/opt/rocm
export SCCACHE_ENABLED=true
export SCCACHE_ENABLED=true
...
@@ -228,18 +230,30 @@ def cmake_build(Map conf=[:]){
...
@@ -228,18 +230,30 @@ def cmake_build(Map conf=[:]){
export SCCACHE_C_CUSTOM_CACHE_BUSTER="${invocation_tag}"
export SCCACHE_C_CUSTOM_CACHE_BUSTER="${invocation_tag}"
echo \$SCCACHE_C_CUSTOM_CACHE_BUSTER
echo \$SCCACHE_C_CUSTOM_CACHE_BUSTER
stunnel ../script/redis-cli.conf
stunnel ../script/redis-cli.conf
(
../script/sccache_wrapper.sh --enforce_redis
set -e
../script/sccache_wrapper.sh --enforce_redis
)
error_code=\$?
if [ \$error_code -ne 0 ]; then
echo "could not connect to the redis server. using sccache locally."
../script/sccache_wrapper.sh
fi
"""
"""
setup_args
=
" -DCMAKE_CXX_COMPILER_LAUNCHER=sccache -DCMAKE_C_COMPILER_LAUNCHER=sccache "
+
setup_args
try
{
def
cmd1
=
conf
.
get
(
"cmd1"
,
"""
${redis_pre_setup_cmd}
"""
)
sh
cmd1
setup_args
=
" -DCMAKE_CXX_COMPILER_LAUNCHER=sccache -DCMAKE_C_COMPILER_LAUNCHER=sccache "
+
setup_args
}
catch
(
Exception
err
){
echo
"could not connect to redis server: ${err.getMessage()}. will not use sccache."
def
cmd2
=
conf
.
get
(
"cmd2"
,
"""
${pre_setup_cmd}
"""
)
sh
cmd2
}
}
else
{
def
cmd3
=
conf
.
get
(
"cmd3"
,
"""
${pre_setup_cmd}
"""
)
sh
cmd3
}
}
def
setup_cmd
=
conf
.
get
(
"setup_cmd"
,
"${cmake_envs} cmake ${setup_args} .. "
)
def
setup_cmd
=
conf
.
get
(
"setup_cmd"
,
"${cmake_envs} cmake ${setup_args} .. "
)
// reduce parallelism when compiling, clang uses too much memory
// reduce parallelism when compiling, clang uses too much memory
def
nt
=
nthreads
()
def
nt
=
nthreads
()
...
@@ -247,14 +261,16 @@ def cmake_build(Map conf=[:]){
...
@@ -247,14 +261,16 @@ def cmake_build(Map conf=[:]){
def
execute_cmd
=
conf
.
get
(
"execute_cmd"
,
""
)
def
execute_cmd
=
conf
.
get
(
"execute_cmd"
,
""
)
def
cmd
=
conf
.
get
(
"cmd"
,
"""
def
cmd
=
conf
.
get
(
"cmd"
,
"""
${pre_setup_cmd}
${setup_cmd}
${setup_cmd}
${build_cmd}
${build_cmd}
${execute_cmd}
${execute_cmd}
"""
)
"""
)
echo
cmd
echo
cmd
sh
cmd
dir
(
"build"
){
sh
cmd
}
// Only archive from master or develop
// Only archive from master or develop
if
(
package_build
==
true
&&
(
env
.
BRANCH_NAME
==
"develop"
||
env
.
BRANCH_NAME
==
"amd-master"
))
{
if
(
package_build
==
true
&&
(
env
.
BRANCH_NAME
==
"develop"
||
env
.
BRANCH_NAME
==
"amd-master"
))
{
...
@@ -686,8 +702,8 @@ pipeline {
...
@@ -686,8 +702,8 @@ pipeline {
description:
"Use the CK build to verify hipTensor build and tests (default: ON)"
)
description:
"Use the CK build to verify hipTensor build and tests (default: ON)"
)
string
(
string
(
name:
'hipTensor_branch'
,
name:
'hipTensor_branch'
,
defaultValue:
'
mainline
'
,
defaultValue:
'
develop
'
,
description:
'Specify which branch of hipTensor to use (default:
mainline
)'
)
description:
'Specify which branch of hipTensor to use (default:
develop
)'
)
booleanParam
(
booleanParam
(
name:
"USE_SCCACHE"
,
name:
"USE_SCCACHE"
,
defaultValue:
true
,
defaultValue:
true
,
...
@@ -751,7 +767,7 @@ pipeline {
...
@@ -751,7 +767,7 @@ pipeline {
}
}
agent
{
label
rocmnode
(
"gfx908 || gfx90a"
)
}
agent
{
label
rocmnode
(
"gfx908 || gfx90a"
)
}
environment
{
environment
{
setup_args
=
""" -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941;gfx942" """
setup_args
=
""" -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941;gfx942"
-DCMAKE_EXE_LINKER_FLAGS=" -L ${env.WORKSPACE}/script -T hip_fatbin_insert "
"""
execute_args
=
""" cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941;gfx942" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
execute_args
=
""" cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941;gfx942" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
}
}
steps
{
steps
{
...
...
client_example/05_layernorm/CMakeLists.txt
View file @
261d3267
add_executable
(
client_layernorm2d layernorm2d.cpp
)
add_executable
(
client_layernorm2d_fwd layernorm2d_fwd.cpp
)
target_link_libraries
(
client_layernorm2d PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_layernorm2d_fwd PRIVATE composable_kernel::device_operations
)
add_executable
(
client_layernorm4d_fwd layernorm4d_fwd.cpp
)
target_link_libraries
(
client_layernorm4d_fwd PRIVATE composable_kernel::device_operations
)
client_example/05_layernorm/layernorm2d.cpp
→
client_example/05_layernorm/layernorm2d
_fwd
.cpp
View file @
261d3267
...
@@ -7,10 +7,10 @@
...
@@ -7,10 +7,10 @@
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization
_fwd
.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization
_fwd
.hpp"
using
XDataType
=
ck
::
half_t
;
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
...
@@ -57,14 +57,14 @@ int main(int argc, char* argv[])
...
@@ -57,14 +57,14 @@ int main(int argc, char* argv[])
SimpleDeviceMem
save_inv_std_device_buf
(
sizeof
(
SaveMeanInvStdDataType
)
*
M
);
SimpleDeviceMem
save_inv_std_device_buf
(
sizeof
(
SaveMeanInvStdDataType
)
*
M
);
#endif
#endif
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalization
<
XDataType
,
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalization
Fwd
<
XDataType
,
GammaDataType
,
GammaDataType
,
BetaDataType
,
BetaDataType
,
YDataType
,
YDataType
,
SaveMeanInvStdDataType
,
SaveMeanInvStdDataType
,
PassThrough
,
PassThrough
,
Rank
,
Rank
,
NumReduceDim
>
;
NumReduceDim
>
;
// get device op instances
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
...
...
client_example/05_layernorm/layernorm4d_fwd.cpp
0 → 100644
View file @
261d3267
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization_fwd.hpp"
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
SaveMeanInvStdDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
#define SAVE_MEAN_INV_STD
constexpr
int
Rank
=
4
;
constexpr
int
NumReduceDim
=
3
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
index_t
N
=
256
;
ck
::
index_t
H
=
16
;
ck
::
index_t
W
=
16
;
ck
::
index_t
C
=
8
;
std
::
vector
<
ck
::
index_t
>
strideXY
=
{
H
*
W
*
C
,
W
*
C
,
C
,
1
};
std
::
vector
<
ck
::
index_t
>
strideGammaBeta
=
{
0
,
W
*
C
,
C
,
1
};
std
::
vector
<
ck
::
index_t
>
strideSaveMeanInvStd
=
{
1
};
SimpleDeviceMem
x_device_buf
(
sizeof
(
XDataType
)
*
N
*
H
*
W
*
C
);
SimpleDeviceMem
gamma_device_buf
(
sizeof
(
GammaDataType
)
*
H
*
W
*
C
);
SimpleDeviceMem
beta_device_buf
(
sizeof
(
BetaDataType
)
*
H
*
W
*
C
);
SimpleDeviceMem
y_device_buf
(
sizeof
(
YDataType
)
*
N
*
H
*
W
*
C
);
#ifdef SAVE_MEAN_INV_STD
SimpleDeviceMem
save_mean_device_buf
(
sizeof
(
SaveMeanInvStdDataType
)
*
N
);
SimpleDeviceMem
save_inv_std_device_buf
(
sizeof
(
SaveMeanInvStdDataType
)
*
N
);
#endif
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationFwd
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
PassThrough
,
Rank
,
NumReduceDim
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
({
N
,
H
,
W
,
C
},
// lengths
strideXY
,
// xStrides
strideGammaBeta
,
// gammaStrides
strideGammaBeta
,
// betaStrides
strideXY
,
// yStrides
strideSaveMeanInvStd
,
// save_mean Strides
strideSaveMeanInvStd
,
// save_inv_std Strides
{
1
,
2
,
3
},
// reduceDims
1e-4
,
x_device_buf
.
GetDeviceBuffer
(),
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
(),
y_device_buf
.
GetDeviceBuffer
(),
#ifdef SAVE_MEAN_INV_STD
save_mean_device_buf
.
GetDeviceBuffer
(),
save_inv_std_device_buf
.
GetDeviceBuffer
(),
#else
nullptr
,
nullptr
,
#endif
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_byte
=
sizeof
(
XDataType
)
*
N
*
H
*
W
*
C
+
sizeof
(
GammaDataType
)
*
H
*
W
*
C
+
sizeof
(
BetaDataType
)
*
H
*
W
*
C
+
sizeof
(
YDataType
)
*
N
*
H
*
W
*
C
;
#ifdef SAVE_MEAN_INV_STD
num_byte
+=
sizeof
(
SaveMeanInvStdDataType
)
*
N
*
2
;
#endif
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
({
N
,
H
,
W
,
C
},
// lengths
strideXY
,
// xStrides
strideGammaBeta
,
// gammaStrides
strideGammaBeta
,
// betaStrides
strideXY
,
// yStrides
strideSaveMeanInvStd
,
// save_mean Strides
strideSaveMeanInvStd
,
// save_inv_std Strides
{
1
,
2
,
3
},
// reduceDims
1e-4
,
x_device_buf
.
GetDeviceBuffer
(),
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
(),
y_device_buf
.
GetDeviceBuffer
(),
#ifdef SAVE_MEAN_INV_STD
save_mean_device_buf
.
GetDeviceBuffer
(),
save_inv_std_device_buf
.
GetDeviceBuffer
(),
#else
nullptr
,
nullptr
,
#endif
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/07_grouped_convnd_fwd/grouped_conv1d_fwd.cpp
View file @
261d3267
...
@@ -100,18 +100,18 @@ int main()
...
@@ -100,18 +100,18 @@ int main()
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
X
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
G
*
N
*
Wo
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
G
*
N
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D
<
NumDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
OutLayout
,
OutLayout
,
InDataType
,
InDataType
,
WeiDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
OutDataType
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
>
;
PassThrough
>
;
// get device op instances
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
...
...
client_example/07_grouped_convnd_fwd/grouped_conv2d_fwd.cpp
View file @
261d3267
...
@@ -71,18 +71,18 @@ int main()
...
@@ -71,18 +71,18 @@ int main()
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D
<
NumDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
OutLayout
,
OutLayout
,
InDataType
,
InDataType
,
WeiDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
OutDataType
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
>
;
PassThrough
>
;
// get device op instances
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
...
...
client_example/09_quantization/conv2d_fwd_bias_relu_perchannel_quantization.cpp
View file @
261d3267
...
@@ -80,7 +80,7 @@ int main(int argc, char* argv[])
...
@@ -80,7 +80,7 @@ int main(int argc, char* argv[])
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
G
*
K
);
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
G
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D
<
NumDimSpatial
,
NumDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
...
...
client_example/09_quantization/conv2d_fwd_bias_relu_perlayer_quantization.cpp
View file @
261d3267
...
@@ -78,18 +78,18 @@ int main(int argc, char* argv[])
...
@@ -78,18 +78,18 @@ int main(int argc, char* argv[])
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
using
DeviceOp
=
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D
<
NumDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
ck
::
Tuple
<
BiasLayout
>
,
ck
::
Tuple
<
BiasLayout
>
,
OutLayout
,
OutLayout
,
InDataType
,
InDataType
,
WeiDataType
,
WeiDataType
,
ck
::
Tuple
<
BiasDataType
>
,
ck
::
Tuple
<
BiasDataType
>
,
OutDataType
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
OutElementOp
>
;
OutElementOp
>
;
// get device op instances
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
DeviceOp
>::
GetInstances
();
...
...
client_example/09_quantization/conv2d_fwd_bias_tanh_perchannel_quantization.cpp
View file @
261d3267
...
@@ -83,7 +83,7 @@ int main(int argc, char* argv[])
...
@@ -83,7 +83,7 @@ int main(int argc, char* argv[])
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
G
*
K
);
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
G
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D
<
NumDimSpatial
,
NumDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
...
...
client_example/09_quantization/conv2d_fwd_bias_tanh_perlayer_quantization.cpp
View file @
261d3267
...
@@ -79,18 +79,18 @@ int main(int argc, char* argv[])
...
@@ -79,18 +79,18 @@ int main(int argc, char* argv[])
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
using
DeviceOp
=
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D
<
NumDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
ck
::
Tuple
<
BiasLayout
>
,
ck
::
Tuple
<
BiasLayout
>
,
OutLayout
,
OutLayout
,
InDataType
,
InDataType
,
WeiDataType
,
WeiDataType
,
ck
::
Tuple
<
BiasDataType
>
,
ck
::
Tuple
<
BiasDataType
>
,
OutDataType
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
OutElementOp
>
;
OutElementOp
>
;
// get device op instances
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
DeviceOp
>::
GetInstances
();
...
...
client_example/09_quantization/conv2d_fwd_perchannel_quantization.cpp
View file @
261d3267
...
@@ -76,19 +76,19 @@ int main(int argc, char* argv[])
...
@@ -76,19 +76,19 @@ int main(int argc, char* argv[])
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
G
*
K
);
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
G
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
using
DeviceOp
=
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
NumDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
ck
::
Tuple
<
RequantScaleLayout
>
,
ck
::
Tuple
<
RequantScaleLayout
>
,
OutLayout
,
OutLayout
,
InDataType
,
InDataType
,
WeiDataType
,
WeiDataType
,
ck
::
Tuple
<
RequantScaleDataType
>
,
ck
::
Tuple
<
RequantScaleDataType
>
,
OutDataType
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
OutElementOp
>
;
OutElementOp
>
;
// get device op instances
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
DeviceOp
>::
GetInstances
();
...
...
client_example/09_quantization/conv2d_fwd_perlayer_quantization.cpp
View file @
261d3267
...
@@ -72,18 +72,18 @@ int main(int argc, char* argv[])
...
@@ -72,18 +72,18 @@ int main(int argc, char* argv[])
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
G
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D
<
NumDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
OutLayout
,
OutLayout
,
InDataType
,
InDataType
,
WeiDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
OutDataType
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
OutElementOp
>
;
OutElementOp
>
;
// get device op instances
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
DeviceOp
>::
GetInstances
();
...
...
client_example/11_grouped_conv_bwd_weight/CMakeLists.txt
View file @
261d3267
...
@@ -2,8 +2,10 @@ add_executable(client_grouped_conv1d_bwd_weight_fp16 grouped_conv1d_bwd_weight_f
...
@@ -2,8 +2,10 @@ add_executable(client_grouped_conv1d_bwd_weight_fp16 grouped_conv1d_bwd_weight_f
add_executable
(
client_grouped_conv2d_bwd_weight_fp16 grouped_conv2d_bwd_weight_fp16.cpp
)
add_executable
(
client_grouped_conv2d_bwd_weight_fp16 grouped_conv2d_bwd_weight_fp16.cpp
)
add_executable
(
client_grouped_conv3d_bwd_weight_fp16 grouped_conv3d_bwd_weight_fp16.cpp
)
add_executable
(
client_grouped_conv3d_bwd_weight_fp16 grouped_conv3d_bwd_weight_fp16.cpp
)
add_executable
(
client_grouped_conv3d_bwd_weight_fp32 grouped_conv3d_bwd_weight_fp32.cpp
)
add_executable
(
client_grouped_conv3d_bwd_weight_fp32 grouped_conv3d_bwd_weight_fp32.cpp
)
add_executable
(
client_grouped_conv3d_bwd_weight_fp16_comp_bf8_fp8 grouped_conv3d_bwd_weight_fp16_comp_bf8_fp8.cpp
)
target_link_libraries
(
client_grouped_conv1d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_grouped_conv1d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_grouped_conv2d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_grouped_conv2d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_grouped_conv3d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_grouped_conv3d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_grouped_conv3d_bwd_weight_fp32 PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_grouped_conv3d_bwd_weight_fp32 PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_grouped_conv3d_bwd_weight_fp16_comp_bf8_fp8 PRIVATE composable_kernel::device_operations
)
client_example/11_grouped_conv_bwd_weight/common.hpp
View file @
261d3267
...
@@ -85,7 +85,9 @@ template <ck::index_t NumDimSpatial,
...
@@ -85,7 +85,9 @@ template <ck::index_t NumDimSpatial,
typename
OutDataType
,
typename
OutDataType
,
typename
InLayout
,
typename
InLayout
,
typename
WeiLayout
,
typename
WeiLayout
,
typename
OutLayout
>
typename
OutLayout
,
typename
AComputeType
=
InDataType
,
typename
BComputeType
=
AComputeType
>
bool
run_grouped_conv_bwd_weight
(
bool
run_grouped_conv_bwd_weight
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>&
input_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>&
input_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>&
input_strides
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>&
input_strides
,
...
@@ -113,7 +115,9 @@ bool run_grouped_conv_bwd_weight(
...
@@ -113,7 +115,9 @@ bool run_grouped_conv_bwd_weight(
OutDataType
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
>
;
PassThrough
,
AComputeType
,
BComputeType
>
;
// get device op instances
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
DeviceOp
>::
GetInstances
();
...
...
client_example/11_grouped_conv_bwd_weight/grouped_conv3d_bwd_weight_fp16_comp_bf8_fp8.cpp
0 → 100644
View file @
261d3267
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
AComputeType
=
ck
::
bf8_t
;
using
BComputeType
=
ck
::
f8_t
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
8
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
128
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
static
constexpr
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
input_lengths
{
G
,
N
,
C
,
Di
,
Hi
,
Wi
};
static
constexpr
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
filter_lengths
{
G
,
K
,
C
,
Z
,
Y
,
X
};
static
constexpr
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
output_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
static
constexpr
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
input_strides
{
N
*
Di
*
Hi
*
Wi
*
C
,
Di
*
Hi
*
Wi
*
C
,
1
,
Hi
*
Wi
*
C
,
Wi
*
C
,
C
};
static
constexpr
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
weights_strides
{
K
*
Z
*
Y
*
X
*
C
,
Z
*
Y
*
X
*
C
,
1
,
Y
*
X
*
C
,
X
*
C
,
C
};
static
constexpr
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
output_strides
{
N
*
Do
*
Ho
*
Wo
*
K
,
Do
*
Ho
*
Wo
*
K
,
1
,
Ho
*
Wo
*
K
,
Wo
*
K
,
K
};
static
constexpr
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_strides
{
1
,
1
,
1
};
static
constexpr
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_dilations
{
1
,
1
,
1
};
static
constexpr
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
,
1
};
static
constexpr
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
,
1
};
int
main
()
{
return
run_grouped_conv_bwd_weight
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
AComputeType
,
BComputeType
>
(
input_lengths
,
input_strides
,
filter_lengths
,
weights_strides
,
output_lengths
,
output_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
)
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/16_convnd_fwd/common.hpp
View file @
261d3267
...
@@ -11,7 +11,7 @@
...
@@ -11,7 +11,7 @@
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_
ab
d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
...
@@ -174,19 +174,19 @@ bool run_grouped_conv_fwd(std::array<ck::index_t, NumDimSpatial + NumNonSpatialD
...
@@ -174,19 +174,19 @@ bool run_grouped_conv_fwd(std::array<ck::index_t, NumDimSpatial + NumNonSpatialD
std
::
size_t
flop
=
GetFlops
<
NumDimSpatial
>
(
out_lengths
,
wei_lengths
);
std
::
size_t
flop
=
GetFlops
<
NumDimSpatial
>
(
out_lengths
,
wei_lengths
);
std
::
size_t
num_bytes
=
in_mem_size
+
wei_mem_size
+
out_mem_size
;
std
::
size_t
num_bytes
=
in_mem_size
+
wei_mem_size
+
out_mem_size
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultiple
AB
D
<
NumDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
OutLayout
,
OutLayout
,
InDataType
,
InDataType
,
WeiDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
OutDataType
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
ComputeType
>
;
ComputeType
>
;
// get device op instances
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
DeviceOp
>::
GetInstances
();
...
...
client_example/18_groupnorm/groupnorm_swish.cpp
View file @
261d3267
...
@@ -7,10 +7,10 @@
...
@@ -7,10 +7,10 @@
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization
_fwd
.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization_swish.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization_
fwd_
swish.hpp"
using
XDataType
=
ck
::
half_t
;
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
float
;
using
GammaDataType
=
float
;
...
@@ -64,14 +64,14 @@ int main(int argc, char* argv[])
...
@@ -64,14 +64,14 @@ int main(int argc, char* argv[])
SimpleDeviceMem
save_inv_std_device_buf
(
sizeof
(
SaveMeanInvStdDataType
)
*
N
*
G
);
SimpleDeviceMem
save_inv_std_device_buf
(
sizeof
(
SaveMeanInvStdDataType
)
*
N
*
G
);
#endif
#endif
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalization
<
XDataType
,
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalization
Fwd
<
XDataType
,
GammaDataType
,
GammaDataType
,
BetaDataType
,
BetaDataType
,
YDataType
,
YDataType
,
SaveMeanInvStdDataType
,
SaveMeanInvStdDataType
,
Swish
,
Swish
,
Rank
,
Rank
,
NumReduceDim
>
;
NumReduceDim
>
;
// get device op instances
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
...
...
client_example/23_elementwise_transpose/CMakeLists.txt
0 → 100644
View file @
261d3267
add_executable
(
client_elementwise_transpose3d elementwise_transpose_3d.cpp
)
target_link_libraries
(
client_elementwise_transpose3d PRIVATE composable_kernel::device_operations
)
client_example/23_elementwise_transpose/elementwise_transpose_3d.cpp
0 → 100644
View file @
261d3267
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_3d_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/transpose_3d.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
()
{
const
int
N
=
16
;
const
int
C
=
8
;
const
int
D
=
8
;
const
int
H
=
8
;
const
int
W
=
8
;
std
::
vector
<
std
::
size_t
>
ncdhw
=
{
N
,
C
,
D
,
H
,
W
};
std
::
vector
<
std
::
size_t
>
nchwd
=
{
N
,
C
,
H
,
W
,
D
};
auto
size
=
N
*
C
*
D
*
H
*
W
;
std
::
array
<
ck
::
index_t
,
5
>
ab_lengths
{
N
,
C
,
H
,
W
,
D
};
std
::
array
<
ck
::
index_t
,
5
>
a_strides
=
{
C
*
D
*
H
*
W
,
H
*
W
,
W
,
1
,
D
*
H
*
W
};
// N, C, D, H, W
std
::
array
<
ck
::
index_t
,
5
>
b_strides
=
{
C
*
H
*
W
*
D
,
H
*
W
*
D
,
W
*
D
,
D
,
1
};
// N, C, H, W, D
SimpleDeviceMem
a_dev_buf
(
sizeof
(
ADataType
)
*
size
);
SimpleDeviceMem
b_dev_buf
(
sizeof
(
BDataType
)
*
size
);
std
::
array
<
const
void
*
,
1
>
input
=
{
a_dev_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_dev_buf
.
GetDeviceBuffer
()};
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ADataType
>
,
ck
::
Tuple
<
BDataType
>
,
PassThrough
,
5
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceElementwisePermuteInstance
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_byte
=
sizeof
(
ADataType
)
*
(
ncdhw
[
0
]
*
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
])
+
sizeof
(
BDataType
)
*
(
ncdhw
[
0
]
*
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
]);
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/CMakeLists.txt
0 → 100644
View file @
261d3267
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp32 grouped_conv_fwd_scaleadd_scaleadd_relu_fp32.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp32 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp16 grouped_conv_fwd_scaleadd_scaleadd_relu_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp16 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_bf16 grouped_conv_fwd_scaleadd_scaleadd_relu_bf16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_bf16 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_int8 grouped_conv_fwd_scaleadd_scaleadd_relu_int8.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_int8 PRIVATE composable_kernel::device_operations
)
Prev
1
2
3
4
5
…
19
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment