Commit 2564c493 authored by Chao Liu's avatar Chao Liu
Browse files

Merge remote-tracking branch 'origin/develop' into fused-gemm

parents 000eefbf 10b3278b
...@@ -4,5 +4,6 @@ add_example_executable(example_gemm_dl_int8 gemm_dl_int8.cpp) ...@@ -4,5 +4,6 @@ add_example_executable(example_gemm_dl_int8 gemm_dl_int8.cpp)
add_example_executable(example_gemm_xdl_fp16 gemm_xdl_fp16.cpp) add_example_executable(example_gemm_xdl_fp16 gemm_xdl_fp16.cpp)
add_example_executable(example_gemm_xdl_bf16 gemm_xdl_bf16.cpp) add_example_executable(example_gemm_xdl_bf16 gemm_xdl_bf16.cpp)
add_example_executable(example_gemm_xdl_int8 gemm_xdl_int8.cpp) add_example_executable(example_gemm_xdl_int8 gemm_xdl_int8.cpp)
add_example_executable(example_gemm_xdl_skip_b_lds_fp16 gemm_xdl_skip_b_lds_fp16.cpp)
# FIXME: re-enable this exampe as test when SWDEV-335738 is fixed # FIXME: re-enable this exampe as test when SWDEV-335738 is fixed
add_example_executable_no_testing(example_gemm_xdl_fp64 gemm_xdl_fp64.cpp) add_example_executable_no_testing(example_gemm_xdl_fp64 gemm_xdl_fp64.cpp)
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_skip_b_lds.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
#define USING_SKIP_LDS 1
// clang-format off
#if USING_SKIP_LDS
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdlSkipBLds
//###########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BThreadTransfer| BBlock| CThreadTransfer| CThreadTransfer|
//###########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| SrcScalar| buffer| SrcDstVectorDim| DstScalar|
//###########| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| size | | PerVector|
//###########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if 0
< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 16, 64, 4, 8, 16, 16, 1, 1, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 8, 8, 7, 1>;
using ADataType = ck::half_t;
using BDataType = ck::half_t;
using CDataType = ck::half_t;
using AccDataType = float;
#else
< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 16, 64, 4, 4, 16, 16, 1, 1, S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 4, 4, 7, 1>;
using ADataType = float;
using BDataType = float;
using CDataType = float;
using AccDataType = float;
#endif
#else
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdl
//###########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//###########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//###########| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//###########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 16, 64, 4, 4, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 7, 1, 2>;
using ADataType = float;
using BDataType = float;
using CDataType = float;
using AccDataType = float;
#endif
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, float, AElementOp, BElementOp, CElementOp>;
template <typename DataType>
std::ostream& show_2d_matrix(std::ostream& os, Tensor<DataType>& matrix)
{
os << "[" << std::endl;
for(size_t x = 0; x < matrix.mDesc.GetLengths()[0]; x++)
{
os << "[";
for(size_t y = 0; y < matrix.mDesc.GetLengths()[1]; y++)
{
os << std::setw(5) << static_cast<float>(matrix(x, y));
}
os << "]" << std::endl;
}
os << "]";
return os;
}
int main(int argc, char* argv[])
{
bool do_verification = 0;
int init_method = 0;
bool time_kernel = false;
// GEMM shape
#if 1
ck::index_t M = 16;
ck::index_t N = 64 * 120;
ck::index_t K = 4096;
ck::index_t StrideA = K;
ck::index_t StrideB = K;
ck::index_t StrideC = N;
#else
ck::index_t M = 16;
ck::index_t N = 16;
ck::index_t K = 32;
ck::index_t StrideA = 8;
ck::index_t StrideB = 8;
ck::index_t StrideC = 16;
#endif
if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 10)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideC = std::stoi(argv[9]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
case 2:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
// a_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
}
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
if(do_verification)
{
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
#if 0
{
show_2d_matrix(std::cout << "a : ", a_m_k) << std::endl;
show_2d_matrix(std::cout << "b: ", b_k_n) << std::endl;
show_2d_matrix(std::cout << "c_device: ", c_m_n_device_result) << std::endl;
show_2d_matrix(std::cout << "c_host :", c_m_n_host_result) << std::endl;
}
#endif
ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
}
return 0;
}
add_example_executable(example_reduce_blockwise reduce_blockwise.cpp) add_example_executable(example_reduce_blockwise reduce_blockwise.cpp)
add_example_executable(example_reduce_multiblock_atomic_add reduce_multiblock_atomic_add.cpp)
add_example_executable(example_reduce_blockwise_two_call reduce_blockwise_two_call.cpp) add_example_executable(example_reduce_blockwise_two_call reduce_blockwise_two_call.cpp)
...@@ -2,20 +2,41 @@ ...@@ -2,20 +2,41 @@
## Run ```example_reduce_blockwise``` ## Run ```example_reduce_blockwise```
```bash ```bash
# -D <xxx> : input 4-d tensor lengths # -D <xxx> : input 3d/4d/5d tensor lengths
# -R <xxx> : reduce dimension ids
# -v <x> : verification (0=no, 1=yes) # -v <x> : verification (0=no, 1=yes)
#arg1: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value) #arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64, 7: int4)
#arg2: time kernel (0=no, 1=yes) #arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
./bin/example_reduce_blockwise -D 16,64,32,960 -v 1 1 1 #arg3: time kernel (0=no, 1=yes)
./bin/example_reduce_blockwise -D 16,64,32,960 -v 1 0 2 1
``` ```
Result Result
``` ```
./bin/example_reduce_blockwise -D 16,64,32,960 -v 1 1 1 ./bin/example_reduce_blockwise -D 16,64,32,960 -v 1 0 2 1
launch_and_time_kernel: grid_dim {240, 1, 1}, block_dim {256, 1, 1} launch_and_time_kernel: grid_dim {240, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time Warm up 1 time
Start running 10 times... Start running 10 times...
Perf: 0.282592 ms, 222.641 GB/s, DeviceReduceBlockWise<256,M_C4_S1,K_C64_S1,InSrcVectorDim_0_InSrcVectorSize_1_OutDstVectorSize_1> Perf: 0.238063 ms, 264.285 GB/s, DeviceReduceBlockWise<256,M_C4_S1,K_C64_S1,InSrcVectorDim_0_InSrcVectorSize_1_OutDstVectorSize_1>
```
## Run ```example_reduce_multiblock_atomic_add```
```bash
# -D <xxx> : input 3d/4d/5d tensor lengths
# -R <xxx> : reduce dimension ids
# -v <x> : verification (0=no, 1=yes)
#arg1: data type (0: fp32, 1: fp64)
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg3: time kernel (0=no, 1=yes)
./bin/example_reduce_multiblock_atomic_add -D 16,64,32,960 -v 1 0 2 0
```
Result
```
./bin/example_reduce_multiblock_atomic_add -D 16,64,32,960 -v 1 0 2 0
Perf: 0 ms, inf GB/s, DeviceReduceMultiBlock<256,M_C4_S1,K_C64_S1,InSrcVectorDim_0_InSrcVectorSize_1_OutDstVectorSize_1>
echo $?
0
``` ```
# Instructions for ```example_reduce_blockwise_two_call``` # Instructions for ```example_reduce_blockwise_two_call```
......
...@@ -2,64 +2,17 @@ ...@@ -2,64 +2,17 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream> #include <iostream>
#include <numeric>
#include <initializer_list> #include <initializer_list>
#include <cstdlib> #include <cstdlib>
#include <getopt.h> #include <getopt.h>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp" #include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp" #include "reduce_blockwise_impl.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_multiblock.hpp" #include "reduce_example_common.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_reduction.hpp"
using namespace ck; using namespace ck;
using namespace ck::tensor_operation::device; using namespace ck::tensor_operation::device;
using InDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
constexpr int Rank = 4;
constexpr int NumReduceDim = 3;
constexpr ReduceTensorOp ReduceOpId = ReduceTensorOp::NORM2;
constexpr bool PropagateNan = true;
constexpr bool OutputIndex = false;
using ReduceOperation = typename reduce_binary_operator<ReduceOpId>::opType;
using InElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::InElementwiseOperation;
using AccElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::AccElementwiseOperation;
using DeviceReduceInstance = DeviceReduceMultiBlock<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
InMemoryDataOperationEnum::Set,
PropagateNan,
OutputIndex,
false, // HaveIndexInputIfOutputIndex
256,
4,
64,
1,
1,
0,
1,
1>;
static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'}, static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
{"verify", required_argument, nullptr, 'v'}, {"verify", required_argument, nullptr, 'v'},
{"help", no_argument, nullptr, '?'}, {"help", no_argument, nullptr, '?'},
...@@ -72,10 +25,12 @@ class SimpleAppArgs ...@@ -72,10 +25,12 @@ class SimpleAppArgs
public: public:
std::vector<size_t> inLengths = {16, 64, 32, 960}; std::vector<size_t> inLengths = {16, 64, 32, 960};
std::vector<int> reduceDims = {0, 1, 2};
std::vector<float> scales = {1.0f, 0.0f}; std::vector<float> scales = {1.0f, 0.0f};
bool do_verification = true; bool do_verification = true;
int init_method = 1; int data_type = 1;
int init_method = 2;
bool time_kernel = true; bool time_kernel = true;
public: public:
...@@ -84,13 +39,17 @@ class SimpleAppArgs ...@@ -84,13 +39,17 @@ class SimpleAppArgs
std::cout << "Usage of " << cmd << std::endl; std::cout << "Usage of " << cmd << std::endl;
std::cout << "--inLengths or -D, comma separated list of input tensor dimension lengths" std::cout << "--inLengths or -D, comma separated list of input tensor dimension lengths"
<< std::endl; << std::endl;
std::cout << "--reduceDims or -R, comma separated list of to-reduce dimensions"
<< std::endl;
std::cout << "--verify or -v, 1/0 to indicate whether to verify the reduction result by " std::cout << "--verify or -v, 1/0 to indicate whether to verify the reduction result by "
"comparing with the host-based reduction" "comparing with the host-based reduction"
<< std::endl; << std::endl;
std::cout << "Arg1 -- init method (0=no init, 1=single integer value, 2=scope integer " std::cout << "Arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64, 7: int4)"
<< std::endl;
std::cout << "Arg2 -- init method (0=no init, 1=single integer value, 2=scope integer "
"value, 3=decimal value)" "value, 3=decimal value)"
<< std::endl; << std::endl;
std::cout << "Arg2 -- time kernel (0=no, 1=yes)" << std::endl; std::cout << "Arg3 -- time kernel (0=no, 1=yes)" << std::endl;
}; };
int processArgs(int argc, char* argv[]) int processArgs(int argc, char* argv[])
...@@ -101,7 +60,7 @@ class SimpleAppArgs ...@@ -101,7 +60,7 @@ class SimpleAppArgs
while(1) while(1)
{ {
ch = getopt_long(argc, argv, "D:v:l:", long_options, &option_index); ch = getopt_long(argc, argv, "D:R:v:l:", long_options, &option_index);
if(ch == -1) if(ch == -1)
break; break;
switch(ch) switch(ch)
...@@ -112,6 +71,12 @@ class SimpleAppArgs ...@@ -112,6 +71,12 @@ class SimpleAppArgs
inLengths = getTypeValuesFromString<size_t>(optarg); inLengths = getTypeValuesFromString<size_t>(optarg);
break; break;
case 'R':
if(!optarg)
throw std::runtime_error("Invalid option format!");
reduceDims = getTypeValuesFromString<int>(optarg);
break;
case 'v': case 'v':
if(!optarg) if(!optarg)
throw std::runtime_error("Invalid option format!"); throw std::runtime_error("Invalid option format!");
...@@ -129,9 +94,12 @@ class SimpleAppArgs ...@@ -129,9 +94,12 @@ class SimpleAppArgs
}; };
}; };
if(optind + 2 > argc) if(optind + 3 > argc)
{
throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!"); throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");
};
data_type = std::atoi(argv[optind++]);
init_method = std::atoi(argv[optind++]); init_method = std::atoi(argv[optind++]);
time_kernel = static_cast<bool>(std::atoi(argv[optind])); time_kernel = static_cast<bool>(std::atoi(argv[optind]));
...@@ -145,198 +113,152 @@ class SimpleAppArgs ...@@ -145,198 +113,152 @@ class SimpleAppArgs
}; };
}; };
int main(int argc, char* argv[]) template <typename InOutDataType,
typename AccDataType,
ReduceTensorOp ReduceOpId,
index_t PropagateNan,
index_t OutputIndex>
bool reduce_blockwise_test(bool do_verification,
int init_method,
bool time_kernel,
const std::vector<size_t>& inLengths,
const std::vector<int>& reduceDims,
float alpha,
float beta)
{ {
const std::vector<int> reduceDims{0, 1, 2}; bool matched = false;
const std::vector<int> invariantDims{3}; int result = 0;
SimpleAppArgs args; const auto tuple_object = reduce_shape_instances{};
if(argc > 1) static_for<0, std::tuple_size<reduce_shape_instances>::value, 1>{}([&](auto i) {
{ if(matched)
if(args.processArgs(argc, argv) < 0) return;
return (-1);
};
constexpr bool op_support_indices =
(ReduceOpId == ReduceTensorOp::MIN || ReduceOpId == ReduceTensorOp::MAX ||
ReduceOpId == ReduceTensorOp::AMAX);
// if input is half type, no reason to use float for indiced reduction operation and must use
// float for non-indiced reduction operation for accuracy
constexpr bool invalid_reduce_1 =
std::is_same<InDataType, ck::half_t>::value &&
((!op_support_indices && !std::is_same<AccDataType, float>::value) ||
(op_support_indices && !std::is_same<AccDataType, ck::half_t>::value));
// if input is float type, no reason to use double for indiced reduction operation
constexpr bool invalid_reduce_2 =
std::is_same<InDataType, float>::value &&
(op_support_indices && !std::is_same<AccDataType, float>::value);
// indices option can only be used when it is really needed
constexpr bool invalid_reduce_3 = (!op_support_indices && OutputIndex);
constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2 || invalid_reduce_3); using ShapeType = remove_cvref_t<decltype(std::get<i>(tuple_object))>;
if constexpr(invalid_reduce) if(ShapeType::Rank_ != inLengths.size() || ShapeType::NumReduceDim_ != reduceDims.size())
std::cout << "Reduction setting is not supported, exiting!" << std::endl; return;
Tensor<InDataType> in(args.inLengths); result = reduce_blockwise_impl<InOutDataType,
AccDataType,
ReduceOpId,
ShapeType::Rank_,
ShapeType::NumReduceDim_,
PropagateNan,
OutputIndex>(
do_verification, init_method, time_kernel, inLengths, reduceDims, alpha, beta);
std::vector<size_t> outLengths; matched = true;
});
if(invariantDims.empty()) return (result == 0) ? true : false;
outLengths.push_back(1); };
else
for(auto dim : invariantDims)
outLengths.push_back(args.inLengths[dim]);
Tensor<OutDataType> out_ref(outLengths);
Tensor<OutDataType> out(outLengths);
Tensor<int> out_indices_ref(outLengths);
Tensor<int> out_indices(outLengths);
auto inStrides = in.mDesc.GetStrides(); constexpr ReduceTensorOp ReduceOpId = ReduceTensorOp::AVG;
auto outStrides = out.mDesc.GetStrides(); constexpr bool PropagateNan = true;
constexpr bool OutputIndex = false;
size_t invariant_total_length = out.mDesc.GetElementSize(); int main(int argc, char* argv[])
size_t reduce_total_length = in.mDesc.GetElementSize() / invariant_total_length; {
bool pass = true;
float alpha = args.scales[0]; if(argc > 1)
float beta = args.scales[1]; {
SimpleAppArgs arg;
std::size_t num_thread = 1; if(arg.processArgs(argc, argv) < 0)
return (-1);
if(args.do_verification) if(arg.data_type == 0)
{
switch(args.init_method)
{ {
case 0: break; pass = reduce_blockwise_test<ck::half_t, float, ReduceOpId, PropagateNan, OutputIndex>(
case 1: arg.do_verification,
in.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread); arg.init_method,
if(beta != 0.0f) arg.time_kernel,
out_ref.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread); arg.inLengths,
break; arg.reduceDims,
case 2: arg.scales[0],
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread); arg.scales[1]);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
} }
else if(arg.data_type == 1)
if(beta != 0.0f)
for(size_t i = 0; i < out_ref.mDesc.GetElementSpaceSize(); i++)
out.mData[i] = out_ref.mData[i];
};
// these buffers are usually provided by the user application
DeviceMem in_dev(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem out_dev(sizeof(OutDataType) * out.mDesc.GetElementSpaceSize());
in_dev.ToDevice(in.mData.data());
if(beta != 0.0f)
out_dev.ToDevice(out.mData.data());
size_t indicesSizeInBytes = OutputIndex ? out.mDesc.GetElementSize() * sizeof(int32_t) : 0;
DeviceMem out_index_dev(indicesSizeInBytes);
InElementwiseOperation in_elementwise_op;
AccElementwiseOperation acc_elementwise_op;
std::tie(in_elementwise_op, acc_elementwise_op) =
reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator(
static_cast<int32_t>(reduce_total_length));
if(args.do_verification)
{
ReductionHost<InDataType,
AccDataType,
OutDataType,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
Rank,
NumReduceDim,
PropagateNan,
OutputIndex>
hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);
hostReduce.Run(alpha,
in.mData.data(),
beta,
out_ref.mData.data(),
out_indices_ref.mData.data(),
in_elementwise_op,
acc_elementwise_op);
};
std::vector<ck::index_t> i_inLengths;
std::vector<ck::index_t> i_inStrides;
std::vector<ck::index_t> i_outLengths;
std::vector<ck::index_t> i_outStrides;
i_inLengths.assign(args.inLengths.begin(), args.inLengths.end());
i_inStrides.assign(inStrides.begin(), inStrides.end());
i_outLengths.assign(outLengths.begin(), outLengths.end());
i_outStrides.assign(outStrides.begin(), outStrides.end());
auto reduce = DeviceReduceInstance{};
auto argument_ptr = reduce.MakeArgumentPointer(i_inLengths,
i_inStrides,
i_outLengths,
i_outStrides,
reduceDims,
alpha,
beta,
in_dev.GetDeviceBuffer(),
nullptr,
out_dev.GetDeviceBuffer(),
out_index_dev.GetDeviceBuffer(),
in_elementwise_op,
acc_elementwise_op);
if(!reduce.IsSupportedArgument(argument_ptr.get()))
{
std::cout
<< "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<< std::endl;
};
std::string reduce_name = reduce.GetTypeString();
auto invoker_ptr = reduce.MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, args.time_kernel});
std::size_t num_bytes = invariant_total_length * reduce_total_length * sizeof(InDataType) +
invariant_total_length * sizeof(OutDataType);
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << reduce_name
<< std::endl;
bool pass = true;
if(args.do_verification)
{
out_dev.FromDevice(out.mData.data());
pass = pass && ck::utils::check_err(out.mData, out_ref.mData);
if(OutputIndex)
{ {
out_index_dev.FromDevice(out_indices.mData.data()); pass = reduce_blockwise_test<float, float, ReduceOpId, PropagateNan, OutputIndex>(
pass = pass && ck::utils::check_err(out_indices.mData, out_indices_ref.mData); arg.do_verification,
}; arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
}
else if(arg.data_type == 3)
{
pass = reduce_blockwise_test<int8_t, float, ReduceOpId, PropagateNan, OutputIndex>(
arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
}
else if(arg.data_type == 5)
{
pass = reduce_blockwise_test<ck::bhalf_t, float, ReduceOpId, PropagateNan, OutputIndex>(
arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
}
else if(arg.data_type == 6)
{
pass = reduce_blockwise_test<double, double, ReduceOpId, PropagateNan, OutputIndex>(
arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
}
}
else
{
// for testing half_t
pass =
pass && reduce_blockwise_test<ck::half_t, float, ReduceOpId, PropagateNan, OutputIndex>(
true, 2, true, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
// for testing float
pass = pass && reduce_blockwise_test<float, float, ReduceOpId, PropagateNan, OutputIndex>(
true, 2, true, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
// for testing double
pass = pass && reduce_blockwise_test<float, float, ReduceOpId, PropagateNan, OutputIndex>(
true, 2, true, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
// for testing bhalf_t
pass = pass &&
reduce_blockwise_test<ck::bhalf_t, float, ReduceOpId, PropagateNan, OutputIndex>(
true, 2, true, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
// for testing int8_t
pass =
pass && reduce_blockwise_test<int8_t, int32_t, ReduceOpId, PropagateNan, OutputIndex>(
true, 2, true, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
// for testing 3D input
pass = pass && reduce_blockwise_test<float, float, ReduceOpId, PropagateNan, OutputIndex>(
true, 2, true, {16, 64, 960}, {0, 1}, 1.0f, 0.0f);
// for testing 5D input
pass = pass && reduce_blockwise_test<float, float, ReduceOpId, PropagateNan, OutputIndex>(
true, 2, true, {16, 64, 32, 2, 960}, {0, 1, 2, 3}, 1.0f, 0.0f);
}; };
return (pass ? 0 : 1); return (pass ? 0 : 1);
} };
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_multiblock.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_reduction.hpp"
#include "reduce_example_common.hpp"
template <typename InOutDataType,
typename AccDataType,
ck::ReduceTensorOp ReduceOpId,
ck::index_t Rank,
ck::index_t NumReduceDim,
bool PropagateNan,
bool OutputIndex>
int reduce_blockwise_impl(bool do_verification,
int init_method,
bool time_kernel,
const std::vector<size_t>& inLengths,
const std::vector<int>& reduceDims,
float alpha,
float beta)
{
using namespace ck;
using namespace ck::tensor_operation::device;
constexpr bool op_support_indices =
(ReduceOpId == ReduceTensorOp::MIN || ReduceOpId == ReduceTensorOp::MAX ||
ReduceOpId == ReduceTensorOp::AMAX);
constexpr bool invalid_reduce_1 = OutputIndex && !op_support_indices;
// 1) If InOutDataType is half_t, must use half_t as AccDataType for indexable reduction
// operations 2) If InOutDataType is half_t, must use float as AccDataType for non-indexable
// reduction operations
constexpr bool invalid_reduce_2 =
std::is_same<InOutDataType, half_t>::value &&
((!op_support_indices && !std::is_same<AccDataType, float>::value) ||
(op_support_indices && !std::is_same<AccDataType, half_t>::value));
// 1) If InOutDataType is float, must use float as AccDataType for indexable reduction
// operations
constexpr bool invalid_reduce_3 =
std::is_same<InOutDataType, float>::value &&
(op_support_indices && !std::is_same<AccDataType, float>::value);
// 1) If InOutDataType is int8_t, must use int8_t as AccDataType for indexable reduction
// operations 2) If InOutDataType is int8_t, must use int32_t as AccDataType for non-indexable
// reduction operations
constexpr bool invalid_reduce_4 =
std::is_same<InOutDataType, int8_t>::value &&
((!op_support_indices && !std::is_same<AccDataType, int32_t>::value) ||
(op_support_indices && !std::is_same<AccDataType, int8_t>::value));
// 1) If InOutDataType is int8_t, the supported operation must be either indexable operations or
// ADD/AVG
constexpr bool invalid_reduce_5 = std::is_same<InOutDataType, int8_t>::value &&
(!op_support_indices && ReduceOpId != ReduceTensorOp::ADD &&
ReduceOpId != ReduceTensorOp::AVG);
// 1) If InOutDataType is bhalf_t, must use float as AccDataType for all reduction operations
constexpr bool invalid_reduce_6 =
std::is_same<InOutDataType, bhalf_t>::value && !std::is_same<AccDataType, float>::value;
constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2 || invalid_reduce_3 ||
invalid_reduce_4 || invalid_reduce_5 || invalid_reduce_6);
if(invalid_reduce)
{
std::cerr << "The reduction setting is invalid, exiting!" << std::endl;
return (-1);
};
using ReduceOperation = typename reduce_binary_operator<ReduceOpId>::opType;
using InElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::InElementwiseOperation;
using AccElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::AccElementwiseOperation;
using DeviceReduceInstance =
ck::tensor_operation::device::DeviceReduceMultiBlock<InOutDataType,
AccDataType,
InOutDataType,
Rank,
NumReduceDim,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
InMemoryDataOperationEnum::Set,
PropagateNan,
OutputIndex,
false, // HaveIndexInputIfOutputIndex
256, // BlockSize
4, // MThreadClusterSize
64, // KThreadClusterSize
1, // MThreadSliceSize
1, // KThreadSliceSize
0, // InSrcVectorDim
1, // InSrceVectorSize
1>; // OutDstVectorSize
Tensor<InOutDataType> in(inLengths);
std::vector<size_t> outLengths;
std::vector<int> invariantDims = get_invariant_dims<Rank, NumReduceDim>(reduceDims);
if(invariantDims.empty())
outLengths.push_back(1);
else
for(auto dim : invariantDims)
outLengths.push_back(inLengths[dim]);
Tensor<InOutDataType> out_ref(outLengths);
Tensor<InOutDataType> out(outLengths);
Tensor<int> out_indices_ref(outLengths);
Tensor<int> out_indices(outLengths);
auto inStrides = in.mDesc.GetStrides();
auto outStrides = out.mDesc.GetStrides();
size_t invariant_total_length = out.mDesc.GetElementSize();
size_t reduce_total_length = in.mDesc.GetElementSize() / invariant_total_length;
std::size_t num_thread = 1;
if(do_verification)
{
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
break;
case 2:
in.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0},
num_thread);
}
if(beta != 0.0f)
for(size_t i = 0; i < out_ref.mDesc.GetElementSpaceSize(); i++)
out.mData[i] = out_ref.mData[i];
};
// these buffers are usually provided by the user application
DeviceMem in_dev(sizeof(InOutDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem out_dev(sizeof(InOutDataType) * out.mDesc.GetElementSpaceSize());
in_dev.ToDevice(in.mData.data());
if(beta != 0.0f)
out_dev.ToDevice(out.mData.data());
size_t indicesSizeInBytes = OutputIndex ? out.mDesc.GetElementSize() * sizeof(int32_t) : 0;
DeviceMem out_index_dev(indicesSizeInBytes);
InElementwiseOperation in_elementwise_op;
AccElementwiseOperation acc_elementwise_op;
std::tie(in_elementwise_op, acc_elementwise_op) =
reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator(
static_cast<int32_t>(reduce_total_length));
if(do_verification)
{
ReductionHost<InOutDataType,
AccDataType,
InOutDataType,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
Rank,
NumReduceDim,
PropagateNan,
OutputIndex>
hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);
hostReduce.Run(alpha,
in.mData.data(),
beta,
out_ref.mData.data(),
out_indices_ref.mData.data(),
in_elementwise_op,
acc_elementwise_op);
};
std::vector<ck::index_t> i_inLengths;
std::vector<ck::index_t> i_inStrides;
std::vector<ck::index_t> i_outLengths;
std::vector<ck::index_t> i_outStrides;
i_inLengths.assign(inLengths.begin(), inLengths.end());
i_inStrides.assign(inStrides.begin(), inStrides.end());
i_outLengths.assign(outLengths.begin(), outLengths.end());
i_outStrides.assign(outStrides.begin(), outStrides.end());
auto reduce = DeviceReduceInstance{};
auto argument_ptr = reduce.MakeArgumentPointer(i_inLengths,
i_inStrides,
i_outLengths,
i_outStrides,
reduceDims,
alpha,
beta,
in_dev.GetDeviceBuffer(),
nullptr,
out_dev.GetDeviceBuffer(),
out_index_dev.GetDeviceBuffer(),
in_elementwise_op,
acc_elementwise_op);
if(!reduce.IsSupportedArgument(argument_ptr.get()))
{
std::cerr
<< "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<< std::endl;
return (-2);
};
std::string reduce_name = reduce.GetTypeString();
auto invoker_ptr = reduce.MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t num_bytes = invariant_total_length * reduce_total_length * sizeof(InOutDataType) +
invariant_total_length * sizeof(InOutDataType);
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << reduce_name
<< std::endl;
bool pass = true;
if(do_verification)
{
out_dev.FromDevice(out.mData.data());
pass = pass && ck::utils::check_err(out.mData, out_ref.mData);
if(OutputIndex)
{
out_index_dev.FromDevice(out_indices.mData.data());
pass = pass && ck::utils::check_err(out_indices.mData, out_indices_ref.mData);
};
};
return (pass ? 0 : 1);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
template <ck::index_t Rank, ck::index_t NumReduceDim>
std::vector<int> get_invariant_dims(const std::vector<int>& reduceDims)
{
assert(NumReduceDim == reduceDims.size());
int reduceFlag = 0;
// flag the bits for the reduceDims
for(int i = 0; i < NumReduceDim; i++)
{
reduceFlag |= 1 << reduceDims[i];
};
std::vector<int> invariantDims;
// collect invariant dimensions
for(int i = 0; i < Rank; i++)
if((reduceFlag & (1 << i)) == 0)
{
invariantDims.push_back(i);
};
return invariantDims;
};
template <ck::index_t Rank, ck::index_t NumReduceDim>
struct ReduceShape
{
static constexpr ck::index_t Rank_ = Rank;
static constexpr ck::index_t NumReduceDim_ = NumReduceDim;
};
using reduce_shape_instances = std::tuple<ReduceShape<3, 1>,
ReduceShape<3, 2>,
ReduceShape<4, 1>,
ReduceShape<4, 2>,
ReduceShape<4, 3>,
ReduceShape<5, 1>,
ReduceShape<5, 2>,
ReduceShape<5, 3>,
ReduceShape<5, 4>>;
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/utility/reduction_enums.hpp"
#include "reduce_multiblock_atomic_add_impl.hpp"
#include "reduce_example_common.hpp"
using namespace ck;
using namespace ck::tensor_operation::device;
static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
{"verify", required_argument, nullptr, 'v'},
{"help", no_argument, nullptr, '?'},
{nullptr, 0, nullptr, 0}};
class SimpleAppArgs
{
private:
int option_index = 0;
public:
std::vector<size_t> inLengths = {16, 64, 32, 960};
std::vector<int> reduceDims = {0, 1, 2};
std::vector<float> scales = {1.0f, 0.0f};
bool do_verification = true;
int data_type = 1;
int init_method = 2;
bool time_kernel = true;
public:
void show_usage(const char* cmd)
{
std::cout << "Usage of " << cmd << std::endl;
std::cout << "--inLengths or -D, comma separated list of input tensor dimension lengths"
<< std::endl;
std::cout << "--reduceDims or -R, comma separated list of to-reduce dimensions"
<< std::endl;
std::cout << "--verify or -v, 1/0 to indicate whether to verify the reduction result by "
"comparing with the host-based reduction"
<< std::endl;
std::cout << "Arg1: data type (0: fp32, 1: fp64)" << std::endl;
std::cout << "Arg2 -- init method (0=no init, 1=single integer value, 2=scope integer "
"value, 3=decimal value)"
<< std::endl;
std::cout << "Arg3 -- time kernel (0=no, 1=yes)" << std::endl;
};
int processArgs(int argc, char* argv[])
{
using ck::host_common::getTypeValuesFromString;
int ch;
while(1)
{
ch = getopt_long(argc, argv, "D:R:v:l:", long_options, &option_index);
if(ch == -1)
break;
switch(ch)
{
case 'D':
if(!optarg)
throw std::runtime_error("Invalid option format!");
inLengths = getTypeValuesFromString<size_t>(optarg);
break;
case 'R':
if(!optarg)
throw std::runtime_error("Invalid option format!");
reduceDims = getTypeValuesFromString<int>(optarg);
break;
case 'v':
if(!optarg)
throw std::runtime_error("Invalid option format!");
do_verification = static_cast<bool>(std::atoi(optarg));
break;
case '?':
if(std::string(long_options[option_index].name) == "help")
{
show_usage(argv[0]);
return (-1);
};
break;
default: show_usage(argv[0]); return (-1);
};
};
if(optind + 3 > argc)
{
throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");
};
data_type = std::atoi(argv[optind++]);
init_method = std::atoi(argv[optind++]);
time_kernel = static_cast<bool>(std::atoi(argv[optind]));
if(scales.empty())
{
scales.push_back(1.0f);
scales.push_back(0.0f);
};
return (0);
};
};
template <typename InOutDataType,
typename AccDataType,
ReduceTensorOp ReduceOpId,
index_t PropagateNan>
bool reduce_multiblock_atomic_add_test(bool do_verification,
int init_method,
bool time_kernel,
const std::vector<size_t>& inLengths,
const std::vector<int>& reduceDims,
float alpha,
float beta)
{
bool matched = false;
int result = 0;
const auto tuple_object = reduce_shape_instances{};
static_for<0, std::tuple_size<reduce_shape_instances>::value, 1>{}([&](auto i) {
if(matched)
return;
using ShapeType = remove_cvref_t<decltype(std::get<i>(tuple_object))>;
if(ShapeType::Rank_ != inLengths.size() || ShapeType::NumReduceDim_ != reduceDims.size())
return;
result = reduce_multiblock_atomic_add_impl<InOutDataType,
AccDataType,
ReduceOpId,
ShapeType::Rank_,
ShapeType::NumReduceDim_,
PropagateNan>(
do_verification, init_method, time_kernel, inLengths, reduceDims, alpha, beta);
matched = true;
});
return (result == 0) ? true : false;
};
constexpr ReduceTensorOp ReduceOpId = ReduceTensorOp::AVG;
constexpr bool PropagateNan = true;
int main(int argc, char* argv[])
{
bool pass = true;
if(argc > 1)
{
SimpleAppArgs arg;
if(arg.processArgs(argc, argv) < 0)
return (-1);
if(arg.data_type == 0)
{
pass = reduce_multiblock_atomic_add_test<float, float, ReduceOpId, PropagateNan>(
arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
}
else if(arg.data_type == 1)
{
pass = reduce_multiblock_atomic_add_test<double, double, ReduceOpId, PropagateNan>(
arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inLengths,
arg.reduceDims,
arg.scales[0],
arg.scales[1]);
}
}
else
{
// for testing float
pass = pass && reduce_multiblock_atomic_add_test<float, float, ReduceOpId, PropagateNan>(
true, 2, false, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
// for testing double
pass = pass && reduce_multiblock_atomic_add_test<double, double, ReduceOpId, PropagateNan>(
true, 2, false, {16, 64, 32, 960}, {0, 1, 2}, 1.0f, 0.0f);
// for testing 3D input
pass = pass && reduce_multiblock_atomic_add_test<float, float, ReduceOpId, PropagateNan>(
true, 2, false, {16, 64, 960}, {0, 1}, 1.0f, 0.0f);
// for testing 5D input
pass = pass && reduce_multiblock_atomic_add_test<float, float, ReduceOpId, PropagateNan>(
true, 2, false, {16, 64, 32, 2, 960}, {0, 1, 2, 3}, 1.0f, 0.0f);
};
return (pass ? 0 : 1);
};
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_multiblock.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_reduction.hpp"
#include "reduce_example_common.hpp"
template <typename InOutDataType,
typename AccDataType,
ck::ReduceTensorOp ReduceOpId,
ck::index_t Rank,
ck::index_t NumReduceDim,
bool PropagateNan>
int reduce_multiblock_atomic_add_impl(bool do_verification,
int init_method,
bool time_kernel,
const std::vector<size_t>& inLengths,
const std::vector<int>& reduceDims,
float alpha,
float beta)
{
using namespace ck;
using namespace ck::tensor_operation::device;
constexpr bool op_support_atomic_add =
(ReduceOpId == ReduceTensorOp::ADD || ReduceOpId == ReduceTensorOp::AVG);
constexpr bool invalid_reduce_1 = !op_support_atomic_add;
constexpr bool invalid_reduce_2 =
!(std::is_same<InOutDataType, float>::value || std::is_same<InOutDataType, double>::value);
constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2);
if(invalid_reduce)
{
std::cerr << "The reduction setting is invalid, exiting!" << std::endl;
return (-1);
};
using ReduceOperation = typename reduce_binary_operator<ReduceOpId>::opType;
using InElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::InElementwiseOperation;
using AccElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::AccElementwiseOperation;
using DeviceReduceInstance =
ck::tensor_operation::device::DeviceReduceMultiBlock<InOutDataType,
AccDataType,
InOutDataType,
Rank,
NumReduceDim,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
InMemoryDataOperationEnum::AtomicAdd,
PropagateNan,
false,
false, // HaveIndexInputIfOutputIndex
256,
4,
64,
1,
1,
0,
1,
1>;
Tensor<InOutDataType> in(inLengths);
std::vector<size_t> outLengths;
std::vector<int> invariantDims = get_invariant_dims<Rank, NumReduceDim>(reduceDims);
if(invariantDims.empty())
outLengths.push_back(1);
else
for(auto dim : invariantDims)
outLengths.push_back(inLengths[dim]);
Tensor<InOutDataType> out_ref(outLengths);
Tensor<InOutDataType> out(outLengths);
auto inStrides = in.mDesc.GetStrides();
auto outStrides = out.mDesc.GetStrides();
size_t invariant_total_length = out.mDesc.GetElementSize();
size_t reduce_total_length = in.mDesc.GetElementSize() / invariant_total_length;
std::size_t num_thread = 1;
if(do_verification)
{
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
break;
case 2:
in.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0},
num_thread);
}
if(beta != 0.0f)
for(size_t i = 0; i < out_ref.mDesc.GetElementSpaceSize(); i++)
out.mData[i] = out_ref.mData[i];
};
// these buffers are usually provided by the user application
DeviceMem in_dev(sizeof(InOutDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem out_dev(sizeof(InOutDataType) * out.mDesc.GetElementSpaceSize());
in_dev.ToDevice(in.mData.data());
if(beta != 0.0f)
out_dev.ToDevice(out.mData.data());
InElementwiseOperation in_elementwise_op;
AccElementwiseOperation acc_elementwise_op;
std::tie(in_elementwise_op, acc_elementwise_op) =
reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator(
static_cast<int32_t>(reduce_total_length));
if(do_verification)
{
ReductionHost<InOutDataType,
AccDataType,
InOutDataType,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
Rank,
NumReduceDim,
PropagateNan,
false>
hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);
hostReduce.Run(alpha,
in.mData.data(),
beta,
out_ref.mData.data(),
nullptr,
in_elementwise_op,
acc_elementwise_op);
};
std::vector<ck::index_t> i_inLengths;
std::vector<ck::index_t> i_inStrides;
std::vector<ck::index_t> i_outLengths;
std::vector<ck::index_t> i_outStrides;
i_inLengths.assign(inLengths.begin(), inLengths.end());
i_inStrides.assign(inStrides.begin(), inStrides.end());
i_outLengths.assign(outLengths.begin(), outLengths.end());
i_outStrides.assign(outStrides.begin(), outStrides.end());
auto reduce = DeviceReduceInstance{};
auto argument_ptr = reduce.MakeArgumentPointer(i_inLengths,
i_inStrides,
i_outLengths,
i_outStrides,
reduceDims,
alpha,
beta,
in_dev.GetDeviceBuffer(),
nullptr,
out_dev.GetDeviceBuffer(),
nullptr,
in_elementwise_op,
acc_elementwise_op);
if(!reduce.IsSupportedArgument(argument_ptr.get()))
{
std::cerr
<< "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<< std::endl;
return (-2);
};
std::string reduce_name = reduce.GetTypeString();
auto invoker_ptr = reduce.MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t num_bytes = invariant_total_length * reduce_total_length * sizeof(InOutDataType) +
invariant_total_length * sizeof(InOutDataType);
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << reduce_name
<< std::endl;
bool pass = true;
if(do_verification)
{
out_dev.FromDevice(out.mData.data());
pass = pass && ck::utils::check_err(out.mData, out_ref.mData);
};
return (pass ? 0 : 1);
}
add_example_executable(example_gemm_add_add_mean_meansquare_xdl_fp16 gemm_add_add_mean_meansquare_xdl_fp16.cpp)
add_example_executable(example_gemm_max_xdl_fp16 gemm_max_xdl_fp16.cpp)
add_example_executable(example_gemm_mean_meansquare_xdl_fp16 gemm_mean_meansquare_xdl_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
// DataType
using ADataType = F16;
using BDataType = F16;
using GemmAccDataType = F32;
using CShuffleDataType = F32;
using D0DataType = F16;
using D1DataType = F16;
using DsDataType = ck::Tuple<D0DataType, D1DataType>;
using EDataType = F16;
using ReduceAccDataType = F32;
using R0DataType = F32;
using R1DataType = F32;
using RsDataType = ck::Tuple<R0DataType, R1DataType>;
// Layout
using ALayout = Row;
using BLayout = Col;
using D1Layout = Row;
using ELayout = D1Layout;
// Elementwise op
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddAdd = ck::tensor_operation::element_wise::AddAdd;
using Square = ck::tensor_operation::element_wise::UnarySquare;
using Div = ck::tensor_operation::element_wise::UnaryDivide;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddAdd;
using QsElementOp = ck::Tuple<PassThrough, Square>;
using RsElementOp = ck::Tuple<Div, Div>;
// ReduceOp
using R0ThreadReduceOp = ck::reduce::Add;
using R1ThreadReduceOp = ck::reduce::Add;
using RsThreadReduceOp = ck::Tuple<R0ThreadReduceOp, R1ThreadReduceOp>;
static constexpr auto R0GlobalReduceOp = ck::InMemoryDataOperationEnum::AtomicAdd;
static constexpr auto R1GlobalReduceOp = ck::InMemoryDataOperationEnum::AtomicAdd;
using RsGlobalReduceOp = ck::InMemoryDataOperationEnumSequence<R0GlobalReduceOp, R1GlobalReduceOp>;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleDMultipleR_Xdl_CShuffle
//######| ALayout| BLayout| ELayout| AData| BData| GemmAccData| CShuffle| DsData| EData| ReduceAccData| RsData| A| B| CDE| Qs| Rs| Thread| Global| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CDRThreadTransfer| CDE| RThreadTransfer|
//######| | | | Type| Type| Type| DataType| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ReduceThreadTransfer| DstScalarPerVector|
//######| | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _MPerBlock_NPerBlock| ScalarPerVector| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _NPerBlock| |
< ALayout, BLayout, ELayout, ADataType, BDataType, GemmAccDataType, CShuffleDataType, DsDataType, EDataType, ReduceAccDataType, RsDataType, AElementOp, BElementOp, CDEElementOp, QsElementOp, RsElementOp, RsThreadReduceOp, RsGlobalReduceOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<64, 4>, 4, 1>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
EDataType,
GemmAccDataType,
AElementOp,
BElementOp,
PassThrough>;
template <typename ADataType,
typename BDataType,
typename D0DataType,
typename D1DataType,
typename EDataType,
typename R0DataType,
typename R1DataType>
void DumpPerf(float ave_time, int M, int N, int K)
{
std::size_t flop = std::size_t(2) * M * N * K + std::size_t(2) * M * N;
std::size_t gemm_num_byte = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(D0DataType) * M * N + sizeof(D1DataType) * M * N +
sizeof(EDataType) * M * N + sizeof(R0DataType) * M +
sizeof(R1DataType) * M;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gemm_gb_per_sec = gemm_num_byte / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gemm_gb_per_sec
<< " GB/s, " << std::endl;
}
auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({len}),
std::vector<std::size_t>({stride}));
};
auto f_host_tensor_descriptor2d =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
int main()
{
ck::index_t M = 1024;
ck::index_t N = 1024;
ck::index_t K = 1024;
ck::index_t StrideA = 1024;
ck::index_t StrideB = 1024;
ck::index_t StrideD0 = 0;
ck::index_t StrideD1 = 1024;
ck::index_t StrideE = 1024;
Tensor<ADataType> a_m_k(f_host_tensor_descriptor2d(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor2d(K, N, StrideB, BLayout{}));
Tensor<D0DataType> d0_n(f_host_tensor_descriptor1d(N, 1));
Tensor<D1DataType> d1_m_n(f_host_tensor_descriptor2d(M, N, StrideD1, D1Layout{}));
Tensor<EDataType> e_m_n(f_host_tensor_descriptor2d(M, N, StrideE, ELayout{}));
Tensor<R0DataType> r0_m(f_host_tensor_descriptor1d(M, 1));
Tensor<R1DataType> r1_m(f_host_tensor_descriptor1d(M, 1));
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{-1, 1});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-1, 1});
d0_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{-1, 1});
d1_m_n.GenerateTensorValue(GeneratorTensor_3<D1DataType>{-1, 1});
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem d0_device_buf(sizeof(D0DataType) * d0_n.mDesc.GetElementSpaceSize());
DeviceMem d1_device_buf(sizeof(D1DataType) * d1_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n.mDesc.GetElementSpaceSize());
DeviceMem r0_device_buf(sizeof(R0DataType) * r0_m.mDesc.GetElementSpaceSize());
DeviceMem r1_device_buf(sizeof(R1DataType) * r1_m.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
d0_device_buf.ToDevice(d0_n.mData.data());
d1_device_buf.ToDevice(d1_m_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
auto qs_element_op = QsElementOp{};
auto rs_element_op = RsElementOp{N, N};
// Prepare GEMM, mean, mean_square
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
{d0_device_buf.GetDeviceBuffer(), d1_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
{r0_device_buf.GetDeviceBuffer(), r1_device_buf.GetDeviceBuffer()},
M,
N,
K,
StrideA,
StrideB,
{StrideD0, StrideD1},
StrideE,
a_element_op,
b_element_op,
cde_element_op,
qs_element_op,
rs_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error("wrong! this device_op instance does not support this problem");
}
// init reducetion buffer to 0
r0_device_buf.SetZero();
r1_device_buf.SetZero();
invoker.Run(argument, StreamConfig{nullptr, false});
bool do_verification = true;
bool pass = true;
if(do_verification)
{
auto I0 = ck::Number<0>{};
auto I1 = ck::Number<1>{};
Tensor<EDataType> e_m_n_host(e_m_n.mDesc);
Tensor<R0DataType> r0_m_host(r0_m.mDesc);
Tensor<R1DataType> r1_m_host(r1_m.mDesc);
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, e_m_n_host, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
auto reduce0_op = R0ThreadReduceOp{};
auto reduce1_op = R1ThreadReduceOp{};
for(int m = 0; m < M; ++m)
{
auto reduce0_acc = reduce0_op.GetIdentityValue<ReduceAccDataType>();
auto reduce1_acc = reduce1_op.GetIdentityValue<ReduceAccDataType>();
for(int n = 0; n < N; ++n)
{
ReduceAccDataType square_e_val;
auto e_val = ck::type_convert<GemmAccDataType>(e_m_n_host(m, n));
auto d0_val = ck::type_convert<GemmAccDataType>(d0_n(n));
auto d1_val = ck::type_convert<GemmAccDataType>(d1_m_n(m, n));
cde_element_op(e_val, e_val, d0_val, d1_val);
e_m_n_host(m, n) = ck::type_convert<EDataType>(e_val);
auto e_val_reduce = ck::type_convert<ReduceAccDataType>(e_val);
qs_element_op[I1](square_e_val, e_val_reduce);
reduce0_op(reduce0_acc, e_val_reduce);
reduce1_op(reduce1_acc, square_e_val);
}
rs_element_op[I0](reduce0_acc, reduce0_acc);
rs_element_op[I1](reduce1_acc, reduce1_acc);
r0_m_host(m) = ck::type_convert<R0DataType>(reduce0_acc);
r1_m_host(m) = ck::type_convert<R1DataType>(reduce1_acc);
}
e_device_buf.FromDevice(e_m_n.mData.data());
r0_device_buf.FromDevice(r0_m.mData.data());
r1_device_buf.FromDevice(r1_m.mData.data());
pass = ck::utils::check_err(
e_m_n.mData, e_m_n_host.mData, "Error: Incorrect results c", 1e-2, 1e-2);
pass &= ck::utils::check_err(
r0_m.mData, r0_m_host.mData, "Error: Incorrect results d0", 1e-2, 1e-2);
pass &= ck::utils::check_err(
r1_m.mData, r1_m_host.mData, "Error: Incorrect results d1", 1e-2, 1e-2);
}
bool time_kernel = true;
if(time_kernel)
{
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
DumpPerf<ADataType, BDataType, D0DataType, D1DataType, EDataType, R0DataType, R1DataType>(
ave_time, M, N, K);
}
return pass ? 0 : 1;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using F64 = double;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
// DataType
using ADataType = F16;
using BDataType = F16;
using GemmAccDataType = F32;
using CShuffleDataType = F32;
using DsDataType = ck::Tuple<>;
using EDataType = F16;
using ReduceAccDataType = F32;
using R0DataType = F32;
using RsDataType = ck::Tuple<R0DataType>;
// Layout
using ALayout = Row;
using BLayout = Col;
using ELayout = Row;
// Elementwise op
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
using QsElementOp = ck::Tuple<PassThrough>;
using RsElementOp = ck::Tuple<PassThrough>;
// ReduceOp
using RsThreadReduceOp = ck::Tuple<ck::reduce::Max>;
using RsGlobalReduceOp =
ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicMax>;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleDMultipleR_Xdl_CShuffle
//######| ALayout| BLayout| ELayout| AData| BData| GemmAccData| CShuffle| DsData| EData| ReduceAccData| RsData| A| B| CDE| Qs| Rs| Thread| Global| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CDRThreadTransfer| CDE| RThreadTransfer|
//######| | | | Type| Type| Type| DataType| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ReduceThreadTransfer| DstScalarPerVector|
//######| | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _MPerBlock_NPerBlock| ScalarPerVector| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _NPerBlock| |
< ALayout, BLayout, ELayout, ADataType, BDataType, GemmAccDataType, CShuffleDataType, DsDataType, EDataType, ReduceAccDataType, RsDataType, AElementOp, BElementOp, CDEElementOp, QsElementOp, RsElementOp, RsThreadReduceOp, RsGlobalReduceOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<64, 4>, 4, 1>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
EDataType,
GemmAccDataType,
AElementOp,
BElementOp,
CDEElementOp>;
template <typename ADataType, typename BDataType, typename EDataType, typename R0DataType>
void DumpPerf(float ave_time, int M, int N, int K)
{
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t gemm_num_byte = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(EDataType) * M * N + sizeof(R0DataType) * M;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gemm_gb_per_sec = gemm_num_byte / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gemm_gb_per_sec
<< " GB/s, " << std::endl;
}
auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({len}),
std::vector<std::size_t>({stride}));
};
auto f_host_tensor_descriptor2d =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
int main()
{
ck::index_t M = 1024;
ck::index_t N = 1024;
ck::index_t K = 1024;
ck::index_t StrideA = 1024;
ck::index_t StrideB = 1024;
ck::index_t StrideE = 1024;
Tensor<ADataType> a_m_k(f_host_tensor_descriptor2d(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor2d(K, N, StrideB, BLayout{}));
Tensor<EDataType> e_m_n(f_host_tensor_descriptor2d(M, N, StrideE, ELayout{}));
Tensor<R0DataType> r0_m(f_host_tensor_descriptor1d(M, 1));
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{-1, 1});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-1, 1});
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n.mDesc.GetElementSpaceSize());
DeviceMem r0_device_buf(sizeof(R0DataType) * r0_m.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
auto qs_element_op = QsElementOp{};
auto rs_element_op = RsElementOp{};
// Prepare GEMM, max
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument = device_op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
{},
e_device_buf.GetDeviceBuffer(),
{r0_device_buf.GetDeviceBuffer()},
M,
N,
K,
StrideA,
StrideB,
{},
StrideE,
a_element_op,
b_element_op,
cde_element_op,
qs_element_op,
rs_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error("wrong! this device_op instance does not support this problem");
}
// [CAUSION]: launch_and_time_kernel will not initialize D.
// If we evaluate kernel multiple time but without initialize D. Verification will fail
r0_device_buf.SetValue(ck::NumericLimits<R0DataType>::Lowest());
invoker.Run(argument, StreamConfig{nullptr, false});
bool do_verification = true;
bool pass = true;
if(do_verification)
{
auto I0 = ck::Number<0>{};
Tensor<EDataType> e_m_n_host(e_m_n.mDesc);
Tensor<R0DataType> r0_m_host(r0_m.mDesc);
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, e_m_n_host, a_element_op, b_element_op, cde_element_op);
ref_invoker.Run(ref_argument);
auto reduce0_op = RsThreadReduceOp{}[I0];
for(int m = 0; m < M; ++m)
{
auto reduce0_acc = reduce0_op.GetIdentityValue<ReduceAccDataType>();
for(int n = 0; n < N; ++n)
{
auto e_val = ck::type_convert<ReduceAccDataType>(e_m_n_host(m, n));
reduce0_op(reduce0_acc, e_val);
};
r0_m_host(m) = ck::type_convert<R0DataType>(reduce0_acc);
}
e_device_buf.FromDevice(e_m_n.mData.data());
r0_device_buf.FromDevice(r0_m.mData.data());
pass = ck::utils::check_err(
e_m_n.mData, e_m_n_host.mData, "Error: Incorrect results c", 1e-2, 1e-2);
pass &= ck::utils::check_err(
r0_m.mData, r0_m_host.mData, "Error: Incorrect results d0", 1e-2, 1e-2);
}
bool time_kernel = true;
if(time_kernel)
{
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
DumpPerf<ADataType, BDataType, EDataType, R0DataType>(ave_time, M, N, K);
}
return pass ? 0 : 1;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
// DataType
using ADataType = F16;
using BDataType = F16;
using GemmAccDataType = F32;
using CShuffleDataType = F32;
using DsDataType = ck::Tuple<>;
using EDataType = F16;
using ReduceAccDataType = F32;
using R0DataType = F32;
using R1DataType = F32;
using RsDataType = ck::Tuple<R0DataType, R1DataType>;
// Layout
using ALayout = Row;
using BLayout = Col;
using ELayout = Row;
// Elementwise op
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Square = ck::tensor_operation::element_wise::UnarySquare;
using Div = ck::tensor_operation::element_wise::UnaryDivide;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
using QsElementOp = ck::Tuple<PassThrough, Square>;
using RsElementOp = ck::Tuple<Div, Div>;
// ReduceOp
using R0ThreadReduceOp = ck::reduce::Add;
using R1ThreadReduceOp = ck::reduce::Add;
using RsThreadReduceOp = ck::Tuple<R0ThreadReduceOp, R1ThreadReduceOp>;
static constexpr auto R0GlobalReduceOp = ck::InMemoryDataOperationEnum::AtomicAdd;
static constexpr auto R1GlobalReduceOp = ck::InMemoryDataOperationEnum::AtomicAdd;
using RsGlobalReduceOp = ck::InMemoryDataOperationEnumSequence<R0GlobalReduceOp, R1GlobalReduceOp>;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleDMultipleR_Xdl_CShuffle
//######| ALayout| BLayout| ELayout| AData| BData| GemmAccData| CShuffle| DsData| EData| ReduceAccData| RsData| A| B| CDE| Qs| Rs| Thread| Global| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CDRThreadTransfer| CDE| RThreadTransfer|
//######| | | | Type| Type| Type| DataType| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ReduceThreadTransfer| DstScalarPerVector|
//######| | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _MPerBlock_NPerBlock| ScalarPerVector| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _NPerBlock| |
< ALayout, BLayout, ELayout, ADataType, BDataType, GemmAccDataType, CShuffleDataType, DsDataType, EDataType, ReduceAccDataType, RsDataType, AElementOp, BElementOp, CDEElementOp, QsElementOp, RsElementOp, RsThreadReduceOp, RsGlobalReduceOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<64, 4>, 4, 1>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
EDataType,
GemmAccDataType,
AElementOp,
BElementOp,
CDEElementOp>;
template <typename ADataType,
typename BDataType,
typename EDataType,
typename R0DataType,
typename R1DataType>
void DumpPerf(float ave_time, int M, int N, int K)
{
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t gemm_num_byte = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(EDataType) * M * N + sizeof(R0DataType) * M +
sizeof(R1DataType) * M;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gemm_gb_per_sec = gemm_num_byte / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gemm_gb_per_sec
<< " GB/s, " << std::endl;
}
auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({len}),
std::vector<std::size_t>({stride}));
};
auto f_host_tensor_descriptor2d =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
int main()
{
ck::index_t M = 1024;
ck::index_t N = 1024;
ck::index_t K = 1024;
ck::index_t StrideA = 1024;
ck::index_t StrideB = 1024;
ck::index_t StrideE = 1024;
Tensor<ADataType> a_m_k(f_host_tensor_descriptor2d(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor2d(K, N, StrideB, BLayout{}));
Tensor<EDataType> e_m_n(f_host_tensor_descriptor2d(M, N, StrideE, ELayout{}));
Tensor<R0DataType> r0_m(f_host_tensor_descriptor1d(M, 1));
Tensor<R1DataType> r1_m(f_host_tensor_descriptor1d(M, 1));
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{-1, 1});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-1, 1});
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n.mDesc.GetElementSpaceSize());
DeviceMem r0_device_buf(sizeof(R0DataType) * r0_m.mDesc.GetElementSpaceSize());
DeviceMem r1_device_buf(sizeof(R1DataType) * r1_m.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
auto qs_element_op = QsElementOp{};
auto rs_element_op = RsElementOp{N, N};
// Prepare GEMM, mean, mean_square
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
{},
e_device_buf.GetDeviceBuffer(),
{r0_device_buf.GetDeviceBuffer(), r1_device_buf.GetDeviceBuffer()},
M,
N,
K,
StrideA,
StrideB,
{},
StrideE,
a_element_op,
b_element_op,
cde_element_op,
qs_element_op,
rs_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error("wrong! this device_op instance does not support this problem");
}
// init reducetion buffer to 0
r0_device_buf.SetZero();
r1_device_buf.SetZero();
invoker.Run(argument, StreamConfig{nullptr, false});
bool do_verification = true;
bool pass = true;
if(do_verification)
{
auto I0 = ck::Number<0>{};
auto I1 = ck::Number<1>{};
Tensor<EDataType> e_m_n_host(e_m_n.mDesc);
Tensor<R0DataType> r0_m_host(r0_m.mDesc);
Tensor<R1DataType> r1_m_host(r1_m.mDesc);
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, e_m_n_host, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
auto reduce0_op = R0ThreadReduceOp{};
auto reduce1_op = R1ThreadReduceOp{};
for(int m = 0; m < M; ++m)
{
auto reduce0_acc = reduce0_op.GetIdentityValue<ReduceAccDataType>();
auto reduce1_acc = reduce1_op.GetIdentityValue<ReduceAccDataType>();
for(int n = 0; n < N; ++n)
{
ReduceAccDataType square_e_val;
auto e_val = ck::type_convert<ReduceAccDataType>(e_m_n_host(m, n));
qs_element_op[I1](square_e_val, e_val);
reduce0_op(reduce0_acc, e_val);
reduce1_op(reduce1_acc, square_e_val);
}
rs_element_op[I0](reduce0_acc, reduce0_acc);
rs_element_op[I1](reduce1_acc, reduce1_acc);
r0_m_host(m) = ck::type_convert<R0DataType>(reduce0_acc);
r1_m_host(m) = ck::type_convert<R1DataType>(reduce1_acc);
}
e_device_buf.FromDevice(e_m_n.mData.data());
r0_device_buf.FromDevice(r0_m.mData.data());
r1_device_buf.FromDevice(r1_m.mData.data());
pass = ck::utils::check_err(
e_m_n.mData, e_m_n_host.mData, "Error: Incorrect results c", 1e-2, 1e-2);
pass &= ck::utils::check_err(
r0_m.mData, r0_m_host.mData, "Error: Incorrect results d0", 1e-2, 1e-2);
pass &= ck::utils::check_err(
r1_m.mData, r1_m_host.mData, "Error: Incorrect results d1", 1e-2, 1e-2);
}
bool time_kernel = true;
if(time_kernel)
{
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
DumpPerf<ADataType, BDataType, EDataType, R0DataType, R1DataType>(ave_time, M, N, K);
}
return pass ? 0 : 1;
}
add_example_executable(example_gemm_reduce_xdl_max_fp16 gemm_reduce_xdl_max_fp16.cpp)
add_example_executable(example_gemm_reduce_xdl_mean_squaremean_fp16 gemm_reduce_xdl_mean_squaremean_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_reduce_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using F64 = double;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using ADataType = F16;
using BDataType = F16;
using CDataType = F16;
using GemmAccDataType = F32;
using ReduceAccDataType = F32;
using ReduceDataType = F64;
using ReducePtrsGlobal = ck::Tuple<ReduceDataType*>;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
using ReduceOps = ck::Tuple<ck::reduce::Max>;
using ReduceElementOps = ck::Tuple<ck::tensor_operation::element_wise::PassThrough>;
using ReduceGlobalMemOps =
ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicMax>;
static constexpr auto GemmSpecialization =
ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmReduceInstance = ck::tensor_operation::device::DeviceGemmReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| ReduceData| A| B| C| Reduce| ReduceInEleOp| ReduceAccEleOp| Reduce| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Operation| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< Row, Col, Row, F16, F16, F16, F32, F32, ReduceAccDataType, ReducePtrsGlobal, AElementOp, BElementOp, CElementOp, ReduceOps, ReduceElementOps, ReduceElementOps, ReduceGlobalMemOps, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
GemmAccDataType,
AElementOp,
BElementOp,
CElementOp>;
template <typename ADataType, typename BDataType, typename CDataType, typename ReduceDataType>
void DumpGemmLayerNormPerf(float gemm_reduce_time, int M, int N, int K)
{
std::size_t gemm_flop = std::size_t(2) * M * N * K;
std::size_t gemm_num_byte = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(CDataType) * M * N + sizeof(ReduceDataType) * M;
float tflops = static_cast<float>(gemm_flop) / 1.E9 / gemm_reduce_time;
float gemm_gb_per_sec = gemm_num_byte / 1.E6 / gemm_reduce_time;
std::cout << "gemm + reduceMax Perf: " << gemm_reduce_time << " ms, " << tflops << " TFlops, "
<< gemm_gb_per_sec << " GB/s, " << std::endl;
}
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideC = 4096;
if(argc == 1)
{
// do nothing
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 10)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideC = std::stoi(argv[9]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: run kernel # of times (>1)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<ReduceDataType> reduce_m_host_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<ReduceDataType> reduce_m_device_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
std::cout << "reduce_m: " << reduce_m_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
}
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
DeviceMem reduce_device_buf(sizeof(ReduceDataType) *
reduce_m_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{};
auto reduce_element_op = ReduceElementOps{}[ck::Number<0>{}];
std::array<void*, 3> gemm_element_ops = {&a_element_op, &b_element_op, &c_element_op};
std::array<void*, 1> reduce_element_ops = {&reduce_element_op};
std::array<void*, 1> p_reduces = {reduce_device_buf.GetDeviceBuffer()};
// do GEMM
auto gemm = DeviceGemmReduceInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
nullptr,
{},
c_device_buf.GetDeviceBuffer(),
p_reduces,
M,
N,
K,
StrideA,
StrideB,
StrideC,
{},
gemm_element_ops,
{},
reduce_element_ops,
reduce_element_ops);
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
// [CAUSION]: launch_and_time_kernel will not initialize D.
// If we evaluate kernel multiple time but without initialize D. Verification will fail
reduce_device_buf.SetValue(ck::NumericLimits<ReduceDataType>::Lowest());
invoker.Run(argument, StreamConfig{nullptr, false});
bool pass = true;
if(do_verification)
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
reduce_device_buf.FromDevice(reduce_m_device_result.mData.data());
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
auto reduce_op = ReduceOps{}[ck::Number<0>{}];
for(int m = 0; m < M; ++m)
{
ReduceAccDataType reduce_acc = reduce_op.GetIdentityValue<ReduceAccDataType>();
for(int n = 0; n < N; ++n)
{
ReduceAccDataType curr_val =
ck::type_convert<ReduceAccDataType>(c_m_n_host_result(m, n));
reduce_op(reduce_acc, curr_val);
};
reduce_m_host_result(m) = reduce_acc;
}
pass = ck::utils::check_err(c_m_n_device_result.mData,
c_m_n_host_result.mData,
"Error: Incorrect results c") &&
ck::utils::check_err(reduce_m_device_result.mData,
reduce_m_host_result.mData,
"Error: Incorrect results d",
1e-3,
1e-3);
}
if(time_kernel)
{
float gemm_reduceMax_ave_time = invoker.Run(argument, StreamConfig{nullptr, true});
DumpGemmLayerNormPerf<ADataType, BDataType, CDataType, ReduceDataType>(
gemm_reduceMax_ave_time, M, N, K);
}
return pass ? 0 : 1;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_reduce_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using ADataType = F16;
using BDataType = F16;
using CDataType = F16;
using GemmAccDataType = F32;
using ReduceAccDataType = F32;
using ReduceDataType = F32;
using ReducePtrsGlobal = ck::Tuple<ReduceDataType*, ReduceDataType*>;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
using ReduceOp0 = ck::reduce::Add;
using ReduceOp1 = ck::reduce::Add;
using ReduceOps = ck::Tuple<ReduceOp0, ReduceOp1>;
using UnaryIdenticElementOp = ck::tensor_operation::element_wise::PassThrough;
using UnaryDivElementOp = ck::tensor_operation::element_wise::UnaryDivide;
using UnarySquareElementOp = ck::tensor_operation::element_wise::UnarySquare;
using ReduceInElementOps = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>;
using ReduceOutElementOps = ck::Tuple<UnaryDivElementOp, UnaryDivElementOp>;
using ReduceGlobalMemOps =
ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicAdd,
ck::InMemoryDataOperationEnum::AtomicAdd>;
static constexpr auto GemmSpecialization =
ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmReduceInstance = ck::tensor_operation::device::DeviceGemmReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| ReduceDData| A| B| C| Reduce| ReduceInEleOp| ReduceOutEleOp| Reduce| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Operation| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< Row, Col, Row, F16, F16, F16, F32, F32, F32, ReducePtrsGlobal, AElementOp, BElementOp, CElementOp, ReduceOps, ReduceInElementOps, ReduceOutElementOps, ReduceGlobalMemOps, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
GemmAccDataType,
AElementOp,
BElementOp,
CElementOp>;
template <typename ADataType, typename BDataType, typename CDataType, typename ReduceDataType>
void DumpGemmLayerNormPerf(float gemm_reduce_time, int M, int N, int K)
{
std::size_t gemm_flop = std::size_t(2) * M * N * K;
std::size_t gemm_num_byte = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(CDataType) * M * N + sizeof(ReduceDataType) * M +
sizeof(ReduceDataType) * M;
float tflops = static_cast<float>(gemm_flop) / 1.E9 / gemm_reduce_time;
float gemm_gb_per_sec = gemm_num_byte / 1.E6 / gemm_reduce_time;
std::cout << "gemm + reduce_mean + reduce_mean_square Perf: " << gemm_reduce_time << " ms, "
<< tflops << " TFlops, " << gemm_gb_per_sec << " GB/s, " << std::endl;
}
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideC = 4096;
if(argc == 1)
{
// do nothing
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 10)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideC = std::stoi(argv[9]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<ReduceDataType> reduce0_m_host_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
Tensor<ReduceDataType> reduce1_m_host_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<ReduceDataType> reduce0_m_device_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
Tensor<ReduceDataType> reduce1_m_device_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
std::cout << "reduce0_m: " << reduce0_m_host_result.mDesc << std::endl;
std::cout << "reduce1_m: " << reduce1_m_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
}
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
DeviceMem reduce0_device_buf(sizeof(ReduceDataType) *
reduce0_m_device_result.mDesc.GetElementSpaceSize());
DeviceMem reduce1_device_buf(sizeof(ReduceDataType) *
reduce1_m_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{};
std::array<void*, 3> gemm_element_ops = {&a_element_op, &b_element_op, &c_element_op};
auto passthrough = UnaryIdenticElementOp{};
auto square = UnarySquareElementOp{};
auto div = UnaryDivElementOp{N};
std::array<void*, 2> reduce_in_element_ops = {&passthrough, &square};
std::array<void*, 2> reduce_out_element_ops = {&div, &div};
std::array<void*, 2> p_reduces = {reduce0_device_buf.GetDeviceBuffer(),
reduce1_device_buf.GetDeviceBuffer()};
// do GEMM
auto gemm = DeviceGemmReduceInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
nullptr,
{},
c_device_buf.GetDeviceBuffer(),
p_reduces,
M,
N,
K,
StrideA,
StrideB,
StrideC,
{},
gemm_element_ops,
{},
reduce_in_element_ops,
reduce_out_element_ops);
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
// init reducetion buffer to 0
reduce0_device_buf.SetZero();
reduce1_device_buf.SetZero();
// if time_kernel == true, kernel will run multiple times. This kernel use atomic-add so result
// will not be correct. need to set time_kernel = false for correctness test
invoker.Run(argument, StreamConfig{nullptr, false});
bool pass = true;
if(do_verification)
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
reduce0_device_buf.FromDevice(reduce0_m_device_result.mData.data());
reduce1_device_buf.FromDevice(reduce1_m_device_result.mData.data());
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
auto reduce0_op = ReduceOp0{};
auto reduce1_op = ReduceOp1{};
for(int m = 0; m < M; ++m)
{
auto reduce0_acc = reduce0_op.GetIdentityValue<ReduceAccDataType>();
auto reduce1_acc = reduce1_op.GetIdentityValue<ReduceAccDataType>();
for(int n = 0; n < N; ++n)
{
auto c_val = ck::type_convert<ReduceAccDataType>(c_m_n_host_result(m, n));
ReduceAccDataType square_c_val;
square(square_c_val, c_val);
reduce0_op(reduce0_acc, c_val);
reduce1_op(reduce1_acc, square_c_val);
}
div(reduce0_acc, reduce0_acc);
div(reduce1_acc, reduce1_acc);
reduce0_m_host_result(m) = ck::type_convert<ReduceDataType>(reduce0_acc);
reduce1_m_host_result(m) = ck::type_convert<ReduceDataType>(reduce1_acc);
}
pass = ck::utils::check_err(c_m_n_device_result.mData,
c_m_n_host_result.mData,
"Error: Incorrect results c") &&
ck::utils::check_err(reduce0_m_device_result.mData,
reduce0_m_host_result.mData,
"Error: Incorrect results d0",
1e-4,
1e-5) &&
ck::utils::check_err(reduce1_m_device_result.mData,
reduce1_m_host_result.mData,
"Error: Incorrect results d1",
1e-3,
1e-5);
}
if(time_kernel)
{
float ave_time = invoker.Run(argument, StreamConfig{nullptr, true});
DumpGemmLayerNormPerf<ADataType, BDataType, CDataType, ReduceDataType>(ave_time, M, N, K);
}
return pass ? 0 : 1;
}
...@@ -30,7 +30,7 @@ add_subdirectory(12_reduce) ...@@ -30,7 +30,7 @@ add_subdirectory(12_reduce)
add_subdirectory(13_pool2d_fwd) add_subdirectory(13_pool2d_fwd)
add_subdirectory(14_gemm_xdl_requant_relu_requant) add_subdirectory(14_gemm_xdl_requant_relu_requant)
add_subdirectory(15_grouped_gemm) add_subdirectory(15_grouped_gemm)
add_subdirectory(16_gemm_reduce) add_subdirectory(16_gemm_multi_d_multi_reduces)
add_subdirectory(17_convnd_bwd_data) add_subdirectory(17_convnd_bwd_data)
add_subdirectory(18_batched_gemm_reduce) add_subdirectory(18_batched_gemm_reduce)
add_subdirectory(19_binary_elementwise) add_subdirectory(19_binary_elementwise)
......
#ifndef CK_BLOCKWISE_GEMM_XDLOPS_B_REGISTER_HPP
#define CK_BLOCKWISE_GEMM_XDLOPS_B_REGISTER_HPP
#include "ck/utility/common_header.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/warp/xdlops_gemm.hpp"
#include "ck/tensor_description/tensor_adaptor.hpp"
namespace ck {
template <index_t BlockSize,
typename FloatAB,
typename FloatAcc,
typename AK0MK1BlockDesc,
typename BK0K0BN0N1N2N3K1BlockDesc,
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPack>
struct BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1r1
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr index_t WaveSize = 64;
static constexpr index_t KPerBlock = K0PerBlock * KPack;
static constexpr index_t A_K0 = AK0MK1BlockDesc{}.GetLength(I0);
static constexpr index_t A_K1 = AK0MK1BlockDesc{}.GetLength(I2);
static constexpr auto xdlops_gemm = XdlopsGemm<FloatAB, MPerXDL, NPerXDL, KPack>{};
static constexpr index_t KPerThread = KPerBlock / xdlops_gemm.K0PerXdlops;
static constexpr index_t K0PerThread = K0PerBlock / xdlops_gemm.K0PerXdlops;
static constexpr index_t MWaves = MPerBlock / (MRepeat * MPerXDL);
static constexpr index_t NWaves = NPerBlock / (NRepeat * NPerXDL);
StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr,
FloatAcc,
MRepeat * NRepeat,
xdlops_gemm.GetRegSizePerXdlops(),
true>
c_thread_buf_;
__host__ __device__ constexpr auto& GetCThreadBuffer() { return c_thread_buf_; }
__device__ static auto GetWaveIdx()
{
const index_t thread_id = get_thread_local_1d_id();
constexpr auto threadid_to_wave_idx_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(MWaves, NWaves, WaveSize))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
return threadid_to_wave_idx_adaptor.CalculateBottomIndex(make_multi_index(thread_id));
}
__device__ static auto CalculateAThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto xdlops_a_idx = xdlops_gemm.CalculateAThreadOriginDataIndex();
return make_tuple(0, waveId_m, xdlops_a_idx[I1], KPerThread * xdlops_a_idx[I0]);
}
__device__ static auto CalculateBThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_n = wave_idx[I1];
const auto xdlops_b_idx = xdlops_gemm.CalculateBThreadOriginDataIndex();
return make_tuple(0, waveId_n, xdlops_b_idx[I1], KPerThread * xdlops_b_idx[I0]);
}
template <index_t m0, index_t n0, index_t xdlops_i, index_t blk_i>
__device__ static auto
CalculateCThreadOriginDataIndex(Number<m0>, Number<n0>, Number<xdlops_i>, Number<blk_i>)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto waveId_n = wave_idx[I1];
const auto blk_idx = xdlops_gemm.GetBeginOfThreadBlk(xdlops_i, blk_i);
constexpr auto mrepeat_mwave_mperxdl_to_m_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(MRepeat, MWaves, MPerXDL))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
constexpr auto nrepeat_nwave_nperxdl_to_n_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(NRepeat, NWaves, NPerXDL))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
const index_t c_thread_m = mrepeat_mwave_mperxdl_to_m_adaptor.CalculateBottomIndex(
make_tuple(m0, waveId_m, blk_idx[I0]))[I0];
const index_t c_thread_n = nrepeat_nwave_nperxdl_to_n_adaptor.CalculateBottomIndex(
make_tuple(n0, waveId_n, blk_idx[I1]))[I0];
return make_tuple(c_thread_m, c_thread_n);
}
__host__ __device__ BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1r1()
{
static_assert(AK0MK1BlockDesc::IsKnownAtCompileTime() &&
BK0K0BN0N1N2N3K1BlockDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
static_assert(BlockSize == MWaves * NWaves * WaveSize,
"BlockSize != MWaves * NWaves * WaveSize\n");
static_assert(MPerBlock % (MPerXDL * MRepeat) == 0 && NPerBlock % (NPerXDL * NRepeat) == 0,
"wrong!");
}
__host__ __device__ static constexpr auto GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_m0_m1_m2_n_tblk_lens = xdlops_gemm.GetCM0M1M2NThreadBlkLengths();
constexpr auto M0 = c_m0_m1_m2_n_tblk_lens[I0];
constexpr auto M1 = c_m0_m1_m2_n_tblk_lens[I1];
constexpr auto M2 = c_m0_m1_m2_n_tblk_lens[I2];
constexpr auto N = c_m0_m1_m2_n_tblk_lens[I3];
return make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, I1, I1, M0, M1, M2, N));
}
__host__ __device__ static constexpr auto GetCThreadDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_m0_m1_m2_n_tblk_lens = xdlops_gemm.GetCM0M1M2NThreadBlkLengths();
constexpr auto M0 = c_m0_m1_m2_n_tblk_lens[I0];
constexpr auto M1 = c_m0_m1_m2_n_tblk_lens[I1];
constexpr auto M2 = c_m0_m1_m2_n_tblk_lens[I2];
constexpr auto N = c_m0_m1_m2_n_tblk_lens[I3];
return make_naive_tensor_descriptor_packed(
make_tuple(I1, Number<MRepeat>{}, Number<NRepeat>{}, I1, I1, M0, M1, M2, N));
}
__host__ __device__ static constexpr auto GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_block_desc_m0_n0_m1_n1_m2_n2 =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
Number<NRepeat>{},
Number<MWaves>{},
Number<NWaves>{},
Number<MPerXDL>{},
Number<NPerXDL>{}));
return xdlops_gemm.MakeCDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_block_desc_m0_n0_m1_n1_m2_n2);
}
__host__ __device__ static constexpr auto GetCBlockDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_block_desc_g_m0_n0_m1_n1_m2_n2 =
make_naive_tensor_descriptor_packed(make_tuple(I1,
Number<MRepeat>{},
Number<NRepeat>{},
Number<MWaves>{},
Number<NWaves>{},
Number<MPerXDL>{},
Number<NPerXDL>{}));
return xdlops_gemm.MakeCDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(
c_block_desc_g_m0_n0_m1_n1_m2_n2);
}
template <typename CGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const auto c_grid_desc_m0_n0_m1_n1_m2_n2 = transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(M / (MWaves * MPerXDL), MWaves, MPerXDL)),
make_unmerge_transform(make_tuple(N / (NWaves * NPerXDL), NWaves, NPerXDL))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2, 4>{}, Sequence<1, 3, 5>{}));
return xdlops_gemm.MakeCDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m0_n0_m1_n1_m2_n2);
}
template <typename CGridDesc_G_M_N>
__host__ __device__ static constexpr auto
MakeCGridDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(const CGridDesc_G_M_N& c_grid_desc_g_m_n)
{
const auto G = c_grid_desc_g_m_n.GetLength(I0);
const auto M = c_grid_desc_g_m_n.GetLength(I1);
const auto N = c_grid_desc_g_m_n.GetLength(I2);
const auto c_grid_desc_g_m0_n0_m1_n1_m2_n2 = transform_tensor_descriptor(
c_grid_desc_g_m_n,
make_tuple(make_pass_through_transform(G),
make_unmerge_transform(make_tuple(M / (MWaves * MPerXDL), MWaves, MPerXDL)),
make_unmerge_transform(make_tuple(N / (NWaves * NPerXDL), NWaves, NPerXDL))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 3, 5>{}, Sequence<2, 4, 6>{}));
return xdlops_gemm.MakeCDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(
c_grid_desc_g_m0_n0_m1_n1_m2_n2);
}
__host__ __device__ static constexpr auto MakeABlockDescriptor_M0_M1_M2_K()
{
return transform_tensor_descriptor(
AK0MK1BlockDesc{},
make_tuple(
make_merge_transform_v3_division_mod(make_tuple(Number<A_K0>{}, Number<A_K1>{})),
make_unmerge_transform(
make_tuple(Number<MRepeat>{}, Number<MWaves>{}, Number<MPerXDL>{}))),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}),
make_tuple(Sequence<3>{}, Sequence<0, 1, 2>{}));
}
__device__ void MoveABlockSliceWindow()
{
a_thread_copy_.MoveSrcSliceWindow(a_block_desc_m0_m1_m2_k,
make_multi_index(0, 0, 0, K0PerBlock * KPack));
}
__device__ void ResetABlockStartWindow()
{
a_thread_copy_.SetSrcCoord(CalculateAThreadOriginDataIndex());
}
static constexpr auto a_block_desc_m0_m1_m2_k = MakeABlockDescriptor_M0_M1_M2_K();
template <typename ABlockBuffer, typename BBlockBuffer, typename CThreadBuffer>
__device__ void Run(const ABlockBuffer& a_block_buf,
const BBlockBuffer& b_thread_buf,
CThreadBuffer& c_thread_buf) const
{
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAB>(
a_thread_desc_.GetElementSpaceSize());
static_for<0, MRepeat, 1>{}([&](auto m0) {
// read A
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, I0, I0, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
// read B
static_for<0, KPerThread, KPack>{}([&](auto k) {
vector_type<FloatAB, KPack> a_thread_vec;
vector_type<FloatAB, KPack> b_thread_vec;
constexpr index_t k0 = k / KPack;
static_for<0, KPack, 1>{}([&](auto i) {
a_thread_vec.template AsType<FloatAB>()(i) = a_thread_buf
[Number<a_thread_desc_.CalculateOffset(make_tuple(0, 0, 0, k + i))>{}];
b_thread_vec.template AsType<FloatAB>()(i) = b_thread_buf
[Number<b_thread_desc_.CalculateOffset(make_tuple(k0, n0, i))>{}];
});
using mfma_input_type =
typename vector_type<FloatAB, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.template Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
}
private:
// A[M0, M1, M2, KPerThread]
static constexpr auto a_thread_desc_ =
make_naive_tensor_descriptor_packed(make_tuple(I1, I1, I1, Number<KPerThread>{}));
// B[N0, N1, N2, KPerThread]
static constexpr auto b_thread_desc_ =
make_naive_tensor_descriptor_packed(make_tuple(Number<K0PerThread>{}, // KPerThread
Number<NRepeat>{}, // repeat
Number<KPack>{}));
// C[M, N, NumRegXdlops]
static constexpr auto c_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, xdlops_gemm.GetRegSizePerXdlops()));
using AThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatAB,
FloatAB,
decltype(a_block_desc_m0_m1_m2_k),
decltype(a_thread_desc_),
Sequence<1, 1, 1, KPerThread>,
Sequence<0, 1, 2, 3>,
3,
A_K1,
A_K1>;
AThreadCopy a_thread_copy_{CalculateAThreadOriginDataIndex()};
};
} // namespace ck
#endif
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment